

Kruger 2012

Workshop on Discovery Physics at the LHC Kruger National Park, Dec 03-07, 2012

CP Violation at LHCb

Olaf Steinkamp

on behalf of the LHCb collaboration

Physik-Institut der Universität Zürich Winterthurerstrasse 190 CH-8057 Zürich olafs@physik.uzh.ch

Sources of CP violation (I)

<u>CP violation in mixing</u> ("indirect" CP violation)

- neutral meson systems (K°K°, D°D°, B°B°, B°B°, B°S°):
 particle-antiparticle mixing due to box diagrams
- time evolution described by Schroedinger equation:

$$\mathbf{i}\frac{\mathbf{d}}{\mathbf{dt}} \begin{pmatrix} \mathbf{B}_{s}^{0} \\ \overline{\mathbf{B}}_{s}^{0} \end{pmatrix} = \begin{pmatrix} \mathbf{M}_{11}^{s} - \mathbf{i}\frac{\Gamma_{11}^{s}}{2} & \mathbf{M}_{12}^{s} - \mathbf{i}\frac{\Gamma_{12}^{s}}{2} \\ \mathbf{M}_{12}^{s*} - \mathbf{i}\frac{\Gamma_{12}^{s*}}{2} & \mathbf{M}_{22}^{s} - \mathbf{i}\frac{\Gamma_{22}^{s}}{2} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{B}_{s}^{0} \\ \overline{\mathbf{B}}_{s}^{0} \end{pmatrix}$$

• solution yields mass eigenstates (= particles that propagate in vacuum): $|B_{s,L}\rangle = p |B_{s}^{o}\rangle + q |\overline{B}_{s}^{o}\rangle \qquad |B_{s,H}\rangle = p |B_{s}^{o}\rangle - q |\overline{B}_{s}^{o}\rangle$

- CP violation due to interference of Γ_{12} and M_{12} if $\phi_M^s = arg \left(-M_{12}^s/\Gamma_{12}^s\right) \neq 0$
 - results in $|q/p| \neq 1$: mass eigenstates are not CP eigenstates
 - different transition rates for $B^{0}_{s}\to \overline{B}{}^{0}_{s}$ and $\overline{B}{}^{0}_{s}\to B^{0}_{s}$
- New Physics can enter through heavy new particles in box and affect ϕ_M^s 06.12.2012Kruger2012 CPV @ LHCb (2/50)O. Steinkamp

Sources of CP violation (II)

<u>CP violation in decay</u> ("direct" CP violation)

- due to interference of decay diagrams with different weak and strong phases
- causes different decay amplitudes for a process and its CP conjugate: $\left|\overline{A}_{\overline{f}}/A_{f}\right| \neq 1$
- measure time-integrated decay rate asymmetry

$$\mathbf{A}_{\pm} = \frac{\mathbf{\Gamma}(\mathbf{B}^{-} \mathbf{i} \mathbf{f}) - \mathbf{\Gamma}(\mathbf{B}^{+} \mathbf{i} \mathbf{f})}{\mathbf{\Gamma}(\mathbf{B}^{-} \mathbf{i} \mathbf{f}) + \mathbf{\Gamma}(\mathbf{B}^{+} \mathbf{i} \mathbf{f})} \neq \mathbf{0}$$

- interfering amplitudes usually involve Penguin diagrams
 - New Physics can then enter through new heavy particles in Penguin loops
- challenge: disentangle weak phase from strong phase

Kruger2012 - CPV @ LHCb (3/50)

Sources of CP violation (III)

<u>CP violation due to the interferenc of mixing and decay</u>

 if final state f accessible to both B^o_s and B^o_s:
 CP violated due to interference between direct decay and decay after mixing if

$$\mathbf{Im}\left(\frac{\overline{\mathbf{A}_{f}}}{\mathbf{A}_{f}}\cdot\frac{\mathbf{q}}{\mathbf{p}}\right)\neq\mathbf{0}$$

measure time-dependent decay rate asymmetry:

$$\mathbf{A}_{CP}(\mathbf{t}) = \frac{\Gamma(\mathbf{B}_{s}^{o}(\mathbf{t}=\mathbf{0}) \rightarrow \mathbf{f}(\mathbf{t})) - \Gamma(\overline{\mathbf{B}}_{s}^{o}(\mathbf{t}=\mathbf{0}) \rightarrow \mathbf{f}(\mathbf{t}))}{\Gamma(\mathbf{B}_{s}^{o}(\mathbf{t}=\mathbf{0}) \rightarrow \mathbf{f}(\mathbf{t})) + \Gamma(\overline{\mathbf{B}}_{s}^{o}(\mathbf{t}=\mathbf{0}) \rightarrow \mathbf{f}(\mathbf{t}))} = \underbrace{\mathbf{S} \sin(\Delta \mathbf{m}_{s} \mathbf{t}) + \mathbf{C} \cos(\Delta \mathbf{m}_{s} \mathbf{t})}_{\Delta \mathbf{m}_{s} = \mathbf{m}(\mathbf{B}_{s}, \mathbf{u}) - \mathbf{m}(\mathbf{B}_{s}, \mathbf{u})}$$

- most prominent example pre-LHCb: measurement of CKM angle 2β in $B^0\to J/\psi~K^0_{_s}$ by Babar and Belle
- NP can change phase of mixing (box diagram) and decay (if penguin)

• n.b. CP can be violated in this case even if |q/p| = 1 and $|\overline{A}_f/A_f| = 1$

LHC

CP Why?olation

- New Physics models usually predict new heavy particles
 - these can enter in <u>internal loops</u> (Box diagrams and Penguins), lead to sizeable modification of CP phases
- the comparison of <u>precise measurements</u> of CP phases with <u>precise predictions</u> from Standard Model can therefore reveal the presence of New Physics
- these <u>indirect searches</u> for New Physics make use of the appearance of virtual particles in loop diagrams
- are therefore sensitive to <u>higher mass scales</u> than direct searches for new particles

classic example: CP violation in $K^{\circ}\overline{K}^{\circ}$ (1964)

 \rightarrow prediction of 3rd quark family (top direct discovery 1995)

 moreover, the <u>pattern of observed deviations</u> can hint at the <u>structure of the New Physics</u> at work

06.12.2012

Kruger2012 - CPV @ LHCb (5/50)

LHCb Apparatus

Key Features

- impact parameter resolution
 - identify secondary vertices
- proper time resolution
 - resolve fast $B_{s}^{o} \overline{B}_{s}^{o}$ oscillations
- momentum, invariant mass resolution
 - against combinatorial backgrounds

"B mesons are the elephants of the particle zoo – they are heavy and they live long." (T. Schietinger)

- K/ π separation
 - against peaking backgrounds
 - flavour tagging
- selective and efficient trigger, also for hadronic final states
- magnetic field reversed regularly to cancel detector asymmetries

06.12.2012

Kruger2012 - CPV @ LHCb (7/50)

Key Features

- impact parameter resolution
 - identify secondary vertices
- proper time resolution
 - resolve fast $B_{s}^{o} \overline{B}_{s}^{o}$ oscillations
- momentum, invariant mass resolution
 - against combinatorial backgrounds

- K/ π separation
 - against peaking backgrounds
 - flavour tagging
- selective and efficient trigger, also for hadronic final states
- magnetic field reversed regularly to cancel detector asymmetries

06.12.2012

Kruger2012 - CPV @ LHCb (8/50)

- Short introduction
- CP violation in $B_{s}^{o}\overline{B}_{s}^{o}$ mixing from semileptonic decays
- CP phase ϕ_s from $B^0_{\ s} \to J/\psi \phi$ and $B^0_{\ s} \to J/\psi \pi \ {}^*\pi^{-}$
- CKM phase γ from $B^{\scriptscriptstyle\pm} \to DK^{\scriptscriptstyle\pm}$ and $B^{\scriptscriptstyle\pm} \to D\pi^{\scriptscriptstyle\pm}$ Tree decays
- CP violation in charmless B decays ("γ from loops")
- Summary and outlook: LHCb upgrade

06.12.2012

Kruger2012 - CPV @ LHCb (9/50)

CP violation in BO -Bo mixing

Semileptonic Asymmetry

• remember, CP violated in $B_s^0 - \overline{B}_s^0$ mixing if

$$\phi_{M} = arg(-M_{12}^{s}/\Gamma_{12}^{s}) \neq 0$$

• can be measured in semileptonic decay asymmetry

$$\mathbf{a_{sl}^{s}} = \frac{\Gamma(\mathbf{B_{s}^{o}} \rightarrow \mathbf{D_{s}^{-}} \mu^{+} \mathbf{X}) - \Gamma(\overline{\mathbf{B}_{s}^{o}} \rightarrow \mathbf{D_{s}^{+}} \mu^{-} \mathbf{X})}{\Gamma(\mathbf{B_{s}^{o}} \rightarrow \mathbf{D_{s}^{-}} \mu^{+} \mathbf{X}) + \Gamma(\overline{\mathbf{B}_{s}^{o}} \rightarrow \mathbf{D_{s}^{+}} \mu^{-} \mathbf{X})} = \frac{\Delta \Gamma_{s}}{\Delta m_{s}} \operatorname{tan} \phi_{M}$$

($\Delta\Gamma_s$, Δm_s : lifetime and mass difference between the two mass eigenstates)

predicted to be very small in Standard Model

 $a_{sl}^{s} = (1.9 \pm 0.3) \times 10^{-5}$ [A.Lenz, arXiv:1205.1444]

- very sensitive to possible New Physics contributions in box diagram
- LHCb analyis of 1.0 fb⁻¹
 - 193k signal events
 - very low backgrounds

[LHCb-CONF-2012-022]

06.12.2012

Kruger2012 - CPV @ LHCb (11/50)

06.12.2012

Semileptonic Asymmetry

- LHC collides protons on protons
 - $B_{s}^{o}\overline{B}_{s}^{o}$ production asymmetry, $a_{p} \sim 1 \%$
- but: a_{p} steongly diluted by the very rapid $B_{s}^{0} \overline{B}_{s}^{0}$ oscillation

$$\mathbf{A}_{raw} = \frac{\mathbf{N}(\mathbf{D}_{s}^{-}\boldsymbol{\mu}^{+}) - \mathbf{N}(\mathbf{D}_{s}^{+}\boldsymbol{\mu}^{-})}{\mathbf{N}(\mathbf{D}_{s}^{-}\boldsymbol{\mu}^{+}) + \mathbf{N}(\mathbf{D}_{s}^{+}\boldsymbol{\mu}^{-})} = \frac{\mathbf{a}_{sl}^{s}}{2} + \left[\mathbf{a}_{P} - \frac{\mathbf{a}_{sl}^{s}}{2}\right] \times \frac{\int e^{-\Gamma_{s}^{+}} \cos(\Delta m_{s}^{+}t) \epsilon(t) dt}{\int e^{-\Gamma_{s}^{+}} \cosh(\Delta \Gamma_{s}^{-}t/2) \epsilon(t) dt}$$

=2 $\times 10^{-3}$ for LHCb acceptance $\epsilon(\textbf{t})$

 detection asymmetries: measured from data using various control channels

Kruger2012 - CPV @ LHCb (12/50)

O. Steinkamp

so B^o_s mesons are NOT like elephants - they forget !

[LHCb-CONF-2012-022]

Semileptonic Asymmetry

• LHCb result

- most precise measurement to date
- consistent with Standard Model
- remember: D0 reports 2.9 σ deviation from Standard Model in measurement of like-sign dimuon asymmetry

$$A_{\mu\mu} = \frac{N(\mu^{+}\mu^{+}) - N(\mu^{-}\mu^{-})}{N(\mu^{+}\mu^{+}) + N(\mu^{-}\mu^{-})} \approx 0.6 a_{sl}^{s} + 0.4 a_{sl}^{d}$$

[D0 collaboration, arXiv:1208.5813]

- LHCb and DO results compatible with each other at < 2 σ level

06.12.2012

Kruger2012 - CPV @ LHCb (13/50)

CP violation in $B^{\scriptscriptstyle 0}_{s} \to J/\psi~\phi$

- example for CP violation in interference between mixing and decay
- CP violating phase

$$\phi_{s} = \frac{\phi_{M}}{2} - \frac{2}{2}\phi_{D}$$

- $\phi_{_{\rm S}}$ predicted to be very small in Standard Model
 - $B_{s}^{0}-B_{s}^{0}$ mixing phase ϕ_{M} expected to be very small
 - decay dominated by Tree diagram with $\phi_D \sim 0$, only small contamination from Penguin

 $\phi_s = 0.036 \pm 0.002 \text{ rad}$ [Phys.Rev.D 84 (2011) 033005]

• highly sensitive to New Physics contributions in $B_s^0 - \overline{B}_s^0$ mixing

O. Steinkamp

06.12.2012

Kruger2012 - CPV @ LHCb (15/50)

CP violation in $B^{\scriptscriptstyle 0}_{}\to J/\psi~\phi$

- time-dependent CP asymmetry for CP eigenstate f with eigenvalue $\eta_{\rm f}\text{=}\pm1$

$$\mathbf{A}_{CP}(\mathbf{t}) = \frac{\Gamma(\overline{\mathbf{B}}_{s}^{0}(\mathbf{t}=\mathbf{0}) \rightarrow \mathbf{f}) - \Gamma(\mathbf{B}_{s}^{0}(\mathbf{t}=\mathbf{0}) \rightarrow \mathbf{f})}{\Gamma(\overline{\mathbf{B}}_{s}^{0}(\mathbf{t}=\mathbf{0}) \rightarrow \mathbf{f}) + \Gamma(\mathbf{B}_{s}^{0}(\mathbf{t}=\mathbf{0}) \rightarrow \mathbf{f})} = \eta_{f} \underbrace{\sin \phi_{s}}{\sin (\Delta m_{s} \mathbf{t})}$$

- need to determine flavour of B_s meson at t=0 \rightarrow mis-tag fraction ω_{tag}
- need to resolve $B_{s}^{0}-\overline{B}_{s}^{0}$ oscillations \rightarrow finite proper time resolution σ_{+}

$$\mathbf{A_{CP}}(\mathbf{t}) ~\approx~ (\mathbf{1} - \mathbf{2}\boldsymbol{\omega_{tag}}) ~\mathbf{e}^{-\frac{1}{2}\Delta m_s^2 \sigma_t^2} \eta_f \mathbf{sin} \phi_s \sin(\Delta m_s \mathbf{t})$$

- final state in $B^o_{\ s} \to J/\psi \phi$ is a mix of CP even and odd (L_{J/\psi \phi} = 0,1,2)
 - three polarisation amplitudes, plus contribution from S-wave $K^{\scriptscriptstyle +}K^{\scriptscriptstyle -}$
 - time-dependent angular analysis to disentangle these and determine ϕ_s
- finite lifetime difference $\Delta \Gamma_{_{\rm S}}$ between CP eigenstates in ${\rm B^o_{_{\rm S}}}\overline{\rm B^o_{_{\rm S}}}$ system

- not well measured yet, needs to be determined simultaneously with $\phi_{_{\text{s}}}$

06.12.2012

Kruger2012 - CPV @ LHCb (16/50)

O. Steinkamp

CP violation in $B^{\scriptscriptstyle 0}_{s} \to J/\psi~\phi$

- opposite-side flavour tagging: imply B_s^0 flavour at production from decay properties of the associated b hadron produced
 - neural net algorithm using charge of lepton, kaon, inclusive vertex
- calibrated on flavour-specific decays such as $B^{\scriptscriptstyle\pm} \to J/\psi~K^{\scriptscriptstyle\pm}$
- effective tagging power:

CP violation in $B^{\scriptscriptstyle 0}_{s} \to J/\psi \; \phi$

- time-dependent angular fit using transversity angles $\Omega = (\theta = \theta_u, \phi = \phi_u, \psi = \theta_k)$
- full fit function:

LHC

$$\frac{\mathrm{d}^4 \Gamma(B_s^0 \to J/\psi \,\phi)}{\mathrm{d}t \,\mathrm{d}\Omega} \propto \sum_{k=1}^{10} h_k(t) f_k(\Omega)$$

 $h_k(t) = N_k e^{-Gt} \left[a_k \cosh\left(\frac{1}{2}\Delta\Gamma_s t\right) + b_k \sinh\left(\frac{1}{2}\Delta\Gamma_s t\right) + c_k \cos(\Delta m_s t) + d_k \sin(\Delta m_s t) \right]$

k	$f_k(heta_\mu, heta_K,\phi_h)$	N_k	a_k	b_k	c_k	d_k
1	$2\cos^2 heta_K\sin^2 heta_\mu$	$ A_0(0) ^2$	1	D	C	-S
2	$\sin^2 \theta_K \left(1 - \sin^2 \theta_\mu \cos^2 \phi_h \right)$	$ A_{\parallel}(0) ^2$	1	D	C	-S
3	$\sin^2 \theta_K \left(1 - \sin^2 \theta_\mu \sin^2 \phi_h\right)$	$ A_{\perp}^{''}(0) ^2$	1	-D	C	S
4	$\sin^2\theta_K \sin^2\theta_\mu \sin 2\phi_h$	$ A_{\parallel}(0)A_{\perp}(0) $	$C\sin(\delta_{\perp} - \delta_{\parallel})$	$S\cos(\delta_{\perp}-\delta_{\parallel})$	$\sin(\delta_{\perp} - \delta_{\parallel})$	$D\cos(\delta_{\perp} - \delta_{\parallel})$
5	$\frac{1}{2}\sqrt{2}\sin 2\theta_K\sin 2\theta_\mu\cos\phi_h$	$ A_0(0)A_{\parallel}(0) $	$\cos(\delta_{\parallel}-\delta_{0})$	$D\cos(\delta_{\parallel}-\delta_{0})$	$C\cos(\delta_{\parallel}-\delta_{0})$	$-S\cos(\delta_{\parallel}-\delta_{0})$
6	$-\frac{1}{2}\sqrt{2}\sin 2\theta_K \sin 2\theta_\mu \sin \phi_h$	$ A_0(0)A_{\perp}(0) $	$C\sin(\delta_{\perp}-\delta_0)$	$S\cos(\delta_{\perp}-\delta_0)$	$\sin(\delta_{\perp}-\delta_0)$	$D\cos(\delta_{\perp}-\delta_0)$
7	$\frac{2}{3}\sin^2\theta_{\mu}$	$ A_s(0) ^2$	1	-D	C	S
8	$\frac{1}{3}\sqrt{6}\sin\ddot{\theta}_K\sin 2\theta_\mu\cos\phi_h$	$ A_s(0)A_{\parallel}(0) $	$C\cos(\delta_{\parallel} - \delta_S)$	$S\sin(\delta_{\parallel}-\delta_{S})$	$\cos(\delta_{\parallel} - \delta_S)$	$D\sin(\delta_{\parallel} - \delta_S)$
9	$-\frac{1}{3}\sqrt{6}\sin\theta_K\sin 2\theta_\mu\sin\phi_h$	$ A_s(0)A_{\perp}(0) $	$\sin(\delta_{\perp} - \delta_S)$	$-D\sin(\delta_{\perp}-\delta_{S})$	$C\sin(\delta_{\perp} - \delta_S)$	$S\sin(\delta_{\perp}-\delta_{S})$
10	$\frac{4}{3}\sqrt{3}\cos\theta_K\sin^2\theta_\mu$	$ A_s(0)A_0(0) $	$C\cos(\delta_0 - \delta_S)$	$S\sin(\delta_0 - \delta_S)$	$\cos(\delta_0 - \delta_S)$	$D\sin(\delta_0 - \delta_S)$

• physics parameters:

$$\mathsf{S} \approx \boxed{-\mathsf{sin}\phi_{\mathsf{s}}}; \ \mathsf{D} \approx \boxed{-\cos\phi_{\mathsf{s}}}; \ \Delta \mathsf{m}_{\mathsf{s}}; \ \Delta \mathsf{\Gamma}_{\mathsf{s}}; \ \left|\mathsf{A}_{\bot}\right|; \ \left|\mathsf{A}_{\Vert}\right|; \ \left|\mathsf{A}_{\mathsf{o}}\right|; \ \delta_{\bot}; \ \delta_{\Vert}; \ \delta_{\mathsf{o}}; \ \delta_{\mathsf$$

• two-fold ambiguity in solution: fit function invariant under transformation

$$\phi_{s}, \Delta\Gamma_{s}, \delta_{\parallel}, \delta_{\perp}) \quad \leftarrow \rightarrow \quad (\pi - \phi_{s}, -\Delta\Gamma_{s}, 2\pi - \delta_{\parallel}, -\delta_{\perp})$$

06.12.2012

Kruger2012 - CPV @ LHCb (18/50)

CP violation in $B^{\scriptscriptstyle 0}_{s} \to J/\psi~\phi$

- LHCb analysis based on 1.0 fb⁻¹
- 21k signal events
 - world's largest sample
- only few % background
- angular fit cleanly separates
 CP even/odd components
- different lifetimes clearly visible in fit projection

[LHCb-CONF-2012-002]

06.12.2012

Kruger2012 - CPV @ LHCb (19/50)

result consistent with Standard Model prediction

$$\phi_{s} = -0.001 \pm 0.101(stat) \pm 0.027(syst) rad$$

• first observation (> 5 σ significance) of $\Delta \Gamma_s \neq 0$

[LHCb-CONF-2012-002]

preliminary

$$\Delta \Gamma_{s} = 0.116 \pm 0.018(stat) \pm 0.006(syst) \, ps^{-1}$$

• both results dominated by statistical uncertainties

06.12.2012

LHCh

Kruger2012 - CPV @ LHCb (20/50)

Sign of $\Delta\Gamma_s$

resolve two-fold ambiguity

 $\begin{array}{ll} (\varphi_{s}, \Delta \Gamma_{s}, \delta_{\parallel}, \delta_{\perp}) & \longleftrightarrow & (\pi - \varphi_{s}, -\Delta \Gamma_{s}, 2\pi - \delta_{\parallel}, -\delta_{\perp}) \\ \text{(`solution I'')} & \text{(`solution II'')} \end{array}$

looking at strong phase difference $\delta_{s\perp} = \delta_s - \delta_{\perp}$ between K⁺K⁻ P-wave and S-wave amplitudes as a function of m(K⁺K⁻) around the $\phi(1020)$

- S-wave: non-resonant + tail from $f_0(980)$ \rightarrow expect no significant variation of phase
- LHCb analysis based on 0.37 fb⁻¹
 - determine δ_{s1} in four K⁺K⁻ mass bins

solution corresponding to $\Delta\Gamma_s > 0$ selected with 4.7 σ significance

[PRL 108 (2012) 241801]

Kruger2012 - CPV @ LHCb (21/50)

 ϕ_{s} from $B^{0}_{s} \rightarrow J/\psi \pi^{*}\pi^{-}$

- dominated by $f_{_0}(980) \rightarrow \pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$
- from modified Dalitz-plot analysis:

> 99.7 % CP odd at 95 % C.L.
 in 775 < m(π⁺π⁻) < 1550 MeV/c²

[arxiv 1204.5643]

- ϕ_s measurement in $B^0_{\ s} \to J/\psi \ \pi^*\pi^$ based on ~7400 candidates from 1.0 fb⁻¹
 - lower BF than $B^{0}_{s} \rightarrow J/\psi~\phi$
 - but no angular analysis required

 $\varphi_{\tt s} \; = \; -0.019 \, {}^{\scriptscriptstyle +\, 0.173}_{\scriptscriptstyle -\, 0.174} \, ({\tt stat}) \, {}^{\scriptscriptstyle +\, 0.004}_{\scriptscriptstyle -\, 0.003} \, ({\tt syst}) \; {\tt rad}$

06.12.2012

Kruger2012 - CPV @ LHCb (22/50)

 $\phi_{\rm s}$ Combination and Comparison

- simultaneous fit of $B^{0}_{s} \to J/\psi \ \varphi \ and \ B^{0}_{s} \to J/\psi \ \pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$

 $\phi_{s} = -0.002 \pm 0.083(stat) \pm 0.027(syst) rad$

[LHCb-CONF-2012-002] preliminary

- most precise measurement to date
- excellent agreement with
 Standard Model prediction
- but still space for possible contribution from New Physics
- precision completely dominated by statistical uncertainty
 - expect significant improvement with more data

IHC

Kruger2012 - CPV @ LHCb (23/50)

$\phi_{\rm s}$ Combination and Comparison

- some tension between ϕ_{s} measurements and dimuon asymmetry from DO

06.12.2012

LHCb

Kruger2012 - CPV @ LHCb (24/50)

CKM angle γ from Tree Decays

- CKM fits so far a huge success story for the Standard Model
- need more precise measurements to test for subtle effects from New Physics

O. Steinkamp

least well constrained CKM parameter by direct measurement:

- Tree-level B decays: theoretically "clean" measurement of $\boldsymbol{\gamma}$
 - no loops \rightarrow largely unaffected by possible effects from New Physics
- but experimentally very challenging
 - purely hadronic final states (\rightarrow trigger, K/ π separation)
 - small branching fractions (\rightarrow need large number of B's)

06.12.2012

LHCh

Kruger2012 - CPV @ LHCb (26/50)

CKM angle γ from Tree Decays

• time-integrated methods: exploit interference of $B^{\pm} \rightarrow D^{0}K^{\pm} \rightarrow [f]_{D} K^{\pm}$ and $B^{\pm} \rightarrow \overline{D}^{0} K^{\pm} \rightarrow [f]_{D} K^{\pm}$, where final state $[f]_{D}$ is accessible to D^{0} and \overline{D}^{0}

- GLW: CP eigenstates $D^0 \rightarrow K^+K^-$, $D^0 \rightarrow \pi^+\pi^-$ [PLB 253 (1991) 483, PLB 265 (1991) 172]
- ADS: favoured $D^0 \rightarrow K^+\pi^-$ / suppressed $D^0 \rightarrow K^-\pi^+$ [PRL 78 (1997) 257, PRD 63 (2001) 036005]
- GGSZ: Dalitz-plot analysis of 3-body $D^0 \rightarrow K^0_{\ s} \pi^+ \pi^-$ [PRD 68 (2003) 054018] [PRD 70 (2004) 072003]

06.12.2012

LHCK

Kruger2012 - CPV @ LHCb (27/50)

combined analysis of all modes to extract γ and hadronic parameters r_B, δ_B, r_D, δ_D

γ from Trees: GLW modes

• form ratios and asymmetries of decay rates \rightarrow cancellation of systematics

$$\begin{split} \mathbf{R}_{CP+} &= \frac{\Gamma(\mathbf{B}^{-} \rightarrow [\mathbf{h}^{+}\mathbf{h}^{-}]_{\mathbf{b}}\mathbf{K}^{-}) + \Gamma(\mathbf{B}^{+} \rightarrow [\mathbf{h}^{+}\mathbf{h}^{-}]_{\mathbf{b}}\mathbf{K}^{+})}{1/2 \cdot \left[\Gamma(\mathbf{B}^{-} \rightarrow [\mathbf{K}^{+}\pi^{-}]_{\mathbf{b}}\mathbf{K}^{-}) + \Gamma(\mathbf{B}^{+} \rightarrow [\mathbf{K}^{-}\pi^{+}]_{\mathbf{b}}\mathbf{K}^{+})\right]} = \mathbf{1} + \mathbf{r}_{\mathbf{B}}^{2} + 2\mathbf{r}_{\mathbf{B}} \cdot \mathbf{cos\delta}_{\mathbf{B}} \cdot \mathbf{cos\delta}_{\mathbf{B}}$$

LHCb analysis of 1.0 fb⁻¹

LHCh

06.12.2012

- [PLB 713 (2012) 351]
- clear asymmetry in $B^{\scriptscriptstyle\pm}\to DK^{\scriptscriptstyle\pm}$ and (as expected) no asymmetry in $B^{\scriptscriptstyle\pm}\to D\pi^{\scriptscriptstyle\pm}$

O. Steinkamp

Kruger2012 - CPV @ LHCb (28/50)

γ from Trees: ADS modes

ratios and asymmetries of decay rates to flavour-specific final states

$$\begin{split} \mathbf{R}_{ADS} &= \frac{\Gamma(\mathbf{B}^{-} \rightarrow [\mathbf{K}^{+} \pi^{-}]_{\mathbf{D}} \mathbf{K}^{-}) + \Gamma(\mathbf{B}^{+} \rightarrow [\mathbf{K}^{-} \pi^{+}]_{\mathbf{D}} \mathbf{K}^{+})}{\Gamma(\mathbf{B}^{-} \rightarrow [\mathbf{K}^{-} \pi^{+}]_{\mathbf{D}} \mathbf{K}^{-}) + \Gamma(\mathbf{B}^{+} \rightarrow [\mathbf{K}^{+} \pi^{-}]_{\mathbf{D}} \mathbf{K}^{+})} = \mathbf{r}_{\mathbf{B}}^{2} + \mathbf{r}_{\mathbf{D}}^{2} + 2 \cdot \mathbf{r}_{\mathbf{B}} \mathbf{r}_{\mathbf{D}} \cdot \mathbf{cos}(\delta_{\mathbf{B}} + \delta_{\mathbf{D}}) \mathbf{cos} \mathbf{y}} \\ \mathbf{A}_{ADS} &= \frac{\Gamma(\mathbf{B}^{-} \rightarrow [\mathbf{K}^{+} \pi^{-}]_{\mathbf{D}} \mathbf{K}^{-}) - \Gamma(\mathbf{B}^{+} \rightarrow [\mathbf{K}^{-} \pi^{+}]_{\mathbf{D}} \mathbf{K}^{+})}{\Gamma(\mathbf{B}^{-} \rightarrow [\mathbf{K}^{+} \pi^{-}]_{\mathbf{D}} \mathbf{K}^{-}) + \Gamma(\mathbf{B}^{+} \rightarrow [\mathbf{K}^{-} \pi^{+}]_{\mathbf{D}} \mathbf{K}^{+})} = \frac{2 \cdot \mathbf{r}_{\mathbf{B}} \mathbf{r}_{\mathbf{D}} \cdot \mathbf{sin}(\delta_{\mathbf{B}} + \delta_{\mathbf{D}}) \cdot \mathbf{sin} \mathbf{y}}{\mathbf{R}_{ADS}} \end{split}$$

• LHCb analysis of 1.0 fb⁻¹

• first observation of the rare ADS decay (10 σ significance)

06.12.2012

LHCh

Kruger2012 - CPV @ LHCb (29/50)

[[]arxiv 1203.3362]

[LHCb-CONF-2012-030]

preliminary

- similar to 2-body ADS, but different values of $r_{_D}$ and $\delta_{_D}$
 - add statistics but also new information
- LHCb analysis of 1.0 fb⁻¹:
- first observation of rare ADS decays (10 σ in $B^{\scriptscriptstyle\pm} \to D\pi^{\scriptscriptstyle\pm},\,5.1\,\sigma$ in $B^{\scriptscriptstyle\pm} \to DK^{\scriptscriptstyle\pm})$

γ from Trees: LHCb Impact

O. Steinkamp

Kruger2012 - CPV @ LHCb (31/50)

LHCb

γ from Trees: GGSZ

- exploit interference patterns in $D^0 \to K^0_{\ s} h^+ h^-$ Dalitz plot (h= π, K)
 - powerful method, dominates precision on γ from B factories
- complication: strong phase difference $\boldsymbol{\delta}_{\scriptscriptstyle \mathsf{D}}$ varies across Dalitz plot
 - rich resonance structure, difficult to model correctly
- model-independent approach chosen to minimize systematics:
- divide Dalitz plot into regions of ~ constant δ_D using input from CLEO measurements
 [PRD82 (2010) 112006]
- determine B⁺ and B⁻ event
 yields in each region i:

$$N_{i}(B^{\pm}) = K_{\pm,i} + (x_{\pm}^{2} + y_{\pm}^{2}) K_{\pm,i} + 2 \sqrt{K_{\pm,i}K_{-,i}} \left\{ \begin{array}{c} x_{\pm} < \cos\delta_{b} >_{i} \mp y_{\pm} < \sin\delta_{b} >_{i} \right\}$$
asymmetries measured in
flavour-specific D decays
$$V_{\pm} = r_{B} \cdot \cos(\delta_{B} \pm \gamma)$$
measured by CLEO
$$V_{\pm} = r_{B} \cdot \sin(\delta_{B} \pm \gamma)$$

06.12.2012

Kruger2012 - CPV @ LHCb (32/50)

γ from Trees: GGSZ

- LHCb analysis of 1.0 fb⁻¹
 - ~ 650 $B^{\pm} \rightarrow [K^0_{s} \pi^{+} \pi^{-}]_{D} K^{\pm}$ candidates
 - ~ 100 $B^{\pm} \rightarrow [K^0_{s}K^{+}K^{-}]_{b}K^{\pm}$ candidates
- precision on x₁, y₁ similar to B factories
- systematic uncertainty dominated by assumption of no CPV in B \rightarrow D π (used to determine efficiencies)

 $x_{-} = (0.0 \pm 4.3 \pm 1.5 \pm 0.6) \%$ $y_{-} = (2.7 \pm 5.2 \pm 0.8 \pm 2.3) \%$

$$\begin{aligned} \mathbf{x}_{+} &= (-10.3 \pm 4.4 \pm 1.8 \pm 1.4) \% \\ \mathbf{y}_{+} &= (-0.9 \pm 3.7 \pm 0.8 \pm 3.0) \% \\ \end{aligned}$$
 stat syst CLEO inputs

Kruger2012 - CPV @ LHCb (33/50)

$\frac{\mu c b}{\gamma} \gamma \text{ from Trees: LHCb Combination}$

- LHCb γ average from combination of $B^{\scriptscriptstyle\pm} \to DK^{\scriptscriptstyle\pm}$
- using frequentist approach to combine the shown results from
 - GLW/ADS $B^{\pm} \rightarrow [h^{+}h^{-}]_{D} K^{\pm}$ [PLB 713 (2012) 351]
 - ADS 4-body $B^{\pm} \rightarrow [\pi K \pi \pi]_{D} K^{\pm}$

 $B^{\pm} \rightarrow [K^{0}h^{+}h^{-}]K^{\pm}$

[LHCb-CONF-2012-030]

[PLB 718 (2012) 43]

06.12.2012

• GGSZ

Kruger2012 - CPV @ LHCb (34/50)

Charmless B decays: towards y from Loops

γ from Loops

- 2-body charmless B decays: γ from interference of b→u Tree diagrams and b→s(d) Penguin diagrams
 - sensitive to possible New Physics contribution in Penguin loops
- hadronic uncertainties can be controlled using U-Spin symmetry between B^o and B^o_s decays
 [Fleischer, EPJC 52 (2007) 267]

- time-dependent CP asymmetry in $B^0 \rightarrow \pi^+\pi^-$ and $B^0_{\ s} \rightarrow K^+K^-$
- time-integrated CP asymmetry in $B^{o} \to K^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$ and $B^{o}_{_{s}} \to \pi^{\scriptscriptstyle +}K^{\scriptscriptstyle -}$
- also: time-integrated CP asymmetry in 3-body charmless B[±] decays
 06.12.2012 Kruger2012 CPV @ LHCb (36/50) O. Steinkamp

Time-dependent CPV in $B^{0}_{(s)} \rightarrow h^{+}h^{-}$

measure time-dependent asymmetry of decay rates

$$\mathbf{A}_{CP}(\mathbf{t}) = \frac{\Gamma(\mathbf{B}_{(s)}^{0}(\mathbf{t}=\mathbf{0}) \rightarrow \mathbf{f}) - \Gamma(\overline{\mathbf{B}}_{(s)}^{0}(\mathbf{t}=\mathbf{0}) \rightarrow \mathbf{f})}{\Gamma(\mathbf{B}_{(s)}^{0}(\mathbf{t}=\mathbf{0}) \rightarrow \mathbf{f}) + \Gamma(\overline{\mathbf{B}}_{(s)}^{0}(\mathbf{t}=\mathbf{0}) \rightarrow \mathbf{f})} = \frac{\mathbf{A}_{f}^{dir} \cos(\Delta \mathbf{m}_{(s)} \mathbf{t}) + \mathbf{A}_{f}^{mix} \cos(\Delta \mathbf{m}_{(s)} \mathbf{t})}{\cosh(\frac{\Delta \Gamma_{(s)}}{2} \mathbf{t}) - \mathbf{A}_{f}^{\Delta \Gamma} \sinh(\frac{\Delta \Gamma_{(s)}}{2} \mathbf{t})}$$

- use flavour tagging algorithms to determine flavour of $B^{o}_{(s)}$ at production
- LHCb analysis of 0.69 fb⁻¹

[LHCb-CONF-2012-007]

O. Steinkamp

- fix values of Δm_d and Δm_s and sign of $\Delta \Gamma_s$ to previous LHCb measurements
- use $B^{0} \to K^{*}\pi^{-}$ to calibrate tagging and determine mis-tag probability

06.12.2012

Kruger2012 - CPV @ LHCb (37/50)

Time-dependent CPV in $B^{0}_{(s)} \rightarrow h^{+}h^{-}$

preliminary

• $A_{\pi\pi}^{dir}$ result favours Babar [arXiv:0807.4226] over Belle [PRL 98 (2007) 211801]

06.12.2012

Kruger2012 - CPV @ LHCb (38/50)

Direct CP Violation in $B^{0}_{(s)} \rightarrow K\pi$

time-integrated asymmetry of decay rates to flavour-specific final states

$$\mathbf{A}_{CP} = \frac{\Gamma(\mathbf{B}_{(s)}^{\mathbf{0}} \rightarrow \mathbf{f}) - \Gamma(\overline{\mathbf{B}}_{(s)}^{\mathbf{0}} \rightarrow \overline{\mathbf{f}})}{\Gamma(\mathbf{B}_{(s)}^{\mathbf{0}} \rightarrow \mathbf{f}) + \Gamma(\overline{\mathbf{B}}_{(s)}^{\mathbf{0}} \rightarrow \overline{\mathbf{f}})}$$

- LHCb analysis of 0.35 fb⁻¹
- $B^{o} \rightarrow K^{*}\pi^{-}$ / $\overline{B}{}^{o} \rightarrow K^{-}\pi^{+}$

LHCh

 $A_{CP} = (-0.088 \pm 0.011 \pm 0.008)$

- > 6 σ : first observation of CP violation at a hadron collider
- $B_{s}^{0} \rightarrow K^{-}\pi^{+} / \overline{B}_{s}^{0} \rightarrow K^{+}\pi^{-}$ $A_{CP}^{} = (0.27 \pm 0.08 \pm 0.02)$
 - 3.2 σ : first evidence for CP violation in the B^o_s system

- production/detection asymmetries small, corrected using control channels
- dominating systematic: different K⁺/K⁻ interaction cross-sections

06.12.2012

Kruger2012 - CPV @ LHCb (39/50)

O. Steinkamp

[PRL 108 (2012) 201601]

CP Violation in 3-body B[±] decays

• again, interference of b \rightarrow u Tree transitions and b \rightarrow s(d) Penguins

$$\mathbf{A}_{CP} = \frac{\Gamma(\mathbf{B}^- \rightarrow \mathbf{f}^-) - \Gamma(\mathbf{B}^+ \rightarrow \mathbf{f}^+)}{\Gamma(\mathbf{B}^- \rightarrow \mathbf{f}^-) + \Gamma(\mathbf{B}^+ \rightarrow \overline{\mathbf{f}^+})} \qquad \mathbf{f}^{\pm} = \begin{cases} \mathbf{K}^{\pm} \pi^+ \pi^-, \ \mathbf{K}^{\pm} \mathbf{K}^+ \mathbf{K}^- & \text{[LHCb-CONF-2012-018]} \\ \pi^{\pm} \pi^+ \pi^-, \ \mathbf{K}^+ \mathbf{K}^- \pi^{\pm} & \text{[LHCb-CONF-2012-028]} \end{cases}$$

- LHCb analyses using 1.0 fb⁻¹
- measure production and detection asymmetries from $B^{\scriptscriptstyle\pm} \to J/\psi \; K^{\scriptscriptstyle\pm}$

CP Violation in 3-body B[±] decays

- analyses also performed as a function of phase space
 - subdivide Dalitz plots into bins of ~ equal population
 - determine asymmetry in each bin
- observe large local asymmetries in all four channels
- interpretation pending (not related to intermediate resonances)

06.12.2012

Kruger2012 - CPV @ LHCb (41/50)

O. Steinkamp

[LHCb-CONF-2012-028]

[LHCb-CONF-2012-018]

preliminary

Conclusion and Outlook

Conclusion

- LHC and LHCb are a spectacular success
- so is the Standard Model

... up to now

 but current precision of measurements still leaves lots of room for sub-dominant contributions from New Physics

Kruger2012 - CPV @ LHCb (43/50)

Outlook: LHCb Upgrade

- LHC and LHCb are a spectacular success
- so is the Standard Model

... still

- current precision of measurements still leaves lots of room for sub-dominant contributions from New Physics
- almost all LHCb results are completely dominated by statistical uncertainties
- leading systematic uncertainties will also decrease with increasing statistics

2010	0.037 fb ⁻¹ @ 7 TeV			
2011	1 fb ⁻¹ @ 7 TeV			
2012	2 fb ⁻¹ @ 8 TeV			
2013	LHC LS1			
2014				
2015				
2016	5 fb ⁻¹ @ 13 TeV			
2017				
2018	LHC LS2,			
2019	LHCb upgrade			
2020				
2021	5 fb ⁻¹ per year			
2022				

LHCb Upgrade

• goal: reach measurement precision that matches theory uncertainties

[CERN-LHCC-2012-007]

Type	Observable	Current	LHCb	Upgrade	Theory
		precision	2018	$(50 {\rm fb}^{-1})$	uncertainty
B_s^0 mixing	$2\beta_s \ (B^0_s \to J/\psi \ \phi)$	0.10 [9]	0.025	0.008	~ 0.003
	$2\beta_s \ (B^0_s \to J/\psi \ f_0(980))$	0.17 [10]	0.045	0.014	~ 0.01
	$A_{ m fs}(B^0_s)$	$6.4 \times 10^{-3} \ [18]$	0.6×10^{-3}	0.2×10^{-3}	0.03×10^{-3}
Gluonic	$2\beta_s^{\text{eff}}(B_s^0 o \phi\phi)$	_	0.17	0.03	0.02
penguin	$2\beta_s^{\rm eff}(B_s^0 \to K^{*0} \bar{K}^{*0})$	_	0.13	0.02	< 0.02
	$2\beta^{ m eff}(B^0 o \phi K^0_S)$	0.17 [18]	0.30	0.05	0.02
Right-handed	$2\beta_s^{\text{eff}}(B_s^0 \to \phi \gamma)$	—	0.09	0.02	< 0.01
currents	$ au^{\mathrm{eff}}(B^0_s \to \phi \gamma) / \tau_{B^0_s}$	_	5~%	1~%	0.2%
Electroweak	$S_3(B^0 \to K^{*0}\mu^+\mu^-; 1 < q^2 < 6 \text{ GeV}^2/c^4)$	0.08 [14]	0.025	0.008	0.02
$\operatorname{penguin}$	$s_0 A_{\rm FB} (B^0 \to K^{*0} \mu^+ \mu^-)$	25~%~[14]	6~%	2~%	7~%
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 { m GeV}^2/c^4)$	0.25 [15]	0.08	0.025	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	25~%~[16]	8~%	2.5%	$\sim 10~\%$
Higgs	$\mathcal{B}(B^0_s o \mu^+ \mu^-)$	$1.5 \times 10^{-9} \ [2]$	0.5×10^{-9}	0.15×10^{-9}	0.3×10^{-9}
penguin	$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	—	$\sim 100 \%$	$\sim 35\%$	$\sim 5~\%$
Unitarity	$\gamma \ (B \to D^{(*)} K^{(*)})$	$\sim 1012^{\circ} \ [19, 20]$	4°	0.9°	negligible
${ m triangle}$	$\gamma \ (B_s^0 \to D_s K)$	_	11°	2.0°	negligible
angles	$\beta \ (B^0 \to J/\psi \ K^0_S)$	$0.8^{\circ} \ [18]$	0.6°	0.2°	negligible
Charm	A_{Γ}	$2.3 \times 10^{-3} \ [18]$	0.40×10^{-3}	0.07×10^{-3}	_
CP violation	ΔA_{CP}	$2.1 \times 10^{-3} [5]$	0.65×10^{-3}	0.12×10^{-3}	_

06.12.2012

Kruger2012 - CPV @ LHCb (45/50)

Upgrade

- two lines of attack
 - increase trigger efficiencies for hadronic final states
 - read out the full detector at the LHC bunch-crossing frequency
 - operate the detector at up to x 5 higher luminosity
 - new main tracker to cope with increase in particle densities

expected increase in rate (compared to 2011):
x 10 for channels involving final-state muons
x 20 for channels to fully hadronic final states

- details are described in
 - Letter of Intent [CERN-LHCC-2011-001]
 - Framework TDR [CERN-LHCC-2012-007]
- endorsed by the LHCC

Kruger2012 - CPV @ LHCb (46/50)

Reminder: Current LHCb Trigger

Hardware level (LO):

- maximum output rate 1 MHz
- typical thresholds 2012:
 E (a/a) > 2.7 Call
 - $E_{\tau}(e/\gamma) > 2.7 \text{ GeV}$
 - $E_{T}(h) > 3.6 GeV$
 - $p_{T}(\mu) > 1.4 GeV$

Software level (HLT):

~ 30000 tasks in parallel on ~ 1500 nodes

Combined efficiency (LO+HLT):

- ~ 90 % for di-muon channels
- ~ 30 % for multi-body hadronic final states

Offline processing:

~ 10¹⁰ events, 700 TB recorded per year

06.12.2012

Kruger2012 - CPV @ LHCb (47/50)

Upgrade

- 2012/2013: R&D, technology choices, preparation of sub-system TDRs
- 2014: funding, procurements
- 2015-2019: construction and installation

06.12.2012

Kruger2012 - CPV @ LHCb (48/50)

Not Mentioned ...

• $B^{o} \rightarrow K K$ effective lifetime [PLB 716 (2012) 393] • $B_{c}^{0} \rightarrow J/\psi f_{0}$ effective lifetime [PRL 109 (2012) 152002] • both sensitive to new physics in $B^{0}_{e} - \overline{B}^{0}_{e}$ mixing • BF (B^o \rightarrow J/ ψ η ') [arXiv:1210.2631] • another channel to measure ϕ_{i} • BF (B^o \rightarrow J/ ψ K^{o*}) [PRD 86 (2012) 071102] to estimate penguin contamination in J/psi phi • GLW-type analysis of $B^0 \rightarrow D K^{*0}$ [LHCb-CONF-2012-024] • Time-dependent CP violation in $B^{0}_{c} \rightarrow D_{c} K^{\pm}$ [LHCb-CONF-2012-029] other channels to measure gamma from Trees • BF ($B^0_s \rightarrow D_{(s)}D_{(s)}$) [LHCb-CONF-2012-009] - CP violation in $B_{_{\! O}} \to \, K^{\star 0} \mu^{_{\! +}} \mu^{_{\! -}}$ Eugeni's talk [arXiv:1210.4492] on Tuesday - CP violation in $B_n \to \, K^{\star 0} \gamma$ [Nucl Phys B 867 (2013) 1] • ΔA_{CP} (CP violation in D \rightarrow h⁺h⁻) [PRL 108 (2012) 111602] 06.12.2012 Kruger2012 - CPV @ LHCb (50/50) O. Steinkamp