Search for the SM Higgs boson in the diboson decay modes with the ATLAS detector

G. Carrillo-Montoya on behalf of the ATLAS Collaboration

University of the Witwatersrand

- University of the Witwatersrand, G. Carrillo-Montoya

Kruger workshop 2012, WITS - CERN, December 4th 2012 1/33

590

The SM Higgs boson

Trigger and s/b discrimination \rightarrow not easy for **all** channels at hadron colliders. In the mass region below ~150 GeV:

- $\gamma\gamma$ (great resolution but large backgrounds)
- ZZ (Small backgrounds, but statistically limited)
- WW (good s/b, but virtually no resolution)
- $b\bar{b}$, $\tau\tau$ (reviewed by A. Farilla)

- University of the Witwatersrand, G. Carrillo-Montoya

 for a m_H of, let's say 125 GeV:

 \sqrt{s} [TeV]
 7
 8

 $\sigma_{pp \rightarrow H}$ [pb]
 17.5
 22.3

 σ_{ggF} [pb]
 15.3
 19.5

 σ_{VBF} [pb]
 1.2
 1.6

Kruger workshop 2012, WITS - CERN, December 4th 2012 2/33

A Toroidal LHC Apparatu**S** - 4π solid angle

- University of the Witwatersrand, G. Carrillo-Montoya

Kruger workshop 2012, WITS - CERN, December 4th 2012 3/33

Luminosity \rightarrow pileup interactions

- During 2012, the LHC provided us larger integrated luminosities, still with 50 ns bunch separation:
- More interactions per bunch crossing.
- Reconstruction of objects need even robuster methods → performance of physics analysis:
 - Sustain high identification efficiencies and resolution
 - Missing transverse energy under control

シック ビ イヨン イヨン イロン

$$\begin{array}{c} H \to \gamma \gamma \\ H \to ZZ^{(*)} \to \ell^+ \ell^- \ell^+ \ell^- \\ H \to W^+ W^- \to \ell^+ \nu \ell^- \bar{\nu} \end{array}$$

Content

- University of the Witwatersrand, G. Carrillo-Montoya

Kruger workshop 2012, WITS - CERN, December 4th 2012 6/33

Leading γ : $E_T = 62.2 \text{ GeV},$ $\eta = 0.39$

 $\sqrt{s} = 8$ TeV.

Subleading γ : $E_T = 55.5 \text{ GeV}$ $\eta = 1.18$

 $m_{\gamma\gamma}=$ 126.9 GeV.

Only reconstructed tracks with $P_T > 1$ GeV, hits in the pixel and SCT layers and TRT hits with a high threshold are shown.

5900

$$\begin{array}{c} H \to \gamma \gamma \\ H \to ZZ^{(*)} \to \ell^+ \ell^- \ell^+ \ell^- \\ H \to W^+ W^- \to \ell^+ \nu \ell^- \bar{\nu} \end{array}$$

Strategy

10 categories, as function of resolution, s/b, production mechanism:

 Converted/unconverted, η of selected photons, high/low transverse component of the system's trust (P_{τt}) and 2 jets

- University of the Witwatersrand, G. Carrillo-Montoya

Kruger workshop 2012, WITS - CERN, December 4th 2012 8/3

$$\begin{array}{c} H \to \gamma \gamma \\ H \to ZZ^{(*)} \to \ell^+ \ell^- \ell^+ \ell^- \\ H \to W^+ W^- \to \ell^+ \nu \ell^- \bar{\nu} \end{array}$$

Strategy

Large, falling distribution of backgrounds: yy:74%, y-jet:22%, jet-jet:3% and Drell-Yan:1%

\sqrt{s}	7 TeV		8 TeV		
$\sigma \times B(H \rightarrow \gamma \gamma)$ [fb]		39		50	FWHM
Category	ND	NS	ND	NS	[GeV]
Unconv. central, low p _{Tt}	2054	10.5	2945	14.2	3.4
Unconv. central, high pTt	97	1.5	173	2.5	3.2
Unconv. rest, low p _{Tt}	7129	21.6	12136	30.9	3.7
Unconv. rest, high pTt	444	2.8	785	5.2	3.6
Conv. central, low pTt	1493	6.7	2015	8.9	3.9
Conv. central, high pTt	77	1.0	113	1.6	3.5
Conv. rest, low p _{Tt}	8313	21.1	11099	26.9	4.5
Conv. rest, high pTt	501	2.7	706	4.5	3.9
Conv. transition	3591	9.5	5140	12.8	6.1
2-jet	89	2.2	139	3.0	3.7
All categories (inclusive)	23788	79.6	35251	110.5	3.9

Systematic uncertainties:

- Background modelling, object ID, pileup, energy scale, isolation, trigger, luminosity ...
- Theory uncertainties (at 125 GeV): Scale & PDF, underlying event simulation, P^H_T modelling

Documentation:

https://cdsweb.cern.ch/record/1460410/files/ATLAS-CONF-2012-091.pdf

Phys.Lett. B716 (2012) 1-29

- University of the Witwatersrand, G. Carrillo-Montoya

Kruger workshop 2012, WITS - CERN, December 4th 2012 9/33

 $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ^{(*)} \rightarrow \ell^+ \ell^- \ell^+ \ell^ H \rightarrow W^+ W^- \rightarrow \ell^+ \nu \ell^- \bar{\nu}$

Quantifying the excess, p_0 . (against background-only hypothesis)

- University of the Witwatersrand, G. Carrillo-Montoya

- University of the Witwatersrand, G. Carrillo-Montoya

CERN, December

$$\begin{array}{c} H \rightarrow ZZ^{(*)} \rightarrow \ell^+ \ell^- \ell^+ \ell^- \\ H \rightarrow W^+ W^- \rightarrow \ell^+ \nu \ell^- \bar{\nu} \end{array}$$

Content

- University of the Witwatersrand, G. Carrillo-Montoya

Kruger workshop 2012, WITS - CERN, December 4th 2012 12/33

4e candidate. $m_{4\ell} = 124.6 \text{ GeV}, m_{12} = 70.6 \text{ GeV}, m_{34} = 44.7 \text{ GeV}.$ $e_1: P_T = 24.9 \text{ GeV}, \eta = -0.33, \phi = 1.98$ $e_2: P_T = 53.9 \text{ GeV}, \eta = -0.40, \phi = 1.69$ $e_3: P_T = 61.9 \text{ GeV}, \eta = -0.12, \phi = 1.45$ $e_4: P_T = 17.8 \text{ GeV}, \eta = -0.51, \phi = 2.84$

 4μ candidate. $m_{4\ell} = 125.1 \text{ GeV}, m_{12} = 86.3 \text{ GeV}, m_{34} = 31.6 \text{ GeV}.$ $\mu_1: P_T = 36.1 \text{ GeV}, \eta = 1.29, \phi = 1.33$ $\mu_2: P_T = 47.5 \text{ GeV}, \eta = 0.69, \phi = -1.65$ $\mu_3: P_T = 26.4 \text{ GeV}, \eta = 0.47, \phi = -2.51$ $\mu_4: P_T = 71.7 \text{ GeV}, \eta = 1.85, \phi = 1.65$

 $H \rightarrow ZZ^{(*)} \rightarrow \ell^+ \ell$ $H \rightarrow W^+ W^- \rightarrow$

The golden channel - $H \rightarrow ZZ^{(*)} \rightarrow \ell^+ \ell^- \ell^+ \ell^-$

- 4-lepton (coming from Z decays: same-flavour, opposite charge)
 → very good resolution, high reconstruction and trigger efficiencies → mass
 peak can be reconstructed
- Almost background free: s/b between 0.9 (4e) and 1.6 4µ
- Very robust against systematic uncertainties
- Very small yield: signal cross section \times branching ratio ($Z \rightarrow \ell \ell \sim 3\%$).
- Low P_T objects needed to maximise signal acceptance

Kinematic requirements:

- University of the Witwatersrand, G. Carrillo-Montoya

Kruger workshop 2012, WITS - CERN, December 4th 2012 15/33

- Various control samples are used to measured contributions of reducible backgrounds $(Z+jets and t\bar{t})$, depending on the flavour of the sub-leading pair.
- 0 Irreducible background (**ZZ**), constraint by fit on the full $m_{4\ell}$ range. Cross checked by the single-resonant production peak.

Inverted do requirement for one of the two subleading leptons

- University of the Witwatersrand, G. Carrillo-Montoya

Kruger workshop 2012, WITS - CERN, December 4th

Final expected and observed yields

- University of the Witwatersrand, G. Carrillo-Montoya

Kruger workshop 2012, WITS - CERN, December 4th 2012 17/33

 $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ^{(*)} \rightarrow \ell^+ \ell^- \ell^+ \ell^ H \rightarrow W^+W^- \rightarrow \ell^+ \nu \ell^- \bar{\nu}$

Quantifying the excess, p_0

- Excess (*m_H*): 125 GeV
- Expected (local-significance): 2.7σ
- Observed (local-significance): 3.6σ

• $\hat{\mu} = 1.2 \pm 0.6$

- University of the Witwatersrand, G. Carrillo-Montoya

Kruger workshop 2012, WITS - CERN, December 4th 2012 18/33

 $\begin{array}{c} H \to ZZ^{(*)} \to \ell^+ \ell^- \ell^+ \ell^- \\ H \to W^+ W^- \to \ell^+ \nu \ell^- \bar{\nu} \end{array}$

Exploring large Higgs mass hypotheses

The 4 ℓ channel is also very sensitive at high m_H , no excess found: 95% CL limit on σ/σ_{SM} Events/10 GeV 05 25 05 06 ATLAS Observed CL. ATLAS Data ····· Expected CL. $H \rightarrow ZZ^{(^{*})} \rightarrow 4I$ Background ZZ^(*) ±1σ √s=7 TeV: Ldt =4.8 fb⁻¹ Background Z+jets, tt Signal (m =125 GeV) ±2σ √s=8 TeV: Ldt =5.8 fb⁻¹ 10 Signal (m⁻¹=190 GeV) 25 Signal (m =360 GeV) ///// Syst.Unc. 20 $H \rightarrow ZZ^{(*)} \rightarrow 4I$ $\sqrt{s} = 7 \text{ TeV}$: $\int Ldt = 4.8 \text{ fb}^{-1}$ 15 $\sqrt{s} = 8 \text{ TeV}: \int Ldt = 5.8 \text{ fb}^{-1}$ 10 10 200 600 800 200 400 400 *.* 110 300 500 600 m₄₁ [GeV] m_u [GeV]

Documentation:

https://cdsweb.cern.ch/record/1460411/files/ATLAS-CONF-2012-092.pdf

Phys.Lett. B716 (2012) 1-29

- University of the Witwatersrand, G. Carrillo-Montoya

Kruger workshop 2012, WITS - CERN, December 4th 2012 19/33

Other ZZ channels: $H \to ZZ \to \ell^+ \ell^- q \bar{q}$ and $H \to ZZ \to \ell^+ \ell^- \nu \bar{\nu}$: 4.7 fb⁻¹

ATLAS-CONF-2012-163

Phys.Lett. B 717 (2012) 70-88

Phys. Lett. B 717 (2012) 29-48

<ロト (同) (回) (回)

 The H → ZZ decay allows us to explore a very wide region using many different topologies

$$\begin{array}{c} H \to ZZ^{(*)} \to \ell^+ \ell^- \ell^+ \ell^- \\ H \to W^+ W^- \to \ell^+ \nu \ell^- \bar{\nu} \end{array}$$

Content

- University of the Witwatersrand, G. Carrillo-Montoya

イロト (日) (日) (日) (日) (日)

 $\sqrt{s} = 8 \text{ TeV}$ - $e\mu$ - Zero jet - $P_T^e = 33 \text{ GeV}$ and $P_T^\mu = 29 \text{ GeV}$, $E_T^{miss,rel} = 35 \text{ GeV}, m_T = 94 \text{ GeV}.$

シック ヨー・ヨ・・ヨ・ ・ 「日・ ・ ロ・

$$\begin{array}{c} H \to ZZ^{(*)} \to \ell^+ \ell^- \ell^+ \ell^- \\ H \to W^+ W^- \to \ell^+ \nu \ell^- \bar{\nu} \end{array}$$

$H \rightarrow W^+ W^- \rightarrow \ell^+ \nu \ell^- \bar{\nu}$ strategy

- Large backgrounds carrying large systematic uncertainties.
- *m_H* can't be reconstructed... Quite challenging

A complete set of data-driven methods to estimate nearly ALL backgrounds from data.

Results presented here: update with 13 fb $^{-1}$ of \sqrt{s} = 8 TeV data, for the opposite flavour, zero and one jet channels

$$\begin{array}{c} H \to ZZ^{(*)} \to \ell^+ \ell^- \ell^+ \ell^- \\ H \to W^+ W^- \to \ell^+ \nu \ell^- \bar{\nu} \end{array}$$

Control regions

- W+jets: "failed ID" requirement (important when subleading lepton is an electron).
- Z+jets ($\tau\tau$): large $\Delta\phi(\ell\ell)$ and $m_{\ell\ell}$ < 80 GeV.
- Top: *b*-jet veto survival probability, or with the presence of a *b*-jet in the one jet bin.
- WW: no Δφ(ℓℓ) requirement, and large m_{ℓℓ}.
 Contributions from W+jets and Top are subtracted appropriately from the control regions.

- University of the Witwatersrand, G. Carrillo-Montoya

 $\begin{array}{c} H \to ZZ^{(*)} \to \ell^+ \ell^- \ell^+ \ell^- \\ H \to W^+ W^- \to \ell^+ \nu \ell^- \bar{\nu} \end{array}$

- University of the Witwatersrand, G. Carrillo-Montoya

Kruger workshop 2012, WITS - CERN, December 4th 2012 25/33

 $\begin{array}{c} H \to ZZ^{(*)} \to \ell^+ \ell^- \ell^+ \ell^- \\ H \to W^+ W^- \to \ell^+ \nu \ell^- \bar{\nu} \end{array}$

Final expected and observed yields

	Signal	WW	$WZ/ZZ/W\gamma$	tī	Single top	Drell-Yan	W+jets	Tot Bkg	Obs.
H + 0 jet	45±9	242±32	26±4	16±2	11±2	4±3	34±17	334±28	423
H + 1 jet	18±6	40±22	10±2	37±13	13±7	2±1	11±6	114±18	141

- University of the Witwatersrand, G. Carrillo-Montoya

Kruger workshop 2012, WITS - CERN, December 4th 2012 26/33

At $m_H = 125$ GeV:

- Expected (local-significance): 1.9σ 0
- Observed (local-significance): 2.6σ
- $\hat{\mu} = 1.5 \pm 0.6$: $^{+0.35}_{-0.33}$ (stat) $^{+0.41}_{-0.27}$ (syst theory) $^{+0.28}_{-0.27}$ (syst exp) ± 0.05 (lumi)

Documentation:

https://cdsweb.cern.ch/record/1493601/files/ATLAS-CONF-2012-158.pdf Kruger workshop 2012, WITS - CERN, December

- University of the Witwatersrand, G. Carrillo-Montoya

Other WW channels:

 $H \rightarrow WW \rightarrow \ell \nu \ell \nu$ (BDT), $WH \rightarrow WWW$ and $H \rightarrow WW \rightarrow \ell \nu qq$ (4.7 fb⁻¹)

 In ATLAS, also MVA (WW dilepton analysis); other production mechanism (WH) and WW decays ℓνqq exploring the high mass region.

Outlook

The search of the SM Higgs boson in the diboson decay channels are presented, the observed excess is consistently present in all of them.

• The
$$H \to \gamma\gamma$$
 channel
using 4.8 fb⁻¹ of $\sqrt{s} = 7$ TeV + 5.9 fb⁻¹ of $\sqrt{s} = 8$ TeV data: 4.5 σ at 126.5 GeV.
• The $H \to ZZ^{(*)} \to \ell^+ \ell^- \ell^+ \ell^-$ channel

- using 4.8 fb⁻¹ of $\sqrt{s} = 7$ TeV + 5.8 fb⁻¹ of $\sqrt{s} = 8$ TeV data: 3.4 σ at 125 GeV.
- The $H \to W^+ W^- \to \ell^+ \nu \ell^- \bar{\nu}$ channel using 13.0 fb⁻¹ of $\sqrt{s} = 8$ TeV data: 2.6 σ at 125 GeV.

The discovery phase of the LHC is just starting, it simply is the beginning:

- A Higgs-like boson was discovered, now we have to characterise it The diboson decays are powerful tools to discriminate Spin/CP states and to measure Higgs couplings.
- Higgs searches will continue. With the current dataset, ATLAS, with the *WW* and *ZZ* modes, can explore larger Higgs masses, up \sim 1 TeV. This is as important as measuring the properties of the one found in the low mass.

イロト (日) (日) (日) (日) (日) (日)

Signal yields 4ℓ channel

	411		2e2u	2e2u/2u2e		4e	
	Low mass	High mass	Low mass	High mass	Low mass	High mass	
			$\overline{s} = 8 \text{ TeV}$		1		
Int. Luminosity	5.8 fb ⁻¹		5.8 fb ⁻¹		5.9 fb ⁻¹		
ZZ ^(*)	6.3±0.3	27.3±2.0	3.9±0.2	41.4±3.1	2.9±0.3	17.7±1.4	
$Z + jets$, and $t\bar{t}$	0.4±0.2	0.15±0.07	3.9±0.9	1.4±0.3	$2.9 {\pm} 0.8$	1.0±0.3	
Total Background	$6.7 {\pm} 0.3$	27.4±2.0	7.8 ±1.0	42.8±3.1	$5.8 {\pm} 0.8$	18.7±1.4	
Data	4	34	11	61	7	25	
$m_H = 125 \text{ GeV}$	1.4±0.2		1.7±0.2		0.8±0.1		
$m_H = 150 \text{ GeV}$	4.5±0.6		5.9±0.8		2.7±0.4		
$m_H = 190 \text{ GeV}$	8.2±1.0		12.5±1.7		5.3 ± 0.8		
$m_H = 400 \text{ GeV}$	$3.9{\pm}0.5$		6.6±0.9		2.9±0.4		
			$\overline{s} = 7 \text{ TeV}$	S. FRANK		a ki	
Int. Luminosity	4.8 fb ⁻¹		4.8 fb ⁻¹		4.9 fb ⁻¹		
ZZ ^(*)	4.6±0.2	18.6±1.3	2.4±0.2	28.0±2.1	1.4±0.1	10.5±0.8	
$Z + jets$, and $t\bar{t}$	0.2±0.1	0.07 ± 0.03	2.1 ± 0.5	0.7±0.2	2.3±0.6	0.8±0.2	
Total Background	4.8±0.2	18.6±1.3	4.5±0.5	28.7±2.0	$3.6 {\pm} 0.6$	11.3±0.9	
Data	8	25	5	28	4	18	
$m_H = 125 \text{ GeV}$	1.0±0.1		1.0±0.2		0.4±0.1		
$m_H = 150 \text{ GeV}$	3.0±0.4		3.4±0.5		1.4±0.2		
$m_H = 190 \text{ GeV}$	5.1±0.7		7.4±1.1		2.8±0.4		
$m_H = 400 \text{ GeV}$	2.3±0.3		3.8	3.8±0.6		1.6±0.3	

Low/High mass threshold at 160 GeV

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ >

Signal injection p0 plot, $H \rightarrow W^+W^- \rightarrow \ell^+ \nu \ell^- \bar{\nu}$

DQC