

$\mathbf{H} ightarrow 4\ell$ at the LHC : constraints on Abelian Hidden sector models

Mathieu Aurousseau University of Johannesburg

International Workshop on Discovery Physics at the LHC December 3 - 7, 2012 Kruger National Park

- Introduction and motivations
- Hidden Abelian Higgs model (HAHM) (*Wells et al.*)
 - Higgs and Gauge boson mixings
 - Phenomenology
 - Possible experimental searches
- Reinterpreting ATLAS/CMS results
 - Higgs mixing angle and hidden width
 - Higgs mixing angle and new gauge boson mass
- Conclusion and outlook

- Model :
 - J.D. Wells, *How to find a hidden world at the large hadron collider,* arXiv:0803.1243, 2008.
 - S. Gopalakrishna, S. Jung, and J.D. Wells, *Higgs boson decays to four fermions through an abelian hidden sector*, **Physical Review D**, 78(5): 055002, 2008.
- Experimental results from ATLAS and CMS :
 - The ATLAS Collaboration, Observation of a new particle in the search for the standard model higgs boson with the ATLAS detector at the LHC, Physics Letters B, 2012.
 - and updates from HCP
 - The CMS Collaboration, *Observation of a new boson at a mass of 125 gev with the CMS experiment at the LHC*, **Physics Letters B, 2012**.
 - and updates from HCP

Introduction

- Experimental results
 - Discovery
 - Mass, spin/CP, signal strength, couplings
 - For now, μ is compatible with 1 in the 2 experiments
- Measurement of couplings and signal rate
 - SM Higgs ?
 - Other ?
 - Can the current measured rate provide some insight already ?

Hidden Abelian Higgs Model (HAHM) (1)

- Hidden sector coupled to the SM through kinetic mixing
- Strength of the coupling : parameter η << 1
- Benchmark point is η ~ 10^{\text{-4}}, consistent with EW precision measurements

Lagrangian in the Higgs sector :

$$\begin{split} \mathcal{L}_{\Phi} = & |D_{\mu} \Phi_{\rm SM}|^2 + m_{\Phi_{\rm SM}}^2 |\Phi_{\rm SM}|^2 - \lambda |\Phi_{\rm SM}|^4 \longrightarrow \text{SM} \\ & + |D_{\mu} \Phi_X|^2 + m_{\Phi_X}^2 |\Phi_X|^2 - \rho |\Phi_X|^4 \longrightarrow \text{Hidden sector} \\ & - \kappa |\Phi_{\rm SM}|^2 |\Phi_X|^2 \quad . \qquad \longrightarrow \text{Mixing} \end{split}$$

 $\begin{array}{l} \underline{\text{Higgs mixing :}}\\ \begin{pmatrix} \Phi_{\text{SM}} \\ \Phi_X \end{pmatrix} = \begin{pmatrix} c_h & s_h \\ -s_h & c_h \end{pmatrix} \begin{pmatrix} H_1 \\ H_2 \end{pmatrix} \\ \\ \hline & & \\ & &$

Hidden Abelian Higgs Model (HAHM) (2)

- We can now specify what is the Hidden sector and its mixing to the SM
- $U(1)_X$ gauge group for the HAHM model proposed by Wells et al.

Gauge boson mixing :

$$\begin{pmatrix} B \\ W^{3} \\ X \end{pmatrix} = \begin{pmatrix} c_{W} & -s_{W}c_{\alpha} & s_{W}s_{\alpha} \\ s_{W} & c_{W}c_{\alpha} & -c_{W}s_{\alpha} \\ 0 & c_{\alpha} & s_{\alpha} \end{pmatrix} \begin{pmatrix} A \\ Z \\ Z' \end{pmatrix}^{2} \sim SM$$
Hidden sector
function of : η , hidden sector vev and
coupling constants, Z and Z' boson masses

$$M_{Z,Z'} = \frac{M_{Z_0}^2}{2} \left[(1 + s_W^2 \eta^2 + \Delta_Z) \pm \sqrt{(1 - s_W^2 \eta^2 - \Delta_Z)^2 + 4s_W^2 \eta^2} \right]$$

Hidden Abelian Higgs Model (HAHM) (3)

Type	Notation	Status	Equation/Value	sector (SM/Hidden)
Lagrangian	χ	Internal	Eq. 2	Hidden
	η	Fixed-value	$\eta = 10^{-4}$	Hidden
	ξ	Fixed-value	$\xi = 1 \text{ TeV}$	Hidden
	κ	Internal	Eq. 7	$\rm SM/Hidden$
	ρ	Internal	Eq. 8	Hidden
	λ	Internal	Eq. 9	$\rm SM/Hidden$
Mixing angles	$ heta_{lpha}$	Internal	Eq. 12	Hidden
	$ heta_h$ †	Free	$s_{h}^{2} \in [0, 1]$	Hidden
Masses	M_Z	Fixed-value	$M_Z = 91.18 \text{GeV}$	\mathbf{SM}
	$M_{Z'}$	Free	$M_{Z'} \in [15, 80] \text{GeV}$	Hidden
	M_{H_1}	Free	$M_{H_1} \in [110, 1000] \text{GeV}$	$\rm SM/Hidden$
	M_{H_2}	Free	$M_{H_2} \in [110, 1000] \text{GeV}$	$\rm SM/Hidden$

- Higgs sector mixing
 - Additional Higgs boson
 - Masses depend on free parameters

- Gauge boson mixing
 - Additional Gauge boson (Z')
 - Mass depend on free parameters
 - Photon and Z boson are mostly unchanged compared to SM

Couplings

Higgs couplings :

$$gg \to H \quad \text{(effective), suppressed by a factor } c_{h}^{2}$$

$$hZZ : 2ic_{h}\frac{M_{Z_{0}}^{2}}{v}(-c_{\alpha} + \eta s_{W}s_{\alpha})^{2} - 2is_{h}\frac{M_{X}^{2}}{\xi}s_{\alpha}^{2}$$

$$hZ'Z' : 2ic_{h}\frac{M_{Z_{0}}^{2}}{v}(s_{\alpha} + \eta s_{W}c_{\alpha})^{2} - 2is_{h}\frac{M_{X}^{2}}{\xi}c_{\alpha}^{2}$$

$$hZZ' : 2ic_{h}\frac{M_{Z_{0}}^{2}}{v}(-c_{\alpha} + \eta s_{W}s_{\alpha})(s_{\alpha} + \eta s_{W}c_{\alpha}) - 2is_{h}\frac{M_{X}^{2}}{\xi}s_{\alpha}c_{\alpha}$$

Coupling to SM fermions :

$$\bar{\psi}\psi Z: \frac{ig}{c_W} [c_\alpha(1-t_\alpha\eta s_W)] \left[T_L^3 - \frac{1-t_\alpha\eta/s_W}{1-t_\alpha\eta s_W} s_W^2 Q \right]$$
$$\bar{\psi}\psi Z': \frac{-ig}{c_W} [c_\alpha(t_\alpha+\eta s_W)] \left[T_L^3 - \frac{t_\alpha+\eta/s_W}{t_\alpha+\eta s_W} s_W^2 Q \right]$$

- Calculation of widths and BR
 - "analytical" (private program (HDECAY-like), crosschecked with model authors)
 - in a (m_H , $m_{Z'}$, s_h^2) parameter space
- Event generation
 - Model exists in FeynRules
 - We add another FeynRules notebook more usable by experiments :
 - (m_H, m_{z'}, s_h²) as free parameters, instead of (κ , ρ , λ)
 - HEFT to have gg->H production

- Possible searches
 - In a "standard" H->4I search to include H->Z'Z'->4I decays :
 - event rate changed w.r.t. SM
 - Direct search :
 - direct production (but very suppressed because of low coupling to fermions)
 - search for a resonance in dilepton mass spectrum in a *H->41* type of search
- But before that ...
 - … what do current results tell us about this model ?
 - Isn't it already excluded by the observation of H->ZZ->4l events ?

- Both results are compatible with 1 (SM), within 1 sigma (still large uncertainties ...)
- At this stage, we may not expect very large deviations from SM
- We will assume in the following that the new particle *is a Higgs boson of 126 GeV*

Two approaches to reinterpret these results

- 1) Mixing angle and hidden width
- 2) Mixing angle and Z' mass

Assumptions :

- lepton kinematic in H->Z'Z'->4l events in comparable to that of (SM) H->ZZ->4l events for m₇ > 15 GeV (we will assume same acceptance, efficiencies, etc.)
- experimental analyses cut on the dilepton invariant mass :
 - CMS : m₁₂ > 40 GeV, m₃₄ > 12 GeV
 - ATLAS : m₁₂ > 50 GeV, m₃₄ > 17.5 GeV (for m₄₁ ~ 126 GeV)

- New Higgs decay
 - change the Higgs partial width to 4 leptons, and total width
 - depends on the Higgs mixing angle
- Decay of "hidden" particles (e.g. Z' in HAHM)
 - non-detectable
 - e.g. very light new boson or some particle that does not decay to SM particles
 - lead to a loss of events or large missing energy
 - detectable
 - e.g. larger mass new boson (few 10 GeV)
 - further decay to SM leptons, can be measured

"Invisible" hidden sector

"Invisible" hidden sector (usual approach)

- not very conclusive because of large uncertainties
- expected rate is lower than SM, so "more compatible" with μ < 1 (CMS)

"Visible" hidden sector

"Visible" hidden sector : here we assume that the hidden particles can be detected Two regions are compatible with the measurements :

- large mixing (sh2 ~ 1)
- small hidden width

Note: the relationship between the model parameters (Higgs and Z' masses, mixing angle) and the hidden width is not straightforward

- New Higgs decay
 - opens new H->4l events that may be detected as part of SM H->ZZ*->4l search
 - event rate depends on mixing angle and Z' mass
- Decay of "hidden" particles (Z' leptonic decay)
 - non-detectable
 - 20 < mZ' < 35 GeV
 - detectable
 - 55 < mZ' < 80 GeV

Low mass Z' (< 35 GeV)

Low mass Z'

- H->Z'Z'->4I decay not detected
- event rate simply suppressed, proportional to c_h^2
- exclude most mixing angles, except close to s_h² = 0 (SM limit)
- large uncertainties

High mass Z' (> 55 GeV)

- H->Z'Z'->4I decay can be detected, we assume same acceptance
- large part of parameter space compatible with experimental result
- transition at mZ' = 63 GeV ($m_H/2$) :
 - below: H->Z'Z' (2-body) is favored compared to H->ZZ* (3-body)
 - above: H->Z'Z' (3-body) is suppressed compared to H->ZZ* (3-body), more SM-like
- Low mass Z' are excluded (< m_H/2), except for :
 - low mixing (H->Z'Z' favored by kinematics but compensated by s_h² suppression)
 - large mixing (enhancement of H->Z'Z' compensated by c_h² suppression of ggH)

- Conclusion
 - Experimentally accessible search
 - other interesting process involve the heavier Higgs mass eigenstate, cascade decays
 - Model not (yet) excluded by compatibility of experimental results with SM
 - waiting for uncertainties to shrink !
- Other models can use the same approach
 - dark Z (Davoudiasl et al., 2012)
 - lower mass, more difficult experimentally
- Further work
 - update these results when ATLAS/CMS update their measurements
 - I stay tuned !
 - direct searches (or exclusion) by experiments
 - promising complementary search to SM Higgs boson

BACK-UP

Total Higgs width

BR(H->ZZ,Z'Z')

