

Summary of ALICE results from heavy-flavour measurements from pp and Pb-Pb collisions at LHC energies

E Z Buthelezi, iThemba LABS, Cape Town, South Africa for the ALICE collaboration

International Workshop on Discovery Physics at the LHC, 3-7 Dec 2012, Kruger National Park, South Africa

Scope

- Why heavy-flavour?
- ALICE detector and features
- Results:

> proton-proton (pp) collisions @ $\sqrt{s} = 2.76 \& 7 \text{ TeV}$

> Pb-Pb collisions @ $\sqrt{s_{NN}}$ = 2.76 TeV

Conclusions

matter

Why Heavy Flavour ?

- ✤ Heavy quarks are produced at the beginning of the collisions with high Q².
- pp: pQCD calculations for heavy quark production
- p-A: cold nuclear matter effect (shadowing & gluon saturation).
- Pb-Pb: interaction with hot, dense QCD medium.
- Nuclear modification factor,

$$R_{AA}(p_{t},\eta) = \frac{1}{\langle N_{coll} \rangle} \frac{\mathrm{d}^{2} N_{PbPb} / \mathrm{d} p_{t} \mathrm{d} \eta}{\mathrm{d}^{2} N_{Pb} / \mathrm{d} p_{t} \mathrm{d} \eta} \longrightarrow R_{AA}^{\pi} < R_{AA}^{D} < R_{AA}^{B}$$

= 1 if no medium / initial state effects.

Energy loss depends on

*

- colour charge (Casimir factor) $\langle \Delta E
 angle \propto lpha_s C_R \hat{q} L^2$
- parton mass ("dead cone" effect) $\Delta E_a > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b$
- medium density & size

Dokshitzer and Kharzeev, PLB 519, 199-206 (2001).

energy loss in

binary collision

the medium

- Azimuthal anisotropic flow $\frac{dN}{d\varphi} = \frac{N_0}{2\pi} \left(1 + 2\upsilon_1 \cos(\varphi \Psi_1) + 2\upsilon_2 \cos[2(\varphi \Psi_2)] + ... \right)$ direct flow, elliptic flow,
- Sensitive to parton-QCD matter interaction & thermalization ⇒ measurements of transport properties of the medium
- ightarrow Clean penetrating probes for QCD medium

HF production

<u>LHC</u>:

•Charm (c) & beauty (b) cross sections are larger by

factor 10 (50) at $\sqrt{s_{NN}}$ = 2.76 TeV

- ~60 cc expected in central Pb-Pb collisions.
- \Rightarrow Large HF production cross sections

ALICE is well suited to measure HF decays in a wide

RHIC:A.Adare et al, PHENIX Collaboration, PRL. 98, 172301 (2007).B. I. Abelev et al. STAR Collaboration, PRL. 98, 192301 (2007).

- •Large energy loss of HF in the medium
- Substantial elliptic flow, v_2

ALICE Collaboration, JHEP07 (2012) 191

momentum range ...

The ALICE detector

B-field: 0.5 T p_{T} resolution: 1% @ low p_{T} – 10% @ 50 GeV/c Impact parameter resolution : ~ 65 μm @ 1 GeV/c

HF production in pp collisions

Test pQCD calculations

✤Reference for Pb-Pb

10

Measurement of HF electrons via b & c hadron decay \rightarrow HFE

- PID: dE/dx (TPC) + TOF + TRD, (TPC) + EMCal ٠
- · <TPC dE/dx>|_{el} (σ_{TPC-dE/dx} pp, is = 7 TeVp d 10 **Background sources** ٠ Photon conversions largest **FPC dE/dx** Dalitz decay of neutral mesons 10 Dielectron decays of light vector mesons Quarkonia decays 5678 3×10⁻ 2 3 4 p (GeV/c) ALI-PUB-16409 Direct photons, Drell-Yan processes. Dominant @ $c \rightarrow e + X$ BR: 9.6 % high $p_{\rm T}$ $h \rightarrow e + X$ BR: 11%
- Background subtraction: ٠

In pp : Cocktail – MC hadron-decay generator

In Pb-Pb: invariant mass method – removes π^0 , Dalitz, photon conversions

The dN/dp_{τ} of HFE is obtained by subtracting background from ٠ inclusive electron spectrum & then normalized to $\sigma(MB)$.

BR: 10%

 $b \rightarrow c \rightarrow e + X$

HFE production in pp collisions @ 2.76 and 7 TeV

ALICE data are compared with

• Fixed-Order-Next-to-Leading-Log (FONLL) pQCD calculations. Data are well described by

the calculations Cacciari et al., arXiv:1205.6344.

•Complimentary to ATLAS data @ high $p_{\rm T}$.

Beauty electrons in |y| < 0.5 in pp collisions @ 7 TeV **AL**

•Differential cross sections of HF e[±] from decays of b & c hadrons in $0.5 < p_T < 8 \text{ GeV}/c$ • e^{\pm} selection via p_{T} dependent impact parameter d_0 cut to enhance S/B PYTHIA, √s = 7 TeV, lyl $b(\rightarrow c)\rightarrow$ $C \rightarrow \Theta$ 1<p_<6 GeV/c conversion elec Dalitz elec 10 counts arXiv:1208.1902 conversion electrons Data/MC 1_<2 GeV/c</pre> Data/MC 2<p_<6 GeV/c Datta/MC -200 200 400 -600 -400 d, (μm) •Charm extraction : $c \rightarrow e^{\pm} = HF \rightarrow e^{\pm} - b \rightarrow e^{\pm}$ •Beauty takes over from charm @ $p_{\tau} > 4 \text{ GeV}/c$. •FONLL describes both b $\rightarrow e^{\pm}$ and c $\rightarrow e^{\pm}$ Cacciari et al., arXiv:1205.6344. differential cross sections also @ low p_{T} .

Prompt D meson hadronic decay reconstruction

- Search for secondary vertices displaced by few hundred μm from primary vertex
- Selection:
- $p_{\rm T}$ & impact parameter of single tracks,
- PID (π , K) with TPC+TOF
- Pointing angle
- Decay length
- Signal extraction from fits to invariant mass distribution in Pb-Pb.
- Nnormalized to $\sigma(MB)$.

ALICE, JHEP9(2012)112

Prompt charm production at central rapidity in pp collisions @ 7 TeV

ALICE

- •Inclusive p_{T} distributions for prompt
- D⁰ measured in $1 < p_T < 16 \text{ GeV}/c$,
- D⁺ & D^{*+} measured in $1 < p_T < 24$ GeV/c

- D_s^+ measured in 2 < p_T < 12 GeV/*c* ALICE, PLB 718 (2012)279
- •Data are well described by the pQCD calculations

Cacciari et. al., arXiv:1205.6344, Kniehl et al., arXiv:1202.0439. Maciula, et al, arXiv:1208.6126

HF decay muon measurement @ forward rapidity, 2.5 < y < 4.0

- Track selection
- Muon in the spectrometer acceptance
- Matched with a tracklet in the trigger system to reject punch-through hadrons
- p×DCA to reject tracks from beam-gas interaction & fake tracks in PbPb
- Background subtraction:
- π, K decay µ estimated using event generators (PYTHIA, PHOJET)
- Normalized to data at low $p_{\rm T}$.
- ✤ Acc × Eff correction

Detector simulation (MC) based on parameterization of p_T & y differential cross sections of B quark from MNR

(Mangano, Nason, Ridolfi, Nucl.Phys.B 373 (1992) 295).

Normalization to σ(MB)

HF muons @ forward rapidity 2.5 < y < 4.0 in pp collisions at 2.76 TeV & 7 TeV.

•Data are well described by FONLL pQCD calculations within errors Cacciari et. al., arXiv:1205.6344

• Similar conclusions at \sqrt{s} = 2.76 and 7 TeV.

HF production in Pb-Pb collisions @ 2.76 TeV

✤Nuclear Modification Factor, R_{AA}

✤Elliptic flow, v₂

Nuclear modification factor, R_{AA} , in Pb-Pb collisions

Nuclear Modification factor is defined as follows

$$R_{_{\mathrm{AA}}} = rac{1}{< T_{_{\mathrm{AA}}} >} \cdot rac{\mathrm{d}N_{_{\mathrm{PbPb}}}/\mathrm{d}p_{_{\mathrm{T}}}}{\mathrm{d}\sigma_{_{\mathrm{pp}}}/\mathrm{d}p_{_{\mathrm{T}}}}$$

where,

 $< T_{AA} >$: Nuclear overlap function average over impact parameter dN_{PbPb}/dp_{T} : Measured p_{T} spectrum in Pb-Pb.

 $d\sigma_{pp}/dp_{T}$: Reference p_{T} spectrum in pp at the same \sqrt{s} as Pb-Pb.

✤ For the D mesons and HFE the reference p_T differential cross section in pp collision is measured @ $\sqrt{s} = 7$ TeV and scaled to 2.76 TeV using FONLL calculations.

•Suppression of HF decay electrons over a wide p_{τ} range.

• R_{AA} comparable @ ~3 < p_T < ~9 GeV/c for RHIC and LHC, taking into account that charm & beauty fractions in this p_T range are different @ RHIC and LHC.

Average R_{AA} of D mesons in Pb-Pb collisions @ 2.76 TeV

ALICE, JHEP 09(2012)112

- ♦ R_{AA} of D mesons at central rapidity |y| < 0.5 for centrality class 0-20% in Pb-Pb collisions.
- Suppression by a factor 3 4 for $p_T > 5$ GeV/*c* in the most 20 % central collisions
- Reduced suppression for peripheral collisions.
- ◆ Data are reasonably described by some of the energy loss models ⇒ Strong in-medium energy loss for charm quarks.
- ★ Comparison with the non-prompt J/ψ from B decay measured by CMS @ 6.5< p_T <30 GeV/c in |y| < 1.2 indicate a different suppression for charm and beauty ⇒ not conclusive since rapidity intervals are different & decay kinematics prevent a quantitative comparison.</p>

Stronger suppression in central collisions than in peripheral collisions.
In the explored p_T range, the suppression is not dependent on p_T.
In agreement with in-medium energy-loss models (BDMPS-ASW) & (Vitev).
Small contribution of shadowing is expected for muons with p_T > 4 GeV/c.
To be confirmed with 2013 p-Pb data.

Average D meson in 0-7.5%, HF muon and electron R_{AA} in the 0-10% centrality class in Pb-Pb collisions

• R_{AA} is compatible for D mesons, HF electrons & muons in $p_T \le 8$ GeV/*c*, when taking into account decay kinematics (electrons & muons carry only a fraction of the p_T of the mother particle).

Azimuthal anisotropic flow in Pb-Pb collisions

•Non- isotropic emission w. r. t. the reaction plane can be a sign of path-length dependence of energy loss (high- p_T) and/or thermalization / collective motion (low p_T)

$$\frac{\mathrm{d}N}{\mathrm{d}\varphi} = \frac{N_0}{2\pi} \left(1 + 2v_1 \cos(\varphi - \Psi_1) + 2v_2 \cos[2(\varphi - \Psi_2)] + \ldots \right)$$

where

N – number of particles emitted in the collision φ - azimuthal angle ψ - reaction plane angle v_1 – direct flow v_2 - elliptic flow

Elliptic flow in Pb-Pb collisions @ 2.76 TeV

- Non-zero v₂ observed for HF electrons and D mesons.
- **\diamond** Consistency between D⁰, D⁺ & D^{*+} meson trends.
- v_2 of both D mesons HF electrons are reasonably described by some of the models.

Conclusions

- ALICE has measured D mesons, electrons and muons from HF decays in pp and Pb-Pb collisions @ \sqrt{s} = 7 TeV and 2.76 TeV, respectively.
- In pp collisions: D mesons, HF electrons and muons are well reproduced by pQCD models.
- In Pb-Pb collisions:

- Strong suppression for HF electrons, muons and D mesons in central Pb-Pb collisions relative to pp (R_{AA}).

- Charm mesons (D^0 , D^+ and D^{*+}) show a consistent (similar) trend.

- Indications of non-zero v_2 for D mesons (2 - 6 GeV/c) and HF electrons

(2 - 3 GeV/c) in semi-peripheral Pb-Pb collisions.

- Model predictions describe both the R_{AA} and v_2 for the D mesons and HF electrons reasonably well.

✤ In p-Pb:

- Will provide an important constraint of initial state effects of heavy quark production at LHC energies.

- Runs will take place in early 2013.

Thank you

Backup slides

$$\frac{\mathrm{d}\sigma^{D^{+}}}{\mathrm{d}p_{T}}\Big|_{y/<0.5} = \frac{1}{2} \frac{1}{\Delta y \Delta p_{T}} \frac{f_{\mathrm{prompt}}(p_{T}) \cdot N^{D^{\pm raw}}(p_{T})}{(Acc \times \varepsilon)_{\mathrm{prompt}}(p_{T}) \cdot \mathrm{BR} \cdot L_{\mathrm{int}}}$$

where

 $N^{D \pm raw}(p_{\tau}) \rightarrow$ measured inclusive raw yield obtained from invariant mass analysis in each p_{τ} interval (of width Δp_{τ}).

 $f_{prompt} \rightarrow prompt$ fraction of the raw yield

 $(Acc \times \varepsilon)_{prompt} \rightarrow acceptance \times efficiency of prompt mesons, where$

 $\epsilon \rightarrow$ accounts for vertex reco, track reco & selection & for D meson candidate selection with 2nd vertex and PID cuts

 $\Delta y (= 2y_{fid}) \rightarrow$ width of the fiducial rapidity coverage,

 $BR \rightarrow$ decay branching ratio

 $\frac{1}{2}$ \rightarrow accounts for the fact that measured yield include particle / antiparticle while σ are given for particles only

 $L_{\text{int}} = N_{\text{pp,MB}} / \sigma_{\text{pp,MB}} \rightarrow$ integrated luminosity, where $N_{\text{pp,MB}}$ and $\sigma_{\text{pp,MB}}$ are the number and cross section of the pp interaction passing the MB trigger condition.

Elliptic flow in Pb-Pb collisions

The elliptic flow is defined as:

$$\frac{\mathrm{d}N}{\mathrm{d}p_{\mathrm{T}}} = N \left[I + 2\sum_{n=1}^{\infty} v_n cc \right]$$

Background subtraction, e.g. for HF electrons

$$v_{2}^{\text{HFE}} = \frac{(I + R_{\text{SB}})v_{2}^{\text{incl}} - v_{2}^{\text{back}}}{R_{\text{SB}}}$$
 $v_{2}^{\text{back}} = \sum_{i} R_{i} v_{2}^{i}$

where

 v_2^{incl} : v_2 of inclusive lectrons v_2^{back} : v_2 of backgroundelectrons v_2^{HFE} : v_2 of HF electrons

 R_{SB} : signal to -backgroundratio v_2^i : electrons v_2 of source i R_i : contribution of source i