Searches for Physics beyond the Standard Model in Monojet and Monophoton events with the ATLAS Detector

7TeV Monojet (submitted to JHEP): <u>arxiv:1210.4491</u> 7TeV Monophoton (submitted to PRL): <u>arxiv:1209.4625</u>

8TeV Monojet: ATLAS-CONF-2012-147

BMBF-Forschungsschwerpunkt ATLAS Experiment

hysics on the TeV-scale at the Large Hadron Collider

Kruger2012 Workshop December 2012

Ruth Pöttgen on behalf of the ATLAS Collaboration

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Introduction

various models for new physics predict new particles that do not interact in the detector

signature: unbalanced jet or photon => missing transverse energy (E_T^{miss})

WIMP Pair Production

http://arxiv.org/abs/1008.1783

WIMPs popular candidate for dark matter (DM)

different search approaches:

assumption: interaction mediated by a new particle too heavy to be directly produced @LHC

fective field theory approach (contact interaction)

Name	Initial state	Type	Operator
D1	qq	scalar	$\frac{m_q}{M_\star^3} \bar{\chi} \chi \bar{q} q$
D5	qq	vector	$\frac{1}{M_\star^2} \bar{\chi} \gamma^\mu \chi \bar{q} \gamma_\mu q$
D8	qq	axial-vector	$\frac{1}{M_{\star}^2} \bar{\chi} \gamma^{\mu} \gamma^5 \chi \bar{q} \gamma_{\mu} \gamma^5 q$
D9	qq	tensor	$\frac{1}{M_\star^2} \bar{\chi} \sigma^{\mu\nu} \chi \bar{q} \sigma_{\mu\nu} q$
D11	gg	scalar	$\frac{1}{4M_{\star}^3}\bar{\chi}\chi\alpha_s(G^a_{\mu\nu})^2$

suppression scale of effective theory: M*

$$M_* \sim \frac{M}{\sqrt{g_{\chi}g_{SM}}}$$

M: mediator mass g_{\mathcal{\chi}} : coupling to DM g_{SM} : coupling to SM

LED ADD Graviton

http://arxiv.org/abs/hep-ph/9803315v1

<u>A</u>rkani-Hamed, <u>D</u>imopoulos, <u>D</u>vali model of large extra dimensions (LED)

possible way to solve hierarchy problem

gravity propagates in 4+n-dimensional bulk of space-time

=> fundamental Planck scale M_D

related to 4-dimensional Planck scale (M_{Pl}) as $M_{Pl}^2 \sim M_D^{2+n} R^n$

n: number of extra dimensions R: size of extra dimensions

appropiate choice of R for given n results in M_D of O(TeV)

compactification of extra dimension => Kaluza-Klein towers of massive Graviton modes

monojet signature

4.12.2012

Gravitino Production

http://arxiv.org/abs/hep-ph/0610160v2

gauge-mediated SUSY breaking (GMBS) scenarios: gravitino often assumed LSP mass ~10⁻⁴-10⁻⁵eV

gravitino Dark Matter candidate (though not uniquely, too light)

 $\frac{1}{2}$ gravitino mass m_g related to SUSY breaking scale F: m_g ~ F/M_{Pl}

f cross section for gravitino-squark/gluino production $\sim I/(m\tilde{g})^2$

becomes dominant in scenarios with very light gravitinos (low-scale SUSY breaking)

results in jet + missing transverse energy from gravitinos

Monojet Event Candidate in ATLAS

from 2012 data

ET^{miss} = 863 GeV

Kruger2012

Background Contributions

Event Selection

MONOJET (2011/2012)

- ∮ E⊤^{miss} trigger
- good data quality (4.7/fb, 10.5/fb)
- 🛉 primary vertex, jet cleaning
- f at most 2 jets with p_T >30GeV, $|\eta|$ <4.5
- $|\Delta \phi(E_T^{miss}, 2^{nd} jet)| > 0.5$
- leading jet: |η|<2.0 (central)
- 4 signal regions (SR)
 - \int symmetric cuts on E_T^{miss} , leading jet p_T
 - f lower bounds: [120, 220, 350, 500] GeV
- 🛉 lepton vetos (electron, muon)

MONOPHOTON (2011)

ET^{miss} trigger

- f good data quality (4.6/fb)
- primary vertex, jet cleaning
- \int at most 1 jet with p_T>30GeV, $|\eta|$ <4.5
- foverlap removal for E_T^{miss} , γ and jet
- **∮** photon: |**η**|<2.37
 - f excluding calorimeter barrel/endcap
 - transition (1.37< $|\eta_{\gamma}|$ <1.52)
- F^{miss} & photon p_T > 150GeV
- Iepton vetos (electron, muon)

- $V(v\ell)/Z(\ell\ell) + jet/photon control regions (\ell=\mu,e)$
- simulation-based transfer factors (ratios!)
 - significant reduction of theoretical and experimental uncertainties

Electroweak Background

monojet@7TeV

10

Background Systematic Uncertainties

MONOJET (2011)

- Jet & E_T^{miss} energy scale and resolution: I-6%
- Lepton scales/identification:
- correction factors in EW estimation: $\sim 1\%$
- Non-electroweak backgrounds: 0.1-1.1%
- f parton shower/hadronisation modelling: 3%

MONOPHOTON

- photon energy scale: 0.9%
- photon energy resolution, isolation, identification efficiency: 1.1%
- Iepton identification efficiencies 0.3%
- jet energy scale , resolution
 0.9% , 1.2%
- PDF choice, renormalisation/factorisation scales in W/Z+ γ samples: 1.0%
- trigger, lepton energy scale and resolution, pile-up, luminosity combined <0.5%</p>
- parton shower/hadronisation modelling 6.9%

monophoton@7TeV

no significant deviation from Standard Model prediction

Background source	Prediction	\pm (stat.)	\pm (syst.)
$Z(\rightarrow \nu \bar{\nu}) + \gamma$	93	± 16	± 8
$Z/\gamma^* (\to \ell^+ \ell^-) + \gamma$	0.4	± 0.2	± 0.1
$W(\rightarrow \ell \nu) + \gamma$	24	± 5	± 2
W/Z + jets	18	_	± 6
Тор	0.07	± 0.07	± 0.01
$WW, WZ, ZZ, \gamma\gamma$	0.3	± 0.1	± 0.1
γ +jets and multi-jet	1.0	_	± 0.5
Total background	137	± 18	± 9
Events in data (4.6 fb^{-1})	116		

Ruth Pöttgen

Results - Monojets2011

monojet@7TeV

agreement with Standard Model prediction

Ruth Pöttgen

Events in Data (4.7 fb^{-1})

124703

785

77

8631

ERN

IG

Results - Monojets2012 monojet@8TeV

only small changes wrt 2011 analysis

no significant excess

- f no significant improvement wrt 2011 limits
 - due to small statistics in background simulation samples

preliminary result

final result will benefit from simulation samples with higher statistics

NEW interpretation: Gravitino + squark/gluino production

4.12.2012

Interpretation

different theoretical frameworks considered

- ADD Large Extra Dimensions (LED)
- WIMP pair production

results with 2011 data will be presented (monojet & monophoton)

i gravitino production \longrightarrow results from 2012 monojet analysis

systematic uncertainties on signal predictions

similar treatment for all interpretations

Parton Distribution Functions (PDF)

renormalistion and factoristation scales

Initial/Final State Radiation (ISR/FSR)

Ruth Pöttgen

monojet@7TeV

cross section determines relic abundance of DM in the universe (measured by WMAP)

cross section depends on suppression scale M* and WIMP mass

for each value of m_{χ} a certain value of M* results in 'correct' relic density

(green line)

lower limits on M* as function of WIMP mass

Iimits on M* can be translated into (upper) limits on WIMP-Nucleon scattering cross section

spin-dependent interaction: collider competitive over large mass region

spin-independent interaction: collider competitive at small masses

Interpretations - LED ADD Graviton

f cross section related to 2 parameters: M_D and n

 \oint M_D: fundamental Planck scale in 4+n dimensions

for each n set (lower) limits on M_D

$$\sigma(n, M_D) = \sigma(n, M_{D_0}) \times \left[\frac{M_{D_0}}{M_D}\right]^{n+2}$$

Interpretations - Gravitino Production

monojet@8TeV

considerable improvement wrt limits from LEP/Tevatron $(1.37 \times 10^{-5} \text{eV} \text{ assuming high superparticle mass})$

ERN

IG

Summary&Outlook

monojet and monophoton signatures predicted by various models for new physics

- both analyses done with ~5/fb of 7TeV LHC collision data
- monojet analysis updated with 10.5/fb of 8TeV LHC collision data (preliminary results)
- f no significant deviation from Standard Model prediction
- Iimits for ADD and WIMP interpretations
- § 2012: including new interpretation: gravitino + squark/gluino
 - first ATLAS result on this model

11-00

best lower bound on gravitino mass to date

full 2012 data set about twice as large (~20/fb)
new simulation with higher statistics
potential optimisation for specific models

include more models

MMART

BACKUP

4.12.2012

Results - Monojets2012 monojet@8TeV

more Gravitino limits (different mass configurations)

CÊRN

Model Independent Limits

monojet@8TeV

limits on visible cross section, $\sigma imes A imes arepsilon$

🛉 Monojet (8TeV)

SR	observed limit @ 95%CL [pb]
	2.8
2	0.16
3	0.05
4	0.02

Iarge uncertainties in SR3 & SR4 due to poor statistics in simulation samples

IG

best limits from SR3

improvement wrt to 7TeV only for n=6
 reason: poor MC statistics

95% CL limits on ADD model using LO signal cross sections						
n extra-	95% CL obse	erved limit	on M_D [TeV]	95% C	L expected	limit on M_D [TeV]
dimensions	$+1\sigma$ (theory)	Nominal	-1σ (theory)	$+1\sigma$	Nominal	-1σ
2	+0.32	3.88	-0.42	-0.36	4.24	+0.39
3	+0.21	3.16	-0.29	-0.24	3.39	+0.46
4	+0.16	2.84	-0.27	-0.16	3.00	+0.20
5	+0.16	2.65	-0.27	-0.13	2.78	+0.15
6	+0.13	2.58	-0.23	-0.11	2.69	+0.11

ERN

JG

reduced number of operators/mass points considered

ERN

IG

Model Independent Limits 2011

🛉 Monojet

	SR1	SR2	SR3	SR4
$\sigma_{\rm vis}^{\rm obs}$ at 90% [pb]	1.63	0.13	0.026	0.0055
$\sigma_{\rm vis}^{\rm exp}$ at 90% [pb]	1.54	0.15	0.020	0.0064
$\sigma_{\rm vis}^{\rm obs}$ at 95% [pb]	1.92	0.17	0.030	0.0069
$\sigma_{\rm vis}^{\rm exp}$ at 95% [pb]	1.82	0.18	0.024	0.0079

Monophoton

🛉 5.6fb @90%CL

🛉 6.8fb @95%CL

Multijet/ γ +jet Background

events with additional jet(s), where one jet is mis-measured or lost

Fixed require additional jet with $p_T > 30 \text{GeV}$ invert $\Delta \phi$ cut between E_T^{miss} and additional jet

systematic uncertainties from extrapolation and background subtraction

Kruger2012

cosmic muons, beam halo

reduced by dedicated ATLAS jet cleaning cuts

remaining contribution estimated from data (negligible for monophoton)

in 2011 based on timing information from forward muon detectors

in 2012 based on timing distribution of leading jet

new cleaning cut using f_{max}

²⁸

Selection Details

MONOJET (2011/2012)

- E^{Tmiss} trigger (98% efficient @120GeV)
- at least 1 primary vertex with \geq 1 track
- leading jet:
 - f em fraction>0.1
 - charge fraction>0.4
 - maximum fraction in one calorimeter

layer < 0.8

MONOPHOTON (2011)

- ET^{miss} trigger (98% efficient @I50GeV)
- primary vertex with \geq 5 tracks
- overlap removal:
 - **|Δφ**(γ,E_T^{miss})|>0.4
 - ∮ |**Δφ**(jet,E_T^{miss})|>0.4
 - ∮ |**ΔR**(jet, γ)|>0.4

Lepton Vetos

electrons:

∮ p⊤>20GeV

|η|<2.47

''medium++'' quality

overlap removal with jets

muons:

∮ p⊤>7GeV

∮ |η|<2.5

isolation requirement

4.12.2012

muon control region

inverting the muon veto

Electroweak Backgrounds, Monojet

different CRs used for different SR background processes

🕴 2011

\mathbf{SR}	$Z \rightarrow \nu \bar{\nu} + \text{jets}$	$W \rightarrow \tau \nu + \text{jets}$ $W \rightarrow \mu \nu + \text{jets}$	$W \to e\nu {\rm +jets}$	$Z \rightarrow \tau^+ \tau^- + \text{jets}$ $Z \rightarrow \mu^+ \mu^- + \text{jets}$
CR	$\begin{array}{l} W \rightarrow e\nu + \mathrm{jets} \\ W \rightarrow \mu\nu + \mathrm{jets} \\ Z \rightarrow e^+e^- + \mathrm{jets} \\ Z \rightarrow \mu^+\mu^- + \mathrm{jets} \end{array}$	$W \rightarrow \mu \nu + \text{jets}$	$W \rightarrow e\nu + \text{jets}$	$Z \to \mu^+ \mu^- + \text{jets}$

12012

BKG contribution	CR used	cross check
Z(νν) Z(μμ)	W(uv)	Ζ(μμ) Ζ(μμ)
W(μν) W(τν)	vv(µv)	Ζ(μμ) W(ev)
Z(π) W(ev)	inclusive W(ev)	

complete formula (2011)

$$N_{\mathrm{SR}}^{\mathrm{predicted}} = (N_{\mathrm{CR}}^{\mathrm{Data}} - N_{\mathrm{CR}}^{\mathrm{Bkg}}) \cdot C \cdot \frac{N_{\mathrm{SR}}^{\mathrm{MC}}}{N_{\mathrm{jet/E_T}^{\mathrm{miss}}}^{\mathrm{MC}}} =$$

$$\frac{(N_{\rm CR}^{\rm Data} - N_{\rm CR}^{\rm multijet}) \cdot (1 - f_{\rm EW})}{A_{\ell} \cdot \epsilon_{\ell} \cdot \epsilon_{Z/W} \cdot \epsilon_{\ell}^{\rm trig} \cdot \mathcal{L}_{\ell}} \times \epsilon_{E_{\rm T}^{\rm miss}}^{\rm trig} \times \mathcal{L}_{E_{\rm T}^{\rm miss}} \times \frac{N_{\rm SR}^{\rm MC}}{N_{\rm jet/E_{\rm T}^{\rm miss}}^{\rm MC}}$$

Systematics Monojet

2011

Source	SR1	SR2	SR3	SR4
$\rm JES/JER/E_T^{miss}$	1.0	2.6	4.9	5.8
MC Z/W modelling	2.9	2.9	2.9	3.0
MC statistical uncertainty	0.5	1.4	3.4	8.9
$1 - f_{\rm EW}$	1.0	1.0	0.7	0.7
Muon scale and resolution	0.03	0.02	0.08	0.61
Lepton scale factors	0.4	0.5	0.6	0.7
Multijet BG in electron CR	0.1	0.1	0.3	0.6
Di-boson, top, multijet, non-collisions	0.8	0.7	1.1	0.3
Total systematic uncertainty	3.4	4.4	6.8	11.1
Total data statistical uncertainty	0.5	1.7	4.3	11.8

2012

- ∮ Jet & E^{™iss} energy scale and resolution:
 - 2-4% (on transfer factors)
- Lepton identification efficiencies:
 - I-3% (on transfer factors)
- Non-electroweak backgrounds:
 - <1% (on total background)
- parton shower/hadronisation modelling:
 - 3% (on total background)

Monojet WIMP Limits 2011

CÉRN

WIMP Limits 2011

🛉 Monojet @ 90(95)%CL

m_{χ}	D1	D5	D8	D9	D11
1	30 (29)	687 (658)	687 (658)	1353 (1284)	375(361)
5	30 (29)	687 (658)	687 (658)	1353 (1284)	375(361)
10	30 (29)	687 (658)	687 (658)	1353 (1284)	375(361)
50	30 (29)	682 (653)	666~(~638~)	1338 (1269)	370(357)
100	29(28)	681 (653)	650 (623)	$1310\ (\ 1243\)$	360(347)
200	27 (26)	658 (631)	595 (570)	1202 (1140)	357(344)
400	21 (20)	571(547)	475 (455)	943 (893)	324(312)
700	14 (14)	416(398)	311 (298)	629 (596)	250 (241)
1000	9 (9)	281 (269)	196(188)	406(384)	185(178)
1300	6(6)	173 (165)	110(106)	240 (227)	128(123)

observed lower limits on the suppression scale M* [GeV] for SR with best expected limit (SR3 for DI, D5 and D8, SR4 for D9 and D11).

central values ł (=> w/o theoretical uncertainties)

Monophoton @ 90%CL

m_{χ}	D1	D5	D8	D9
1GeV	31	585	585	794
1.3TeV	5	156	100	188

observed lower limits on the suppression scale M* [GeV]

ADD Limits 2011

🛉 Monojet @ 95%CL

22	$M_{\rm D}$ [TeV]	<i>R</i> []	pm]
n	LO	NLO	LO	NLO
2	4.17	4.37	2.8×10^7	$2.5 imes 10^7$
3	3.32	3.45	$4.8 imes 10^2$	$4.5 imes 10^2$
4	2.89	2.97	2.0	1.9
5	2.66	2.71	$7.1 imes 10^{-2}$	$7.0 imes 10^{-2}$
6	2.51	2.53	$0.8 imes 10^{-2}$	0.8×10^{-2}

Iower (upper) limits on M_D (R) for n=2−6 extra dimensions using SR4

central values
(=> w/o theoretical uncertainties)

🛉 Monophoton @ 95%CL

n	M _D [TeV]
2	1.93
3	1.83
4	1.83
5	1.86
6	1.89

Iower (upper) limits on M_D for n=2−6 extra dimensions

Electroweak Background 2012

- $\bigvee (\mu v) + jets CR$
 - exactly I reconstructed muon
 - ∮ 40GeV < m_T < 100GeV
 - Fremaining SR cuts

CERN

JG

Electroweak Background 2012

I Z($\mu\mu$)+jets CR

- exactly 2 reconstructed muons
- ∮ 76GeV < m_{μμ} < 116GeV
- 🕴 remaining SR cuts

CERN

JG

Electroweak Background 2012

 $\mathbf{W}(ev)$ +jets CR

inverting the electron veto

no additional cuts since dominated by W

Results - Monojets2012 monojet@8TeV

event numbers

Background Predictions \pm (stat.data) \pm (stat.MC) \pm (syst.)				
	SR1	SR2	SR3	SR4
$Z (\rightarrow \nu \bar{\nu}) + jets$	$173600 \pm 500 \pm 1300 \pm 5500$	$15600 \pm 200 \pm 300 \pm 500$	$1520 \pm 50 \pm 90 \pm 60$	$270 \pm 30 \pm 40 \pm 20$
$W \rightarrow \tau \nu + jets$	$87400 \pm 300 \pm 800 \pm 3700$	$5580 \pm 60 \pm 190 \pm 300$	$370 \pm 10 \pm 40 \pm 30$	$39 \pm 4 \pm 11 \pm 2$
$W \rightarrow ev + jets$	$36700 \pm 200 \pm 500 \pm 1500$	$1880 \pm 30 \pm 100 \pm 100$	$112 \pm 5 \pm 18 \pm 9$	$16 \pm 2 \pm 6 \pm 2$
$W \rightarrow \mu \nu + jets$	$34200 \pm 100 \pm 400 \pm 1600$	$2050 \pm 20 \pm 100 \pm 130$	$158 \pm 5 \pm 21 \pm 14$	$42 \pm 4 \pm 13 \pm 8$
$Z \rightarrow \tau \tau + jets$	$1263 \pm 7 \pm 44 \pm 92$	$54 \pm 1 \pm 9 \pm 5$	$1.3 \pm 0.1 \pm 1.3 \pm 0.2$	$1.4 \pm 0.2 \pm 1.5 \pm 0.2$
$Z/\gamma^* (\rightarrow \mu^+ \mu^-) + jets$	$783 \pm 2 \pm 35 \pm 53$	$26 \pm 0 \pm 6 \pm 1$	$2.7 \pm 0.1 \pm 1.9 \pm 0.3$	-
$Z/\gamma^* (\rightarrow e^+ e^-) + jets$	-	_	-	-
Multijet	$6400 \pm 90 \pm 5500$	$200 \pm 20 \pm 200$	-	-
$t\bar{t} + \text{single } t$	$2660 \pm 60 \pm 530$	$120 \pm 10 \pm 20$	$7 \pm 3 \pm 1$	$1.2 \pm 1.2 \pm 0.2$
Dibosons	$815 \pm 9 \pm 163$	$83 \pm 3 \pm 17$	$14 \pm 1 \pm 3$	$3 \pm 1 \pm 1$
Non-collision background	$640 \pm 40 \pm 60$	$22 \pm 7 \pm 2$	-	-
Total background	$344400 \pm 900 \pm 2200 \pm 12600$	$25600 \pm 240 \pm 500 \pm 900$	$2180 \pm 70 \pm 120 \pm 100$	$380 \pm 30 \pm 60 \pm 30$
Data	350932	25515	2353	268

4.12.2012

Monophoton Event Candidate

🕴 from 2011 data

ET^{miss} = 446.9GeV

∮ photon p⊤ = 449.7GeV

2.2012

