Forward physics at the LHC: QCD, anomalous couplings and Higgs boson

Christophe RoyonIRFU-SPP, CEA Saclay

International Workshop on Discovery Physics at the LHC ²⁰¹²Kruger Park, South Africa, December 3-7 ²⁰¹²

Contents:

- $\bullet\,$ Anomalous $W\gamma$ couplings at the LHC
- Exclusive diffractive Higgs production at the LHC

Search for $\gamma\gamma WW$ quartic anomalous coupling

- Study of the process: $pp \rightarrow ppWW$
- Standard Model: $\sigma_{WW} = 95.6$ fb, $\sigma_{WW}(W = M_X > 1 TeV) = 5.9$ fb
- $\bullet\,$ Process sensitive to anomalous couplings: $\gamma\gamma WW$, $\gamma\gamma ZZ$, $\gamma\gamma\gamma\gamma;$ motivated by studying in detail the mechanism of electroweak symmetry breaking, predicted by extradim. models
- Many anomalous couplings to be studied (dimension ⁶ and ⁸ operators) if Higgs boson is discovered; $\gamma\gamma$ specially interesting
- $\bullet\,$ Rich $\gamma\gamma$ physics at LHC: see E. Chapon, O. Kepka, C. Royon, Phys. Rev. D78 (2008) 073005; Phys. Rev. D81 (2010) ⁰⁷⁴⁰⁰³

Quartic anomalous gauge couplings

• Quartic gauge anomalous $WW\gamma\gamma$ and $ZZ\gamma\gamma$ couplings parametrised by a_0^W $_0^W$, a_0^Z Z_a , a^W_C $_{C}^{W}$, a_{C}^{Z} $\, C \,$

$$
\mathcal{L}_{6}^{0} \sim \frac{-e^{2}}{8} \frac{a_{0}^{W}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} W^{+\alpha} W_{\alpha}^{-} - \frac{e^{2}}{16 \cos^{2}(\theta_{W})} \frac{a_{0}^{Z}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} Z^{\alpha} Z_{\alpha}
$$
\n
$$
\mathcal{L}_{6}^{C} \sim \frac{-e^{2}}{16} \frac{a_{C}^{W}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} (W^{+\alpha} W_{\beta}^{-} + W^{-\alpha} W_{\beta}^{+})
$$
\n
$$
- \frac{e^{2}}{16 \cos^{2}(\theta_{W})} \frac{a_{C}^{Z}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} Z^{\alpha} Z_{\beta}
$$

- Anomalous parameters equal to ⁰ for SM
- Best limits from LEP, OPAL (Phys. Rev. ^D ⁷⁰ (2004) 032005) of the order of 0.02-0.04, for instance $-0.02 < a_0^W$ $_0^W < 0.02$ GeV $^{-2}$
- • Dimension 6 operators \rightarrow violation of unitarity at high energies

Quartic anomalous gauge couplings: form factors

• Unitarity bounds can be computed (Eboli, Gonzales-Garcia, Lietti, Novaes):

$$
4\left(\frac{\alpha as}{16}\right)^2 \left(1 - \frac{4M_W^2}{s}\right)^{1/2} \left(3 - \frac{s}{M_W^2} + \frac{s^2}{4M_W^4}\right) \le 1
$$

where $a=a_0/\Lambda^2$

- Introducing form factors to avoid quadratical divergences of scattering amplitudes due to anomalous couplings in conventional way: a_{α}^W $_0^{W}/\Lambda^2$ $^{2} \rightarrow \frac{a}{(1 + \mathbf{H}^{I})}$ W $\overline{0}$ $\frac{1}{1}$ Λ $\frac{a_0^W/\Lambda^2}{(1+W\gamma\gamma/\Lambda_{cutoff})^2}$ with $\Lambda_{cutoff}\sim 2$ TeV, scale of new physics
- \bullet For a_0^W $\frac{W}{0}$ ∼ 10⁻¹ 6 GeV $^−$ 2 , no violation of unitarity

Forward Physics Monte Carlo (FPMC)

- FPMC (Forward Physics Monte Carlo): implementation of all diffractive/photon induced processes
- List of processes
- two-photon exchange
- single diffraction
- double pomeron exchange
- central exclusive production
- Inclusive diffraction
- Central exclusive production: Higgs, jets... for Khoze Martin Ryskinand Dechambre Cudell models
- FPMC manual (see M. Boonekamp, A. Dechambre, O. Kepka, V. Juranek, C. Royon, R. Staszewski, M. Rangel, ArXiv:1102.2531)
- Output of FPMC generator interfaced with the fast simulation of the ATLAS detector in the standalone $ATLFast++$ package

WW production at the LHC

- Signal: We focus on leptonic signals decays of WW and ZZ , the
express are tagged in the forward proton detectors: fast simulation protons are tagged in the forward proton detectors; fast simulation of the ATLAS detector $(ATLFast++)$
- Backgrounds considered:
- Non diffractive WW production: large energy flow in forward region,
removed by requesting tagged protens removed by requesting tagged protons
- Two photon dileptons: back-to-back leptons, small cross section for high p_T leptons

- Lepton production via double pomeron exchange: small cross section at high dilepton mass
- WW via double pomeron exchange: removed by cut on high diffractive mass

Strategy to select quartic anomalous gauge couplings events

- \bullet $\,p_{T}$ $_T$ of the leading lepton: request high p_T $\overline{\tau}$ lepton to remove background
- • \bullet Missing E_T distribution: natural to be requested for W pair production
- • \bullet Diffractive mass computed using the forward proton detectors $\sqrt{\xi_1\xi_2S}$: request high mass objects to be produced
- • \bullet $\Delta \Phi$ between both leptons: avoid back-to-back leptons

Quartic anomalous gauge couplings

Distribution of the leading lepton p_T diffractive mass, $\Delta\Phi)$ except the cut on leading lepton p_T $_T$ after all cuts (proton tagged, $\not\hspace{-1.2mm}E_{T},$

Reach at LHC

Reach at high luminosity on quartic anomalous coupling

- Improvement of LEP sensitivity by more than ⁴ orders of magnitude with 30/200 fb⁻¹ at LHC!!!
- Reaches the values predicted by extradimension models

Life is not that easy: LHC reality, high pile up!

- Many interactions occur in the same bunch crossing, up to ⁵⁰ at the LHC
- • \bullet Intact protons can originate from pile up! (nothing to do with WW production)

Anomalous couplings studies in WW events

- Reach on anomalous couplings studied using ^a full simulation of the ATLAS detector, including all pile up effects; only leptonic decays of ^W^s are considered
- $\bullet\,$ Many backgrounds considered: $t\bar{t}$, single top, Drell Yan, diboson $(WW,$ $ZZ,\, WZ) ...$ and pile up
- \bullet Signal appears at high lepton p_T and dilepton mass (central ATLAS) and high diffractive mass (reconstructed using forward detectors)
- Cut on the number of tracks fitted to the primary vertex: very efficient to remove remaining pile up after requesting ^a high mass object to be produced (for signal, we have two leptons coming from the W decays
and nothing else) and nothing else)

Results from full simulation

Table 9.5. Number of expected signal and background events for 300 fb⁻¹ at pile-up $\mu = 46$. A time resolution of 10 ps has been assumed for background rejection. The diffractive background comprises production of QED diboson, QED dilepton, diffractive WW, double pomeron exchange WW.

• Improvement of "standard" LHC methods by studying $pp \rightarrow l^{\pm} \nu \gamma \gamma$ (see P. J. Bell, ArXiV:0907.5299) by more than 2
orders of magnitude with 40/300 fb⁻¹ at LHC orders of magnitude with 40/300 fb−¹ at LHC

Additional exclusive event production

- Production of new objects (with mass up to 1.3 TeV) to be producedeither by photon or ^gluon exchanges: magnetic monopoles, KK resonances, SUSY,... (which could be missed in central ATLAS if predominant decays are hadronic)
- Production of SUSY particles: Possibility of measuring the mass of sleptons if cross section high enoug^h

"Exclusive models" in diffraction

Exclusive Diffractive (3)

- All the energy is used to produce the Higgs (or the dijets), namely $xG\thicksim\delta$
- • Possibility to reconstruct the properties of the object producedexclusively from the tagged proton: system completely constrained
- Possibility of studying any resonant production provided the cross section is high enoug^h
- See papers by Khoze Martin Ryskin Szczurek at al. Cudell et al., Levin, Maor et al...

Exclusive model uncertainties - unintegrated ^gluon

- Study model uncertainties by varying the parameters in KMR model for instance
- Survival probability: 0.1 at Tevatron, 0.03 assumed at LHC (multiplication factor to exclusive cross sections, to be measured using diffractive LHC data)
- Uncertainty on unintegrated ^gluon densities: ⁴ different ^gluon densities with same known hard contribution (GRV98) and different assumptions on soft contribution (represent the present uncertainty on soft part)

Impact of future LHC measurements on model uncertainty

- Study model uncertainties on exclusive Higgs production: unintegrated^gluon distribution, Sudakov integration lower/upper limits
- Assume new measurement of exclusive jet production at the LHC: ¹⁰⁰ pb $^{-1}$, precision on jet energy scale assumed to be \sim 3% (conservative for JES, but takes into account other possible systematics)
- Possible constraints on Higgs production: about ^a factor ² uncertainty
- Fundamental to perform this measurement as soon as forward detectors are available
- Exclusive Higgs boson cross section: \sim 3 fb for $m_H=$ 120 GeV, possibility to look for $b\bar b$ decay channel

Exclusive jet production at the LHC

• Jet cross section measurements: up to 18.9σ for exclusive signal with ⁴⁰ fb− environment, improvement over measurement coming from Tevatron1 μ^1 $(\mu=23)$: highly significant measurement in high pile up (CDF) studies using \bar{p} forward tagging by about one order of magnitude

• Important to perform these measurements to constrain exclusive Higgs production: <code>background/signal</code> ratio close to 1 for central values at $120\,$ GeV

ATLAS and CMS Forward detector projects

- what is needed? Tag the protons intact after interaction, good proton position and good timing measurements (use Si pixel and picosecondquartz/gas detectors
- ATLAS: Detectors at ²¹⁰ and ⁴²⁰ ^m (220 ^m only by 2015)
- CMS: Detectors at ²⁴⁰ and ⁴²⁰ ^m

ATLAS Forward Physics detector acceptance

Both detectors at ⁴²⁰ and ²²⁰ ^m needed to have ^a good coverage ^o facceptance; ²¹⁰ ^m detectors ^give the high mass acceptance needed for anomalous coupling studies (up to 1.4 TeV) (NB: acceptance slightly smaller in CMS than in ATLAS)

Movable beam pipes

- Allow precise and repeatable movement of detectors close to the beamby \sim 25 mm (HERA, Louvain, CERN)
- Minimum deformation, thin vacuum window (detector ^a few mm fromthe beam), small RF impact
- Use standard LHC components (bellows...)

Movable beam pipe: functional specifications

Detector I: 3D Si detector

- Key requirements for the Si detector
	- – $-$ Spatial resolution of 10 (30) μ m in x (y) direction over the full detector coverage (2 cm \times 2 cm); Angular resolution of 1 μ rad
	- Minimal dead space at the edge and radiation hardness

Why do we need timing detectors?

We want to find the events where the protons are related to Higg s production and not to another soft event (up to ³⁵ events occuring at the same time at the LHC!!!!)

Detector II: timing detectors

- Measure the vertex position using proton time-of-flight: suppresses highpile up events at the LHC (50 events in the same bunch crossing), allows to determine if protons originate from main interaction vertex
- Requirements for timing detectors
- – 10 ps final precision (factor 40 rejection on pile up)
- – $-$ Efficiency close to 100% over the full detector coverage
- – $-$ High rate capability (bunch crossing every 25 ns)
- – $-$ Segmentation for multi-proton timing
- level ¹ trigger capability
- \bullet 1st version: QUARTIC has 4 $\times 8$ array of quartz bars; Each proton passes through eight bars in one of the four rows and one only needs ^a 30-40 ps measurement/bar since one can do it ⁸ times

Conclusion

- Many topics in diffraction can be studied using AFP: Diffractive jet production, exclusive event production...
- Measurement of the exclusive jet cross section important to constrain further the exclusive event production mechanism, especially for Higgs production (possible upgrade of phase ¹ AFP)
- Exclusive QED production of W , Z pairs: sensitive to extra-dimensions, AFP allows to obtain ^a sensitivity close to the ones predicted by these models
- Many other topics to be studied in AFP: any particle produced exclusively via ^gluon-gluon or photon-photon processes can be studied(magnetic monopole, SUSY resonant production, Kaluza Klein...)
- Many applications in medicine from the timing detectors in PET impaging (new readout chip built in Saclay with ^a few picoseconds resolution)