

Evidence for an excess of $B \rightarrow D^{(*)} \tau v$ decays

Bob Kowalewski

University of Victoria

representing the BaBar Collaboration

2012/12/7

Kowalewski - Kruger 2012

seen recently in Kruger Park

University

of Victoria

2012/12/7

Goal: new physics in charged-current decays to 3rd generation

- Tree-level decays $B \rightarrow D^{(*)} I v$ are ~free from NP effects
 - Clean experimental signature ($D^{(*)}$ plus e or μ)
 - One missing neutrino
 - Large BF (~2% / ~5% for D / D^*)

- SM rate well predicted
- Charged Higgs contributes at tree level
- Can give O(1) change in rate

Contrast $B \rightarrow \tau v$ and $B \rightarrow D^{(*)} \tau v$

	$B \rightarrow \tau \nu$	$B \rightarrow D^{(*)} \tau \nu$
CKM angle	/ <i>V_{ub}</i> /	/V _{cb} /
SM BF	~1*10 ⁻⁴ × BF(τ → e, μ, π, ρ)	~2% × BF(τ→e or μ)
$\sigma_{ m theory}$ on BF prediction	~25%	~5%
decay distributions	none (2-body)	sensitive to vector vs. scalar currents

$B \rightarrow D^{(*)} \tau \nu$ decay rate

University of Victoria

- Many common factors in decay rates to *e*, μ , τ
- Hadronic FFs parametrized using HQET; $H_{\pm,0}$ measured for e, μ
- Common experimental factors (efficiency, acceptance...)

$$\mathcal{R}(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu)}{\mathcal{B}(B \to D^{(*)}\ell\nu)} = \frac{\text{signal}}{\text{normalization}}$$

$$\mathcal{R}_{SM}(D) = 0.297 \pm 0.017$$
$$\mathcal{R}_{SM}(D^*) = 0.252 \pm 0.003$$
Predictions

2012/12/7

Experimental environment at Y(4S)

Y(4S) decay

- BaBar has inner silicon tracker, drift chamber, DIRC, EMC, coil and muon detectors (not shown)
- Charged multiplicity
 ~11 on average,
 neutral multiplicity
 similar
- Can impose momentum balance in 3 dimensions

Strategy – tag one B, use M^2_{miss}

Presence of 3 neutrinos in signal
 → fully reconstruct one B and
 demand second B leave D^(*), e or
 µ and missing mass

$$M^{2}_{miss} = \left(p_{e+e-} - p_{Btag} - p_{D(*)} - p_{\ell}\right)^{2}$$

 Copious B→D^(*) ℓv normalization modes have single missing neutrino:

 \rightarrow they peak sharply in M^2_{miss}

Strategy – exploit lepton momentum

- Lepton momentum spectra in CM differ for signal and normalization decays:
 e and μ from τ are substantially softer
- Lepton ID improved at low momentum (new algorithm, looser criteria)

Event selection summary

- Require one hadronic B decay, an e or μ and a D or D^*
- Add further requirements on event topology:
 - hadronic B and semileptonic B charge correlation (+/- or 0/0)
 - no unassigned charged tracks
 - little unassigned EM energy (E_{extra})
- Form a Boosted Decision Tree based on
 - angle between the thrust axes of the B tag and signal B candidates ($\Delta \theta_{thrust}$)
 - reconstructed masses of all D candidates
 - $\Delta m = m_{D^*} m_D$ for all D^* candidates
 - $\Delta E = E_{beam} E_B \text{ for tag B}$
 - charged multiplicity of tag B

2012/12/7

Hadronic B tagging

- Hadronic B decays have typical product BFs of ~10⁻³ or less, e.g. BF(B → Dπ)*BF(D → Kπ) = 2*10⁻⁴
 → Need to sum large number of modes
- Reconstruct seed meson ($D^{(*)}$, $D_s^{(*)}$ or J/ψ); add up to 5 particles (of which up to 2 neutrals) $\rightarrow \sim 3000$ distinct modes
- Require $|E_B E_{beam}| < 4\sigma_E$
- Multiple candidates per event

 select tag + signal combination
 with smallest E_{extra}
- New tagging gives efficiency 2x higher than previous method

Normalization decays $B \rightarrow D^{(*)} \ell v$

- Soft pion from D^{*}→Dπ
 often missed: *feed-down*
- Decays with q²<4 GeV² provide control sample

Fixed backgrounds, control samples

 Combinatorial B background: *m_{ES}* [5.20, 5.26]GeV and *E_{extra}* >0.5 GeV

 q<u>q</u> continuum: off-peak data at E_{cm}=10.54 GeV

Kowalewski - Kruger 2012

 $B \rightarrow D^{**}(\ell/\tau) \vee \rightarrow D^{(*)}[n\pi](\ell/\tau) \vee$

- Higher mass charm states (D^{**}) with missing particles mimic signal: $B \rightarrow D^{**}(\ell/\tau)v$ $\rightarrow D^{(*)}\ell v + M^2_{miss}$
- Explicitly reconstruct $B \rightarrow D^{(*)}\pi^0 \ell v$ and use yield to constrain D^{**} background in fit
- Sensitive to both resonant and non-resonant D^{**}

Fit model

- Unbinned ML fit in 2-d space of M^2_{miss} , p^*_{ℓ}
- 8 input samples: $D^{(*)0} \ell$, $D^{(*)+} \ell$, $D^{(*)0} \pi^0 \ell$, $D^{(*)+} \pi^0 \ell$
- Constraints on relative yields of D^{**} in signal, $D^{(*)}\pi^0$ samples

- Fixed yields: continuum, BB combinatorial, charge cross-feed
- Yields in $D^{(*)} \mathcal{L}$ samples:
 - signal (4)
 - normalization (4 + 2 feed-down)
- Yields in $D^{(*)}\pi^0 \mathscr{L}$ samples

22 free parameters

 Alternative fit imposing isospin constraint has 17 free parameters

PDF construction

- 56 individual 2-d PDFs needed (*M*²_{miss} projection of 2 components shown at right)
- Based on MC (9* \mathcal{L}_{data} for BBbar, 2* \mathcal{L}_{data} for continuum)
- PDFs based on non-parameteric kernel estimation, uncertainties on bootstrapping

Fit projections

- Clear signals in all 4 channels; good fit quality
- $B \rightarrow D^{(*)}\pi^0 \ell v$ channels shown previously
- Full normalization modes shown previously

University of Victoria

Fit results

Phys. Rev. Lett. 109, 101802 (2012)

Decay	$N_{ m sig}$	$N_{ m norm}$	$arepsilon_{ m sig}/arepsilon_{ m norm}$	$\mathcal{R}(D^{(*)})$	$\mathcal{B}(B o D^{(*)} au u)$ (%)	$\Sigma_{ m stat}$	$\Sigma_{ m tot}$
$B^- \rightarrow D^0 \tau^- \overline{\nu}_{\tau}$	314 ± 60	1995 ± 55	0.367 ± 0.011	$0.429 \pm 0.082 \pm 0.052$	$0.99 \pm 0.19 \pm 0.12 \pm 0.04$	5.5	4.7
$B^- ightarrow D^{*0} \tau^- \overline{ u}_{ au}$	639 ± 62	8766 ± 104	0.227 ± 0.004	$0.322 \pm 0.032 \pm 0.022$	$1.71 \pm 0.17 \pm 0.11 \pm 0.06$	11.3	9.4
$\overline{B}{}^0 ightarrow D^+ au^- \overline{ u}_ au$	177 ± 31	986 ± 35	0.384 ± 0.014	$0.469 \pm 0.084 \pm 0.053$	$1.01 \pm 0.18 \pm 0.11 \pm 0.04$	6.1	5.2
$\overline{B}{}^0 \to D^{*+} \tau^- \overline{\nu}_{\tau}$	245 ± 27	3186 ± 61	0.217 ± 0.005	$0.355 \pm 0.039 \pm 0.021$	$1.74 \pm 0.19 \pm 0.10 \pm 0.06$	11.6	10.4
$\overline{B} \rightarrow D \tau^- \overline{\nu}_{\tau}$	489 ± 63	2981 ± 65	0.372 ± 0.010	$0.440 \pm 0.058 \pm 0.042$	$1.02 \pm 0.13 \pm 0.10 \pm 0.04$	8.4	6.8
$\overline{B} \rightarrow D^* \tau^- \overline{\nu}_{\tau}$	888 ± 63	11953 ± 122	0.224 ± 0.004	$0.332 \pm 0.024 \pm 0.018$	$1.76 \pm 0.13 \pm 0.10 \pm 0.06$	16.4	13.2

- First $D\tau v$ result above 5σ significance
- Compatible with previous results and their average

Stability tests

- Results consistent over run periods, between e and μ
- Consistent across wide range of S/B (altered BDT cuts)

Systematic uncertainties

- Largest uncertainties from modeling of D^{**} background (composition, decay modes, slow-π cross-feed)
- Uncertainties on bkg yields (continuum, BBbar) fixed in the fit
- Uncertainty on efficiency doesn't impact significance
- Main systematic uncertainties are Gaussian-distributed

Source	Uncertainty (%)		
Source	R(D)	$R(D^*)$	ρ
$D^{**}\ell\nu$ background	5.8	3.7	0.62
MC statistics	5.0	2.5	-0.48
Cont. and $B\overline{B}$ bkg.	4.9	2.7	-0.30
$\varepsilon_{ m sig}/arepsilon_{ m norm}$	2.6	1.6	0.22
Systematic uncertainty	9.5	5.3	0.05
Statistical uncertainty	13.1	7.1	-0.45
Total uncertainty	16.2	9.0	-0.27

 ρ = correlation between R(D) and $R(D^*)$; negative due to $D^* \rightarrow D$ feed-down

Comparison with SM predictions

Measurements of R(D), $R(D^*)$ anti-correlated (due to $D^* \rightarrow D$ feed-down); *ρ* = -0.27

MSSM: 2HDM-Type II model

- Shape of q^2 and of fit variables sensitive to amount of H^+
- Fit yields and efficiencies sensitive to $\tan\beta/m_{H}$

R(D) and $R(D^*)$ do not both agree with predictions for any single value of $\tan\beta/m_{H}$ \rightarrow 2HDM-Type-II excluded over full parameter space[#] at 99.8% cl

2012/12/7

Recent theoretical work

- These results spawned many recent preprints; they can be accommodated in 2HDM-Type-III scenarios (independent LH and RH scalar couplings) and via mediators with non-zero spin
- 1. arXiv:1211.0348 B decays with τ-leptons in non-universal left-right models, Xiao-Gang He, German Valencia
- 2. arXiv:1210.8443 Sensitivity to charged scalars in $B \rightarrow D^{(*)}\tau v$ and $B \rightarrow \tau v$ decays, Alejandro Celis, Martin Jung, Xin-Qiang Li, Antonio Pich
- 3. arXiv:1210.5076 B decay anomalies in an effective theory, Debajyoti Choudhury, Dilip Kumar Ghosh, Anirban Kundu
- 4. arXiv:1208.4134 Hints of R-parity violation in B decays into τν, N. G. Deshpande, A. Menon
- 5. arXiv:1207.5973 Exclusive weak B decays involving τ lepton in the relativistic quark model, R. N. Faustov, V. O. Galkin
- arXiv:1206.4992 Refining new-physics searches in B -> D tau nu decay with lattice QCD, Jon A. Bailey, A. Bazavov, C. Bernard, C. M. Bouchard, C. DeTar, Daping Du, A. X. El-Khadra, J. Foley, E. D. Freeland, E. Gamiz, Steven Gottlieb, U. M. Heller, Jongjeong Kim, A. S. Kronfeld, J. Laiho, L. Levkova, P. B. Mackenzie, Y. Meurice, E. T. Neil, M. B. Oktay, Si-Wei Qiu, J. N. Simone, R. Sugar, D. Toussaint, R. S. Van de Water, Ran Zhou
- 7. arXiv:1206.4977 B \rightarrow D τ v vs. B \rightarrow D μ v, Damir Becirevic, Nejc Kosnik, Andrey Tayduganov
- 8. arXiv:1206.3760 Diagnosing New Physics in b→c τν decays in the light of the recent BaBar result, Alakabha Datta, Murugeswaran Duraisamy, Diptimoy Ghosh
- 9. arXiv:1206.2634 Explaining B->Dτν, B->D*τν and B->τν in a 2HDM of type III, Andreas Crivellin, Christoph Greub, Ahmet Kokulu
- 10. arXiv:1206.1872 Implications of lepton flavor universality violations in B decays, Svjetlana Fajfer, Jernej F. Kamenik, Ivan Nisandzic, Jure Zupan

Summary

• Observation of enhanced semi-tauonic decays:

 $R(D) = 0.440 \pm 0.058 \pm 0.042$ $R(D^*) = 0.332 \pm 0.024 \pm 0.018$

Phys. Rev. Lett. 109, 101802 (2012)

- $B \rightarrow D\tau v$ channel observed 6.8 σ with significance
- Combined departure from SM: >3.2 σ
- Incompatible with MSSM 2HDM of type II (excluded at 99.8%)
- PRD in preparation includes additional kinematic distributions
- Further results can be expected from Belle and BaBar on these decays

Backup Slides

Adjustments to simulation

- Control samples used to adjust small data-MC differences and to validate modeling
 - B mass sideband 5.20 < m_{ES} < 5.26 GeV
 - E_{extra} sidebands 0.5 < E_{extra} < 1.2 GeV and 1.2 GeV < E_{extra} < 2.4 GeV
 - Pure normalization mode sideband $q^2 < 4 \text{ GeV}^2$
 - Reverse cuts on BDT (veto signal)

