

Search for Exotic Resonances in Di-boson Final States

Flavia A. Dias SPRACE – IFT/UNESP for the CMS Collaboration

Large Hadron Collider

• Energy frontier

- 2011

🗆 7 TeV

□ 6.1 fb⁻¹

- 2012
 - □ 8 TeV □ 23 fb⁻¹
- Goals
 - EWSB mechanism
 - Physics BSM

CMS Integrated Luminosity, pp

CMS Experiment

Exotic Di-boson Searches

- Historically connected to EWSB models
 - Not excluded if SM Higgs $m_{\rm H}\,^{\sim}\,125~GeV$
- Several scenarios
 - Kaluza-klein gravitons (WW, ZZ)
 - Technicolor (WZ)
 - W' (WZ)
 - Compositeness
- Experimental aspects
 - Clean signature
 - Less constraints from precision EW measurements
 - Tight connection with VBF processes

Searches for VV resonances

$WZ \rightarrow 3\ell + MET$

• W'/ $\rho_{TC} \rightarrow WZ \rightarrow 3\ell + MET$ - 5 fb⁻¹ of 7 TeV data (2011) *Phys. Rev. Lett.* **109** (2012) 141801 arxiv: 1206.0433

- Model interpretation
 - Sequential Standard
 Model W'
 - Low Scale Technicolor
 Masses below 700 GeV
 - $\square \ \rho_{\text{TC}}$ and a_{TC} can decay to WZ

WZ \rightarrow 3 ℓ + MET – Background

Phys. Rev. Lett. 109 (2012) 141801 arxiv: 1206.0433

- Monte-Carlo based estimation
 - MadGraph 5 + Pythia 6 for hadronization
 - NLO k-factors

WZ \rightarrow 3 ℓ + MET – Limits

Phys. Rev. Lett. **109** (2012) 141801 arxiv: 1206.0433

- 95% CL upper limits on cross section times branching fraction
 - M(W') > 1143 GeV
 - − LSTC, (M(π_{TC}) = ¾ M(ρ_{TC}) − 25 GeV) → M(ρ_{TC}) excluded in 167 − 687 GeV range

 $ZZ \rightarrow \ell \ell j j$

Submitted to *Phys. Lett. B* arxiv: 1209.3807

- $G_{KK} \rightarrow ZZ \rightarrow \ell \ell j j$ - 5 fb⁻¹ of 7 TeV data (2011)
- Likelihood discriminator
 - Built from 5 helicity angles
 - Spin 2 particles
- Model interpretation
 - RS1 gravitons
 - □ Parameters: m_G and k/M_{Pl}
 - ADPS model (bulk gravitons)

$ZZ \rightarrow \ell \ell j j - Background$

Submitted to Phys. Lett. B

arxiv: 1209.3807

- Data-driven estimation
 - Sideband in M_{zz}
 - Division in b-tag categories

$ZZ \rightarrow \ell \ell j j - Limits$

Submitted to Phys. Lett. B arxiv: 1209.3807

- 95% CL upper limits on cross section times branching fraction
 - $M(G_{RS}) > 945 \text{ GeV} (k/M_{Pl} = 0.1)$
 - $M(G_{bulk}) > 720 \text{ GeV} (k/M_{Pl} = 0.1)$

Boosted Topologies

- Traditional techniques lose sensitivity at higher masses
 - Jet merging
 - Boosted monojet with mass of original decaying particle
 - Alternative lepton isolation
 - Avoids self veto of dilepton system from heavy particle

 $VZ \rightarrow \ell \ell / \nu \nu + j$

- W'/G_{KK} \rightarrow WZ/ZZ $\rightarrow \ell \ell / \nu \nu + j$ - 5 fb⁻¹ of 7 TeV data (2011)
- Hadronic products merging

 Single massive jet
- $V \rightarrow jet either W or Z$
 - Anti- k_{T} with R = 0.7
 - Selection on the jet mass
- Model interpretation
 - RS1 gravitons
 - SSM W'

Submitted to JHEP

arxiv: 1211.5779

$VZ \rightarrow vv + j - Background$

- Jet + MET channel
 - Data-driven estimation
 - □ ABCD method
 - $M_{jet} > 70 \text{ GeV}$ $- M_{T}^{G} > 900 \text{ GeV}$

Submitted to JHEP arxiv: 1211.5779

0.08

0.07

0.06 0.05 0.04 0.03

0.02

0.01

$VZ \rightarrow \ell \ell + j - Background$

- Di-lepton + jet channel
 - $65 < M_{jet} < 120 \text{ GeV}$
 - Data-driven estimation
 - \Box M_{jet} sideband (30 < M_{jet} < 65 GeV)

Submitted to JHEP arxiv: 1211.5779

$VZ \rightarrow \ell \ell / \nu \nu + j - Limits$

Submitted to JHEP

- 95% CL upper limits on cross sections times arxiv: 1211.5779 branching fraction
 - W' excluded in 700 938 GeV range (NNLO)
 - RS1 gravitons excluded in 750 879 GeV range for k/M_{Pl} = 0.05 (NLO)

$VV \rightarrow Dijet$

W'/G_{KK} → WZ/WW/ZZ → j j
 5 fb⁻¹ of 7 TeV data (2011)

- Model interpretation:
 - RS1 gravitons
 - SSM W'
- VV \rightarrow Di-jet topology
 - Jet substructure for QCD suppression
 - W/Z tag on jets
 - Peak in the di-jet invariant mass on top of falling distribution

EXO-11-095

 $VV \rightarrow Di$ -jet – V-tag

- Cambridge-Aachen with R = 0.8
 + pruning
 - Soft and wide angle particles ignored
 - N_{subjets} = 2
 - $-70 < M_{jet} < 100 \text{ GeV}$
 - $m_1/m_{jet} < 0.25$ (mass drop)
- Evident discriminant power of the pruned jet mass and mass drop

$VV \rightarrow Di$ -jet – Background

EXO-11-095

- Shape parameterization for di-jet background
- In limit setting
 - Background fit
 parameters obtained by
 best signal + background
 fit to the data points for
 each signal hypothesis

$VV \rightarrow Di$ -jet – Limits

EXO-11-095

- 95% CL limits on di-jet resonance cross section
- No sensitivity to RS gravitons with k/M_{Pl} = 0.1 or W' models with current datasets
- Most stringent cross section limits in the channel to date

RS Gravitons \rightarrow VV – CMS Limits

- Narrow width approximation
 - Resonance width much smaller than experimental resolution
- Stringent limits for RS gravitons in VV channels
- Complementarity between results in different channels

Summary

- Searches for exotic resonances decaying to a pair of vector bosons have been performed at the CMS experiment
- Stringent upper limits in several models:
 - Technicolor
 - Randall-Sundrum gravitons
 - Sequential Standard Model W'
- Advances on jet substructure algorithms allow channels with boosted hadronic objects have good performance and sensitivity
- More results with 2012 data to come. Stay tuned!

Documentation

• All public CMS exotic searches:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

• WZ \rightarrow trileptons

Phys. Rev. Lett. **109** (2012) 141801 arxiv: 1206.0433

- ZZ \rightarrow di-leptons + di-jets arxiv: 1209.3807
- VZ \rightarrow di-lepton / MET + jet arxiv: 1211.5779
- $VV \rightarrow di-jet$

http://cdsweb.cern.ch/record/1458050/files/EXO-11-095-pas.pdf

BACKUP SLIDES