Joint Institute for Nuclear Research International Intergovernmental Organization

Đ

The NICA project at JINR, Dubna

C*

V. Kekelidze, A. Kovalenko, R. Lednicky, V. Matveev, I. Meshkov, <u>A. Sorin</u>, G. Trubnikov (for the NICA/MPD collaboration)

INTERNATIONAL WORKSHOP ON DISCOVERY PHYSICS AT THE LHC KRUGER 2012 DECEMBER 3 - 7, 2012

The Nuclotron-based Ion Collider fAcility (NICA) at Joint Institute for Nuclear Research (JINR), Dubna

Main targets of "NICA Complex":

- study of hot and dense baryonic matter
- investigation of nucleon spin structure, polarization phenomena
- development of accelerator facility for HEP @ JINR providing intensive beams of relativistic ions from p to Au polarized protons and deuterons with max energy up to $\sqrt{S_{NN}}=$ 11 GeV (Au⁷⁹⁺) and =27 GeV (p)

Highest baryon density at Lab

System of maximal net baryon (freeze-out) density is created in A+A collisions at NICA energies \rightarrow optimum for the compressed baryon matter exploration

J.Randrup, J.Cleymans, 2006

Existing & Future HI Machines

PHOBOS RHIC BRAND

2nd generation HI experiments

BES STAR/PHENIX@BNL/RHIC

NAEUSHINE

NA61@CERN/SPS

3nd generation HI experiments

CBM@FAIR/SIS-100/300 Fixed target, E/A=10-40 GeV, highest intensity

MPD@JINR/NICA

Collider, $\sqrt{s_{NN}} = 4-11$ GeV, L~10²⁷ cm⁻²s⁻¹ for Au⁷⁹⁺

Dense QCD Matter Physics

- <u>Nuclear equation-of-state</u>, <u>new forms of matter at high densities</u>? What are the properties and the degrees of freedom of QCD matter at neutron star core densities?
- Hadrons in dense matter:

What are the in-medium properties of hadrons? Is chiral symmetry restored at very high baryon densities?

• **Production of single and double hypernuclei**

How far can we extend the third (strange) dimension of the nuclear chart?

• Strange matter:

Does strange matter exist in the form of heavy multi-strange objects?

Physics Topics and Observables

The equation-of-state at high ρ_{B}

- Collective flow of hadrons
- particle production at threshold energies (multistrange hyperons)

Deconfinement phase transition at high ρ_{B}

- \succ excitation function and flow of strangeness (K, Λ , Σ , Ξ , Ω)
- excitation function of low-mass lepton pairs

QCD critical endpoint

> excitation function of dynamical event-by-event fluctuations

Onset of chiral symmetry restoration at high ρ_{B}

> in-medium modifications of hadrons ($\rho, \omega, \phi \rightarrow e^+e^-(\mu^+\mu^-)$)

Strange matter

- (double-) lambda hypernuclei
- > strange meta-stable objects (e.g. strange dibaryons)

Experiments on superdense nuclear matter

Experiments	Energy range (Au/Pb beams)	Reaction rates Hz
STAR@RHIC BNL	√s _{NN} = 7 – 200 GeV	1 – 800 (limitation by luminosity)
NA61@SPS CERN	E _{kin} = 20 – 160 A GeV √s _{NN} = 6.4 – 17.4 GeV	80 (limitation by detector)
MPD@NICA Dubna	√s _{NN} = 4.0 – 11.0 GeV	~7000 (design luminosity of 10 ²⁷ cm ⁻² s ⁻¹ for heavy ions)
CBM@FAIR Darmstadt	E_{kin} = 2.0 – 35 A GeV $\sqrt{s_{NN}}$ = 2.7 – 8.3 GeV	10 ⁵ – 10 ⁷ (limitation by detector)

Experiments on superdense nuclear matter

Experiments	Observables for high baryon density region					
	hadrons	correlations, fluctuations with high statistics	dileptons	charm		
STAR @RHIC	yes	no	no	no		
BNL						
NA61@SPS CERN	yes	no	no	no		
MPD@NICA	ves	ves	ves	no		
Dubna	,					
CBM@FAIR Darmstadt	yes	yes	yes	yes		

Advantage of collider experiments:

Uniform phase-space coverage when measuring excitation functions.

Nuclotron-based Ion Collider fAcility (NICA)

1a) Heavy ion colliding beams ¹⁹⁷Au⁷⁹⁺ x ¹⁹⁷Au⁷⁹⁺ at √s_{NN} = 4 ÷ 11 GeV (1 ÷ 4.5 GeV/u ion kinetic energy) at Laverage= 1E27 cm⁻²⋅s⁻¹ (at √sNN = 9 GeV)
1b) Light-Heavy ion colliding beams of the same energy range and luminosity
2) Polarized beams of protons and deuterons in collider mode: p↑p↑ √spp = 12 ÷ 27 GeV (5 ÷ 12.6 GeV kinetic energy) d↑d↑ √sNN = 4 ÷ 13.8 GeV (2 ÷ 5.9 GeV/u ion kinetic energy Laverage ≥ 1E30 cm⁻²⋅s⁻¹ (at √s_pp = 27 GeV)

3) The beams of light ions and polarized protons and deuterons for fixed target experiments:

Li ÷ Au = 1 ÷ 4.5 GeV /u ion kinetic energy p, p[↑] = 5 ÷ 12.6 GeV kinetic energy d, d[↑] = 2 ÷ 5.9 GeV/u ion kinetic energy

4) Applied research with ion beams at kinetic energy

from 0.5 GeV/u up to 12.6 GeV (p) and 4.5 GeV /u (Au)

NICA Collider parameters:

 Energy range: √s_{NN} = 4-11 GeV
 Beams: from p to Au
 Luminosity: L~10²⁷ (Au), 10³² (p)

 Detectors: MPD; Waiting for Proposals

NEW! 1985 EDITION! LAST MINUTE ENTRY — MICHAEL JACKSON'S RECORD-BREAKING HISTORY!

Heaviest Magnet

The heaviest magnet is one measuring 196 ft in diameter, with a weight of 40,000 tons, for the 10 GeV synchrophasotron in the Joint Institute for Nuclear Research at Dubna, near Moscow.

SC magnet production for NICA (booster, collider) & FAIR

Dipole magnet in cryostat

Prototype of curved dipole

yoke of quadrupole lens after final treatment

Quenches history
 for dipole magnets

Ν

Dipole magnet for collider

СТЕНД ДЛЯ СБОРКИ И ИСПЫТАНИЙ СВЕРХПРОВОДЯЩИХ МАГНИТОВ TEST FACILITY FOR THE ASSEMBLING AND TESTING OF SUPERCONDUCTING MAGNETS

The building is ready for the equipment installation

Constructing and Testing JINR Experience

160 SC dipole and quadrupole magnets for the Nuclotron: construction, test and operation since1993.

26 model magnets for SIS100

SIS100 prototype dipole and prototype quadrupole magnets

Modern SC technologies + unique accelerator physics at JINR

Highly charged ion state for heavy ions with high intensity, e.g., Kr 28+, Xe 44+, Au 65+..32+

Quadrupole and curved Dipole magnet for booster

Dipole magnet for NICA collider

New Source of Polarized lons (≤10 mA for ↑D+(↑ H+)) assembled and first test has been started.

NICA complex technical design report status

Geological, geodetical, topography measurements and drillings had been fulfilled and analyzed. Technological part of the TDR (main equipment, engineering systems, etc), radiation and environmental safety, architecture had been fulfilled. Now – the final stage: capital spending sights. Plan – to submit all documents to the State Expertise – end of 2012

MultiPurpose Detector (MPD): Observables

I stage: mid rapidity region (good performance)

- Particle yields and spectra $(\pi, K, p, clusters, \Lambda, \Xi, \Omega)$
- Event-by-event fluctuations
- Femtoscopy involving π, K, p, Λ
- Collective flows for identified hadron species
- Electromagnetic probes (electrons, gammas)

Istage: extended rapidity + IT

Total particle multiplicities

.....

- Asymmetries study (better reaction plane determination)
- Di-Lepton precise study (ECal expansion)
- Exotics (soft photons, hypernuclei)

Measurements regarded as complementary to RHIC/BES, CERN/NA61 & FAIR

QCD phase diagram: prospects for NICA

Energy Range of NICA unexplored region of the QCD phase diagram:

Highest net baryon density

Onset of deconfinement phase transition

Discovery potential:

 a) Critical End Point (CEP)
 b) Chiral Symmetry Restoration
 c) Hypothetic Quarkyonic phase

Complementary to the RHIC/BES, NA61/CERN, CBM\FAIR and Nuclotron-M experimental programs

Comprehensive experimental program requires scan over the QCD phase diagram by varying collision parameters: system size, beam energy and collision centrality. NICA provides capabilities for studying a variety of phenomena in a large region of the phase diagram.

MultiPurpose Detector (MPD)

Active volume
 5 m (length) x 4 m (diameter)

Magnet
 0.5 T superconductor

Tracking

TPC & straw EndCapTracker & silicon pixels (IT) for vertexing

Particle ID

hadrons(TPC+TOF), π⁰,γ (ECAL), e⁺e⁻(TPC+TOF+ECAL)

Centrality & T0 timing ZDC FD

Hermeticity, homogenous acceptance (2π in azimuth), low material budget
 Excellent tracking performance and powerful PID
 High event rate capability and careful event characterization

Assembly & maintenance

Particle yields, Au+Au @ $\sqrt{s_{NN}} = 8 \text{ GeV}$ (central collisions)

Expectations for 10 weeks of running at $L = 10^{27} \text{ cm}^{-2} \text{ s}^{-1}$ (duty factor = 0.5)

Particle	Yields		Decay BR	BR	*Effic. %	Yield/10 w
	4π	y=0	mode			
π^+	293	97			61	2.6 · 10 ¹¹
K +	59	20			50	4.3 · 10 ¹⁰
р	140	41			60	1.2 · 10 ¹¹
ρ	31	17	e+e-	4.7 · 10 ⁻⁵	35	7.3 · 10 ⁵
ω	20	11	e+e-	7.1 · 10 ⁻⁵	35	7.2 · 10 ⁵
φ	2.6	1.2	e+e-	3 · 10 -4	35	1.7 · 10 ⁵
Ω	0.14	0.1	Λ K	0.68	2	2.7 · 10 ⁶
D ⁰	2 · 10 -3	1.6 · 10 ⁻³	Κ +π ⁻	0.038	20	2.2 · 10 ⁴
J/ ψ	8 · 10 -5	6 · 10 ⁻⁵	e+e-	0.06	15	10 ³

*Efficiency includes the MPD acceptance, realistic tracking and particle ID. Particle yields are from experimental data (NA49), statistical and HSD models. Efficiency from MPD simulations. Typical efficiency from published data (STAR)

Reaction plane determination & flow study

Global tracking

Particle IDentification at MPD

(realistic detector simulation)

Coverage: |η| < 1.4, p_t=0.1-2 GeVc barrel /: |η| < 2.6, pt=0.1-2 GeVc barrel+EC
 Matching eff. > 85% at p_t > 0.5 GeV/c
 PID: 2σ π/K ~ 1.7 GeV/c, (π,K)/p ~ 2,5 GeV/c

	Nuclotron beam intensity (particle per cycle)									
Beam	Current	lon source type	New ion source + booster							
р	3·10 ¹⁰	Duoplasmotron	5·10 ¹²							
d	3·10 ¹⁰	,,	5·10 ¹²							
⁴ He	8·10 ⁸	,,	1.10 ¹²							
d↑	2.10 ⁸	SPI	1.10 ¹⁰							
⁷ Li	8·10 ⁸	Laser	5·10 ¹¹							
^{11,10} B	1.10 ^{9,8}	,,								
¹² C	1.10 ⁹	,,	2 ⋅10 ¹¹							
²⁴ Mg	2·10 ⁷	,,								
¹⁴ N	1·10 ⁷	ESIS ("Krion-6T")	5·10 ¹⁰							
²⁴ Ar	1.10 ⁹	,,	2 ⋅10 ¹¹							
⁵⁶ Fe	2·10 ⁶	,,	5·10 ¹⁰							
⁸⁴ Kr	1·10 ⁴	,,	1·10 ⁹							
¹²⁴ Xe	1·10 ⁴	,,	1.10 ⁹							
¹⁹⁷ Au	Station - Station	,,	1·10 ⁹							

Strange matter production in heavy ion collisions at the Nuclotron extracted beam: Baryonic Matter at Nuclotron(BM@N)

- Collaboration GSI-JINR (preparation of the joint experiment has started)
- The goal of the experiment is the systematic measurements of the observables for multistrange objects (Ξ⁻, Ω⁻, exotics) in Au-Au collisions in the energy domain of the Nuclotron extracted beams (up to 5 A GeV)

Bld. 205 ($10\ 000\ m^2$): research zone with set-up on extracted beams

Technical project – in preparation. 19 scientific centers: INR, SINP MSU, IHEP + 2 Universities (Russia); GSI, Frankfurt U., Gissen U. (Germany), + CBM-MPD IT-Consortium + *expressed an interest*

Data taking : <u>QUINTA</u>, project Energy+Transmutation: study of neutron generation in uranuim-238 target with lead blanket, energy dependence: spatial/time/energy distributions of the neutron spectra;

<u>DELTA-LNS</u>: search for a resonance in secondary pion spectra;

DSS: elastic d-p scattering, differential cross sections d σ /dΩ; FAZA-3: effects of phase transition in thermal multifragmentation HyperNIS – search for exotic hypernuclei

1-st stage((w/o IT):

- vector mesons
- flows & azhimuthal

correlations femtoscopy

2-nd stage (with IT): (sub)threshold production of cascades – to obtain the information on EOS

Dipole and area for BM@N equipment installation

Study of dense baryonic matter at < 6 GeV/n

Physics is complementary to the MPD program & will be actual even after start of the MPD runs:

• AA interactions:

- particle production, incl. sub-threshold processes;
- particle (collective) flows, event-by-event fluctuations, correlations;
- multiplicities, phase space distributions of p, n, π , K, hyperons, light nuclear fragments, vector mesons, hadronic resonances, direct light hypernuclei production in central AA collisions.

pA, nA, dA interactions in direct & inverse (Ap, Ad) kinematics:
to get a "reference" data set for comparison with AA interactions,

 to look for polarization effects in particle production off nuclear targets by polarized d, p, n.

Time table of the BM@N experiment

Phase0 (2011-2012) – Site preparation and simulation Phase1 (2013-2014) – Detector element construction & commissioning Phase2 (2015-....) – Data taking at 3.5, 4 and 4.65 A GeV

Cooperation@Nuclotron-M/NICA experiments

□ Joint Institute for Nuclear Research □ The University of Sidney, Australia Physics Institute Az.AS, Azerbaijan □ Particle Physics Center of Belarusian State University, Belarus □ Institute for Nuclear Research & Nuclear Energy BAS, Sofia, Bulgaria Hilendarski University of Plovdiv, Bulgaria Blagoevgrad University, Blagoevgrad, Bulgaria University of Science and Technology of China, Hefei, China Department of Engineering Physics, Tsinghua University, Beijing, China Osaka University, Japan 🗆 RIKEN, Japan GSI, Darmstadt, Germany Aristotel University of Thessaloniki, Greece □ Institute of Applied Physics, AS, Moldova Institute of Physics & Technology of MAS, University of Mongolia Warsaw Technological University, Warsaw, Poland □ Institute for Nuclear Research, RAS, RF □ Nuclear Physics Institute of MSU, **RF** □ St.Petersburg State University, RF Institute Theoretical & Experimental Physics, RF University of Cape Town, RSA Bogolyubov Institute for Theoretical Physics, NAS, Ukraine □ Institute for Scintillation Materials, Kharkov, Ukraine □ State Enterprise Science & Tech. Research Design Institute, Kharkov, Ukraine □ TJNAF (Jefferson Laboratory), USA

The CBM/FAIR-MPD/NICA Consortium

- 7 institutes
- 3 countries

CBM @ FAIR (Darmstadt)

MPD @ NICA (Dubna)

- **GSI**, Darmstadt, Germany
- JINR, Dubna, Russia
- IHEP, Protvino, Russia
- MSU, Moscow, Russia
- KRI, St.Petersburg, Russia
- University, St.Petersburg
- SE SRTIIE, Kharkov, Ukraine
- Modules assembly
- Components
- Ladder assembly
- Radiation tests
- In-beam tests

The CBM-MPD Consortium Structure

SPD EXPERIMENT AT NICA

47

The purpose is study of the nucleon spin structure with high intensity polarized light nuclear beams:

- high collision proton (deuteron) energy up to \sqrt{s} ~ 26 (13) GeV
- the average luminosity up to 10³⁰-10³¹ cm⁻² s⁻¹
- both proton and deuteron beams can be effectively polarized.

The main topics are:

1. Studies of MMT-DY processes with longitudinaly and transversely polarized p and D beams. Extraction of unknown (poorly known) parton distribution functions (PDFs).

- **2. PDFs** from J/Ψ production processes.
- 3.Spin effects in baryon, meson and photon productions.
- 4. Studies of spin effects in various exclusive reactions.
- 5. Diffractive processes studies.
- 6. Cross sections, helicity amplidudes and double spin asymmetries (Krisch effect). in elastic reactions.
- 7. Spectroscopy of quarkoniums.

NICA Spin program plans:

- 2012-2014 CDR and TRD preparation, SPD collaboration, R&D
- 2015-2018 R&D, Detectors production

First version of SPD CDR (June 2010) at http://nica.jinr.ru/files/Spin_program/spd_cdr.htm

XX International Symposium on Spin Physics (SPIN2012) Dubna, September 17 – 22, 2012

Time table of key part constructions

	Year	2010	2011	2012	2013	2014	2015	2016	2017	2018
	Constructions									
	WPD hall									
	Turnels tochemests									
(l'unnels + channels						,			
	51 months									
	Accelerator Complex		-		-					
Т	$\frac{1}{1} = \frac{1}{1} = \frac{1}$		-			T			V	
	magnets (Collider)								1	
Ś										
ť	Injector (HILAC+…)									
ē										
0	Booster + channels									
d										
p	Cryo-complex									
Ve	for Collider									
Ó	ior conder									
DI	MPD									
a	Solenoid + infra									
0									*	
e										
L L	Barel(ECAL+TOF)+FFD									
H										
	TPC+(2DC+)									
	BM@N (I stage)									
	Magnet CD41-M									
↓	Tracking system +									
•										
	<pre>critical points</pre>	design		production	n	assembly	te	sts		

NICA/MPD construction schedule

			2011	2012	2013	2014	2015	2016	2017
ESIS KRION									
LINAC +	- channel								
Booster	^r + channe	el							
Nuclotre	on-M								
Nuclotre	on- $M \rightarrow N$	ICA							
Channe	l to collid	er							
Collider									
Diagnos	stics								
Power s	upply								
Control	systems								
Cryogenics									
MPD									
Infrastructure									
R&D	Design	Man	ufactrng	Mount.+commis.			Commis/c	eration	

Time scales & Major milestones

NICA Complex

Draft v 7.01 June 20, 2012

Editorial board:

- **D.** Blaschke
- E. Bratkovskaya
- **D. Kharzeev**
- V. Matveev
- A. Sorin
- H. Stoecker
- **O.** Teryaev
- I. Tserruya
- N. Xu

http://theor.jinr.ru/twiki-cgi/view/NICA/WebHome

NICA White Paper

SEARCHING for a QCD MIXED PHASE at the NUCLOTRON-BASED ION COLLIDER FACILITY

The final goal of the NICA White Paper is to address the following key topics:

- Phases of dense QCD matter and conditions for their possible realization
- Characteristic processes as indicators of phase transformations
- Estimates of various observables for events
- Comparison to other experiments

Contents

1

2

3

Edito	rial			potentials
1_{-1}	Physical phenomena and relevant observable			G.Y. Shao ^a , M. Di Toro ^{a,b} , M. Cole
1.2	Parameters of the NICA accelerator facility		3.12	Physics at Large Baryon Density
Gene	ral aspects			A. Taafik
2.1	MPD at the JINR NICA in the landscape of		3.13	Lattice QCD constrained CEP pred
	M. Gazdzicki			G. A. Contrera ^{a,b,c} , A. G. Grunfele
2.2	Comments on the Mixed Phase Physics (MP	4	Hydr	odynamics and hadronic observa
	Nu Yu		4.1	Hadronic signals of non-equival-store
9.9	Experimental admentance of collider over fee			B. Tomášik
2.0	B. Mohandu		4.2	Scalar mesons properties at
a. (B. Monanty			P. Costa [*] and Yu.L. Kaline
2.4	Observables and open problems for NICA		4.3	Hadron abundances at high
	E. Bratkovskaya [*] and W. Cassing [*]			H. Sala
2.5	Exploring high-density baryonic matter: Ma		4.4	Directed now as a signal of C. M. Thashin
	J. Randrup ^a and J. Cleymans ^b		4.5	S. M. Trosum
2.6	Nuclear matter physics at NICA		10.0	M Assekney
	P. Senger		4.6	Barron Stonging in Heavy-1
2.7	Hadron Physics at the Charm and Bottom		-11.07	Yn B. hwnatt ^{a,b}
	Topics at the NICA Accelerator Facility		4.7	Statistical hadronization ph 6
	S. J. Brodsky			G. Torrieri ^{n,b}
Phase	es of QCD matter at high baryon densit		4.8	Flow scaling in a low energy
3.1	Comments on a phase diagram and fluctuati			G. Torrieri ^{n,b}
	M. Stephanov		4.9	Dissipative hydrodynamics
3.2	Search for manifestation of medium effects in			L. Turko
	D. Voskresensky		-4.10	Hadronic Fluctuations, free:
3.3	Searching for evidence of spinodal decompos-			F. Karsch ^{a,b} and C. Schmit
0.0	J. Rondran		-4.11	Exploring hybrid star matte
3.4	Supercooled quark-gluon phase?		. 10	T. Klähn ^e , D. Blaschke ^{0,0} ,
0.4	Va Inance		4.12	P. Pellerick, C. Merkerk
9.5	Discovery importantion of surface tension at		4.1.9	R. Beitwier, C. Markery .
3.0	ragorous investigation of surface tension ar		4.15	C Rhome
	V Duesen		4.1.4	Dynamical development of
	A. Dugaev		4.1.4	L.P. Cserna?, D.I. Wana!
3.0	Isospin effects on phase transitions of hadroi		4.15	Challenges to hydrodynamic 7
	M. Di Torono, V. Grecono, B. Liucia, and S			P. Huovinen
3.7	Accessibility of dense QCD phases in heavy-		4.16	Importance of clusters for fl
	D. Blaschke ^{w,v} , F. Sandin ^{e,u} , V. Skokov ^{n,e,f}			P. Danielewicz ^a , T. Klähn ^b ,
3.8	Transitional change to baryon-rich QCD ma		4.17	Baryon stopping probes dec
	K. Fukushima			G. Wolschin
3.9	Triple point and quarkyonic matter in the (4.18	Can NICA verify BES?
	L. McLerran ^a , K. Redlich ^{b,c} , D. Blaschke ^{b,}			D. Parganlija
3.10	Search for the QCD Critical Point at NICA	5	Femt	oscopy, correlations and f
	X. Luo ^{a,c} , B. Mohanty ^b , H.G. Ritter ^c , N. X.		5.1	Femtoscopic search for the 1
				R. Lednicky
			5.2	Brief arguments for studyin
	and the second		5.0	M. Lisa
	and the second se		0.3	V A Obarahay
	A DESCRIPTION OF A DESC		5.4	Fuent-la-avant fluctuation 8
	A REAL PROPERTY OF A REAL PROPERTY.		2.4	M Gorenstein
				and conclusions a concern

3.11	Probing the hadron-quark mi	xed pha	use at fir	nite temperature, baryon and isospin chemi	cal	
	G.Y. Shao ^a , M. Di Toro ^{a,b} , M	I. Colo	nna ^a , S	Plumari ^{a,b} , B. Liu ^{c,d} , V. Greco ^{a,b} , Y.X. 1	$Lia^{e,f}$ 58	8
3.12	Physics at Large Baryon Der A. Tamfik	sity			6	7
3.13	Lattice QCD constrained CE	P pred	iction i	a nonlocal PNJL models		
	G. A. Contrerd ^{a,b,c} , A. G. G	runfeld	^{6,d,e} , D.	. Blaschke ^{e,f}	73	2
Hydr	odynamics and hadronic o	bserva	bles .		8	2*
4.1	B Tamééik		5.5	Flow and freeze-out in relativistic heavy-i	ion collis	sions at NICA
4.2	Scalar mesons properties at		010	L. Bravina and E. Zabrodin		
	P. Costa ⁴ and Yu.L. Kaline		5.6	Perspectives of anisotropic flow measurem	ients at	NICA
4.3	Hadron abundances at high			V. Korotkikh, I. Lokhtin, L. Malinina, S.	Petrusl	hanko, L. Sarycheva, A. Snigirev 134
	H. Satz		5.7	Fluctuations and non-equilibrium process T. Kadama	es in col	llective flow
4.4	Directed flow as a signal of		5.6	The programments for experimental study of .	dimented	allintic and triangular flows in accum-
4.5	S. M. Trosum		0.0	metric heavy ion collisions at NICA energy	ties	, empire, and tranginal nows in asym-
4.0	M. Asakawa			M. Bleicher ^{a,c} , K. A. Bugges ^b , P. Rau ^{a,c} ,	A. S. S	lorin ^d , J. Steinheimer ^{a,c} and H. Stöcker ^{a,c} 137
4.6	Baryon Stopping in Heavy-1		5.9	Baryon number cumulants in relativistic l	heavy io	n collisions
	Yu.B. Ivanov ^{a,b}			M. Kitazawa, M. Asakawa		
4.7	Statistical hadronization ph	6	Mech	anisms of multi-particle production		
4.0	G. Torriera'''		0.1	E Louin		
4.0	G. Torrieri ^{a,b}		6.2	Some issues in NICA-related researd	8.6	Chiral vortaic effect and neutron asymmetries at NICA
4.9	Dissipative hydrodynamics			I. Dremin and A. Leonidov	87	D. Reguchessky ¹⁰ , A. Soru ¹⁰ and D. Terguch ¹⁰ ,, 182 Particle correlations and local Pariolation in hannuion collisions
	L. Turko		6.3	Hydrokinetic analysis of space-time e	0.1	V. Koch ^a , A. Bzdak ^b , J. Lian ^{b,c}
4.10	Hadronic Fluctuations, free:			formed at the NICA and FAIR energ	8.8	Exploring Dense and Cold QCD Phases in a Magnetic Field
	F. Karsch ^{a,a} and C. Schmix		8.4	Yu. Singukov		V. de la Incera, E. J. Ferrer
4.11	T Klibn ⁸ D Blasshla ^{h,c}		0.4	E Kolomeitsen and B. Tomášik	Cumu	lative processes
4.12	Testing Hadron Formation		6.5	Chemical freeze-out and strangeness	9.1	New forms of QCD matter and cumulative processes A. Kathalana (1997)
4.1.2	R. Bellwied ^e , C. Markert ^b .			F. Becattini	9.2	A. Kanamov
4.13	Understanding the propertie		6.6	MEMO production at high baryon d	0.2	A. Starinskiu, O. Denisonskava, Yu. Zaitsev, K. Mikhailov, P. Polozon, M. Prokudin, V.
	C. Blume			M. Bleicher ^{e,b} , J. Steinheimer ^{e,b}		Stolin, R. Tolochek, S. Tolstoukhov and G. Sharkov
4.14	Dynamical development of		6.7	Statistical production of antikaon nu 10	Polari	zation effects and spin physics
4.15	L.P. Csernar [*] , D.J. Wang, [*] Challenges to hydrodynamic	7	Electr	a. Anarome [*] , r. Drawn-Manzaiger ^{**}	10.1	Polarization effects in heavy ions collisions at NICA
4.19	P. Huovinen		7.1	Low-mass dileptons at NICA	10.2	A. Efremov, O. Teryaev and V. Tomeev
4.16	Importance of clusters for fl			I. Tserruya	10.2	A. Efreman, A. Nagantsev, I. Savin, O. Shewhenko and O. Terwaev
	P. Danielewicz ^a , T. Klähn ^b		7.2	Dileptons at NICA	10.3	Polarization of Λ^0 hyperons in nucleus-nucleus collisions at MPD
-4.17	Baryon stopping probes dec			K. Gudima ^a and V. Toneev ^a		V. Ladygin, A. Jerasalimov and N. Ladygina
4.19	G. Wolschin Con NICA multi DES2		7.3	Khectromagnetic probes on NICA Kh. Abmemuon and A. Ericoen	10.4	Possible effect of mixed phase and deconfinement upon spin correlations in the $\Lambda\bar{\Lambda}$ pairs
4.10	D. Parmanlin		7.4	Solving the problem of anomalous J		generated in relativistic heavy-ion collisions V.L. Landachita and V.V. Landachita 000
Femte	scopy, correlations and f			A.B.Kurepin and N.S.Topilskaya 11	Relate	v.L. Lywoonitz and v.v. Lywoonitz
5.1	Femtoscopic search for the 1		7.5	Low energy J/ ψ -hadron interactions	11.1	Determination of the equation of state of dense matter
	R. Lednicky			H. Satz		S. Fantoni ^a , S. Gandolf ^b , A. Illarionos ^c , F. Pederivax ^{c,d} and K. Schmidt ^c 209
5.2	Brief arguments for studyin		7.6	J/ψ production in high energy nucle P. Zhuang	11.2	Relativistic nuclear fusion reactions and QED of strong fields: novel possibilities at the
5.3	Physics at NICA-MPD: nar		7.7	Soft photons at NICA		NICA facility
0.0	V. A. Okorokov			V. V. Avdeichikov ^a , E. S. Kokoulina	11.3	A. Kotalenko, A. Sissakian and A. Sorin
5.4	Event-by-event fluctuations	8	Local	P and CP violation in hot QCD	11.5	for nanofabrication and in medicine
	M. Gorenstein		8.1	Topologically induced local P and C		D.E. Donets, E.D. Donets, E.E. Donets, V.V. Salnikov V.B. Shutov
				D. Kharzeev	Fixed	Target Experiments
			8.2	P V Buisidosich ^{a,b} M.N. Chernoda	12.1	Measurement of Elementary Cross Sections
			8.3	Rich physics of non-central heavy-los	10.0	J. Aichelin ¹ , M. Bleicher ⁴ , E. Bratkovskaya ² , C. Hartnack ¹ ,, 215 Search for evolving quark in evolving reactions with hightest model at NUCLOTRON using
				S. Voloshin	12.2	Search for scaling onset in exclusive reactions with lightest nuclei at NUCLOTRON using fixed target.
			8.4	Spontaneous P-violation in dense ma		Yu.N. Uzikov
				A. Andrianov ^a , V. Andrianov ^a and	12.3	Measurement of strange particle production in the NICA fixed-target program
			8.5	On CP violation in heavy-ion collisie V. Shehau and V. Tancau		V. Friese
	And the second second			F. SKOKDU GMU F. IONEEU	12.4	Fixed target mode: correlations in relative 4-velocity space U.A. Observations
				وبالمتحفظ ويتوقد وتحمدوها	12.5	V.A. OKOTOKOU
						P. Senger
					12.6	Deeply Subthreshold Particle Production in Nucleus-Nucleus Collisions
						S. Mrówczyński
				List	of Cor	atributors

NICA White Paper - Contents

(83 contributions)

- 1 Editorial (2)
- 2 General aspects (7)
- **3** Phases of QCD matter at high baryon density (13)
- 4 Hydrodynamics and hadronic observables (18)
- **5** Femtoscopy, correlations and fluctuations (9)
- 6 Mechanisms of multi-particle production (7)
- 7 Electromagnetic probes and chiral symmetry in dense QCD matter (7)
- 8 Local P and CP violation in hot QCD matter (8)
- 8 Cumulative processes (2)
- **10** Polarization effects and spin physics (4)
- **11** Related topics (3)
- **12 Fixed Target Experiments (6)**

The NICA White Paper 83 contributions

http://theor.jinr.ru/twiki-cgi/view/NICA/WebHome

Physical phenomena and relevant observables:

- in-medium modification of hadron properties (MMH)
- the nuclear matter equation of state (EoS)
- the onset of deconfinement (OD) and/or
- chiral symmetry restoration (CSR)
- signals of a phase transition (PT)
- the mixed phase and the critical end-point (CEP)
- possible local parity violation in strong interactions (LPV)

The correlations between observables and physical phenomena:

Observables	Physical Phenomena						Detectors	Reference in the White Paper	
	MMH	EoS	OD	CSR	PT	CEP	LPV	1	_
yields of hadrons, nor- mal and exotic light nuclei	x	х	x					tracking, TOF	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
yields and spectra of multistrange hyperons	х	х	х					precision tracking (seconday vertices)	2.6, 5.3, 6.4, 12.3, 12.5, 12.6
electromagnetic probes			x	х				tracking, electron identifiers (e.g. RICH)	7.1, 7.2, 7.3, 7.7
azimuthal charged par- ticle correlations					х		х	tracking	8.1 - 8.7, 10.4
event-by-event (EBE) fluctuations						х		tracking, TOF	2.1, 2.6, 3.10, 5.4
Radial, elliptic and tri- angular flow of hadrons		х	x		х			tracking, TOF	4.4, 4.8, 4.14, 5.8
higher moments of hadron distributions			x		x	х		tracking, TOF	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
interferometric param- eters		х			х			tracking	3.5, 5.1, 5.2, 5.5

Studying vorticity

- Vorticity for uniform rotation proportional to Orbital Angular Momentum
- Rotation another pseudovector angular velocity
 Tests are required
- Natural object hydrodynamical helicity
 (= v rot v)-related to chaos
- Model calculations: JINR (DCM: M. Baznat, K. Gudima, A. Sorin, O. Teryaev) + FIAS (UrQMD: M. Bleicher, J. Steinheimer, H. Stoecker)

Anomaly in medium – new externa lines in VVA graph

- Gauge field -> velocity
- CME -> CVE
- Kharzeev, Zhitnitsky (07) EM current
- Generalization: any (e.g. baryonic) current – neutron asymmetries@NICA O. Rogachevsky, A. Sorin, O. Teryaev PRC82:054910,2010

Coupling: $e_j A_\alpha J^\alpha \Rightarrow \mu_j V_\alpha J^\alpha$

$$J_e^{\gamma} = \frac{N_c}{4\pi^2 N_f} \varepsilon^{\gamma\beta\alpha\rho} \partial_{\alpha} V_{\rho} \partial_{\beta} (\theta \sum_j e_j \mu_j)$$

Observable: three-particle correlator: $\langle cos(\phi_{\alpha} + \phi_{\beta} - 2\phi_{c}) \rangle$

CME@RHIC: 15 M events to establish the effect. CVE@NICA:1000 M events, which can be collected within a few months of the NICA run.

Vorticity simulations in HIC JINR (DCM: M. Baznat, K. Gudima, A. Sorin,O. Teryaev) +FIAS(UrQMD: M. Bleicher, J. Steinheimer, H. Stoecker) Hydrodynamical Helicity separation (DCM)

Hydrodynamical Helicity Separation (UrQMD)

Round Table Discussions on NICA/MPD@JINR

Round Table Discussion I: Searching for the mixed phase of strongly interacting matter at the JINR Nuclotron, *July 7 - 9, 2005* http://theor.jinr.ru/meetings/2005/roundtable/

Round Table Discussion II: Searching for the mixed phase of strongly interacting matter at the JINR Nuclotron: Nuclotron facility development JINR, Dubna, October 6 - 7, 2006 http://theor.jinr.ru/meetings/2006/roundtable/

Round Table Discussion III: Searching for the mixed phase of strongly interacting QCD matter at the NICA: Physics at NICA JINR (Dubna), November 5 - 6, 2008, http://theor.jinr.ru/meetings/2008/roundtable/

Round Table Discussion IV: Searching for the mixed phase of strongly interacting QCD matter at the NICA: Physics at NICA (White Paper) JINR (Dubna), September 9 - 12, 2009 http://theor.jinr.ru/meetings/2009/roundtable/

Round Table Discussion V: Searching for the mixed phase of strongly interacting QCD matter at the NICA: Physics at NICA (White Paper) JINR (Dubna), August 28, 2010 http://theor.jinr.ru/~cpod/Dubna_2010_program2.htm Workshop Fixed Target@Nuclotron-N and SIS100@FAIR Detector R&D, Synergies and Physics Opportunities GSI Helmholtz Centre, 2010 November 3rd Wednesday, November 3rd GSI WD-Zimmer

09:30 – 09:45 Welcome and Goals of the Meeting

H. Stöcker

Chair: A. Sorin 09:45 – 11:00 **Technical Status of the Facilities** Nuclotron-M: Status of the Facility and the New Fixed Target Program V. Kekelidze Towards Nuclotron-N@JINR & SIS100@FAIR Physics Program H. Stöcker /A. Sorin *College Break*

Chair: G.Trubnikov 11:15 – 12:15 **Nuclear Structure Physics** Nuclear Structure and Nuclear Astrophysics opportunities with RIBs Status of R3B *Lunch Break (small Lunch incl. coffee / WD-Zimmer)*

G. Martinez-Pinedo T. Aumann / H.Simon

Chair: V. Kekelidze 13:00 – 15:00 **Nuclear Matter Physics** Status of the HADES Upgrade, recent results Status of FOPI, recent results Nuclear Matter Physics at Nuclotron and SIS100 energies Status of R&D CBM The STS Consortium *Coffee Break*

15:15 – 17:00 Final Panel Discussion:
Synergies and Joint R&D Projects
17:30 Dinner at the GSI Guesthouse

R. Holzmann / J. Pietraszko N. Herrmann P. Senger W. Müller J. Heuser

Chair: H. Stöcker

NICA/JINR-FAIR Bilateral Workshop Matter at Highest Baryon Densities in the Laboratory and in Space Frankfurt Institute for Advanced Studies, April 2 - 4, 2012 http://theor.jinr.ru/~nica_fair/

Topics:

- Phases of QCD at high baryon densities
- Effects signalling phase transitions
- Observables in heavy-ion collisions and in astrophysics
- Simulations of ion collisions and supernovae

Aims:

- identify discovery potential of Nuclotron-NICA and FAIR in the canon of current and future HIC experiments
- chiral symmetry restoration
- onset of deconfinement
- in-medium modification of hadron properties
- color superconductivity, multiquark states, etc.

Results:

- Most promising and feasible suggestions for experiments at Nuclotron-NICA and CBM/FAIR
- Priorities for detectors and formation of international collaborations

* German-Russian Year of Science 2011/2012

The conferences in Dubna

CPOD 2010

SQM 2015

http://theor.jinr.ru/~diastp

DIAS-TH: Dubna International Advanced School of Theoretical Physics

Helmholtz International Summer School

Dense Matter

in

Heavy Ion Collisions and Astrophysics

Bogoliubov Laboratory of Theoretical Physics JINR, Dubna, Russia, August 21 – September 1, 2006

TOPICS:

 Hadrons in the Medium
 Equation of State and Phase Transition

Hadron Production in

Heavy-Ion Collisions

Color Superconductivity

and sQGP

Dense Matter in Compact Stars

SUPPORTED BY:

Helmholtz Association Helmholtz Centers DESY and 451

ORGANIZERS: * J. Wambach (GSI, TU Darmstadt) * D. Blaschke (JINR, GSI)

LOCAL ORGANIZERS:

- * A. Soria (JINR)
- J. Schmelzer (U Rostock & JINR)
- * V. Zhuravlev (JINR)
- " V. Skokov (sc. secretary, JINR)
- * V. Novikova (JINR)

CONTACT ADDRESS:

<mark>#AX: +7-49621-65084</mark> B-mail: dm2006@theor.jinr.ru WWW: http://theor.jinr.ru/~dm2006 DIAS-TH: Dubna International Advanced School of Theoretical Physics Helmholtz International Summer School

Dense Matter in

Heavy Ion Collisions and Astrophysics

Bogoliubov Laboratory of Theoretical Physics JINR, Dubna, Russia, July 14-26, 2008

TOPICS:

ORGANIZERS:

- Hadrons in the Medium
- Equation of state and Phase Transitions
- Hadron Production and Heavy Ion Collisions
- Dense Matter in Compact Stars
 - Future Experimental Facilities

SUPPORTED BY:

- Helmholtz Association
- Helmholtz Centers
- DESY and GSI
- Joint Institute for Nuclear Research
- Russian Foundation for Basic Research

- J. Wambach (GSI, TU Darmstadt)
- V. Voronov (JINR)
- D. Blaschke (JINR, U Wroclaw)

LOCAL ORGANIZERS:

- A. Sorin (JINR)
- J. Schmelzer (U Rostock, JINR)
- V. Zhuravlev (JINR)
- V. Skokov (sc. secretary, JINR)
- A. Dolya (secretary, JINR)

CONTACT ADDRESS:

FAX: +7-49621-65084 E-mail: dm2008@theor.jinr.ru WWW: http://theor.jinr.ru/~dm2008

DIAS-TH Dubna International Advanced School for Theoretical Physics HIC-for-FAIR School and Workshop

Dense QCD Phases

Heavy-Ion Collisions.

August 21- September 4, 2010

http://theor.jinr.ru/~am10

@ Joint Institute for Nuclear Research

M. Bleicher (Frankfurt) D. Blaschke (JINR & Wrocław)

Local Organisers

Organisers

T. Donskova (JINR) A. Khvorostukhin (JINR) E. Kolganova (JINR) A. Sorin (JINR) D. Zablocki (Wrocław)

NONEQUILIBRIUM AND TRANSPORT PHENOMENA IN DENSE MATTER QCD PHASES IN COMPACT STARS, SUPERNOVÆ AND MERGERS EQUATION OF STATE AND QCD PHASE TRANSITIONS HADRON PRODUCTION IN HEAVY-ION COLLISIONS

enbracing the Gin CDOD Conference HELMHOLTZ Warmup, lectures, progress ASSOCIATION

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research

Dubna International Advanced School of Theoretical Physics Helmholtz International Summer School

Lattice QCD, Hadron Structure and Hadronic Matter

Dubna, Russia, September 5 - 17, 2011

Introduction to Lattice Gauge Theories Hadron structure and spectroscopy Nonzero temperature and baryon number density Heavy quark physics Beyond the Standard Model Strong magnetic fields Simulation algorithms and analysis techniques

LECTURERS:

D. Blaschke (ITP, Uni. of Wroclaw & BLTP, JINR) S. Catterall (Syracuse U.) M. Goeckeler (ITP, Regensburg U) M. Mueller-Preussker (Humboldt U., Berlin) K. Jansen (NIC, DESY, Zeuthen) **ORGANIZERS:** F. Karsch (Bielefeld U. & BNL) R. Sommer (NIC, DESY, Zeuthen) D. I. Kazakov (BLTP, JINR) A. Sorin (JINR, Dubna) M. Peardon (Trinity College, Dublin) P. Petreczky (BNL) M. Polikarpov (ITEP. Moscow) M. Polyakov (S.-Pb. Nucl. Phys. Inst., Gatchina & Bochum U.) A.V.Radyushkin (JLAB, USA & JINR, Dubna, Russia) C. Schmidt (Frankfurt U. & GSI, Darmschtadt) R. Sommer (NIC, DESY, Zeuthen) A. S. Sorin (BLTP, JINR) O. V. Tervaev (BLTP. JINR) C. Urbach (Bonn U.) V. I. Zakharov (ITEP. Moscow)

CONTACTS:

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research 141980 Dubna, Russia; Phone: (+749621) 65084; e-mail: diastp@theor.jinr.ru http://theor.jinr.ru/~diastp/summer11

DIAS-TH: Dubna International Advanced School for Theoretical Physics

Helmholtz International Summer School Dense Matter in Heavy Ion Collisions and Astrophysics: Theory and Experiment

Dubna, Russia, August 28 - September 8, 2012

Organisers

H. Stöcker (GSI) A. Sorin (JINR) D. Blaschke (Wroclaw & JINR)

Local Organisers

Equation of state & QCD phase transitions

- Transport properties in dense QCD matter
- Hadronization & freeze-out in heavy ion collisions (HIC)
- Astrophysics of compact stars (CS)

Topics

DUBNA

- Simulations of dense QCD, HIC and CS
- Experiments and observational programs

V. Zhuravlev (JINR) J. Schmelzer (Rostock & JINR) A. Khvorostukhin (JINR) A. Friesen (JINR) V. Nesterenko (JINR) .V. Novikova (JINR)

Contact

dm12@theor.jinr.ru http://theor.jinr.ru/~dm12

RF Prime Minister V.V. Putin at NICA, July 5, 2011

Session of the Government Commission on High Technology and Innovation (Dubna, July 5, 2011)

Prior to the session, the Ministry of Education and Science of the Russian Federation, jointly with the interagency working group, selected 6 out of 28 submitted applications which meet the highest requirements imposed to specify the class of "mega-science" facilities. Among them is the NICA project.

The meeting of the Working Group of the Russian Ministry of Education and Science (Moscow, January 17, 2012) The NICA project has passed the international expertise that is a precondition for funding, along with two other megaprojects – the PIK reactor and the IGNITOR tokamak.

BMBF-JINR meeting (Dubna, August 30 – 31, 2012)

V.A.Matveev – the JINR Director

and **Dr. Beatrix Vierkorn-Rudolph** - the BMBF Directorate 71 Director signed the document

recognizing the NICA complex as the large-scale project on the Russian territory and appreciating the selection of NICA as one of the "Mega science" projects

Parties agreed to join their efforts in the construction of both FAIR & NICA in:

construction of cryogenic facility at LHEP JINR to provide the assembly and the cold testing of the superconducting magnets for the NICA synchrotrons and 175 quadrupole modules for FAIR SIS100

preparation of clean area at LHEP JINR to provide the assembly and test of modern silicon tracking detectors for BM@N, MPD and CBM

stimulation of joint research and educational programs for young scientists

Conclusions of the Town Meeting at CERN, 29 June 2012

On a time scale of less than a decade, using the existing heavy ion beams at the Nuclotron accelerator, the NICA project at JINR in Dubna will provide a similar energy range in a collider geometry at the average luminosity of 10^{27} / cm2 s, as well as, the fixed target experiments with ELab = 2 – 4.5 GeV/nucleon.

This offers important complementarities to the beam energy scan program at RHIC and the programs at FAIR.

The Open Symposium on European Strategy in Particle Physics (11-12 Sept., Krakow, PL)

indicated the NICA facility as a part of HI European program

Concluding Remarks

The NICA complex is well developing

The two physics projects BM@N & MPD are targeting to the HI physics frontiers

The NICA program is well integrated into world experimental HI facilities

The SP program is developing, but could started already at MPD

The collaborations are growing around NICA & are getting an international recognition

You are welcome to enlarge the participation in the NICA program

Welcome to the collaboration!

Thank you for attention!