

Search for the Standard Model Higgs Boson in the H ${\rightarrow}bb$ and H ${\rightarrow}\tau\tau$ decay modes with the ATLAS detector

A. Farilla (INFN) On behalf of the ATLAS Collaboration Kruger 2012

$\textbf{H} \rightarrow \textbf{bb} ~ \textbf{and} ~ \textbf{H} \rightarrow \tau \tau ~ \textbf{in} ~ \textbf{ATLAS}$

- The Higgs particle has been observed for the first time at LHC (by the ATLAS and CMS experiments) through its decays into boson pairs (ZZ, γγ, WW)
- But what about the Higgs decays into fermions?

Phys. Lett. B 716 (2012)

This talk:

ATLAS results for 4.7 fb⁻¹ \sqrt{s} = 7 TeV (2011) & 13 fb⁻¹ \sqrt{s} = 8 TeV (2012)

- ★ ATLAS published results already available for 4.7 fb⁻¹ \sqrt{s} = 7 TeV (2011) :
- <u>http://arxiv.org/abs/1207.0210</u> (H \rightarrow bb)
- <u>http://link.springer.com/article/10.1007%2FJHEP09%282012%29070</u> ($H \rightarrow \tau \tau$)

Higgs decay to b-quark pair

- ☆The search for H → bb is performed in associated production with W/Z boson to clean the sample from the huge multijet background and have a clean signature for triggering
- The multijet background is reduced at the price of a lower event yield: the cross section of VH associated production is ~10 times smaller than the main Higgs production mode (gluon-gluon fusion)

- High branching ratio
- For m_H = 125 GeV BR(H \rightarrow bb) ~ 58%

Event Display

Higgs boson candidate with one selected muon

Search/Analysis Strategy

- Search for Higgs to b-pair in associated production with a Z or W[±] boson:
- Better background rejection, good signature for triggering
- The analysis is divided into three channels (based on lepton multiplicity):
- **Two (IIbb), one (Ivbb) or zero (vvbb) charged lepton (I=e or \mu)**
- Cuts common to all channels:
- **Two or three jets :** first jet $p_T > 45$ GeV, other jets $p_T > 20$ GeV
- □ Two b-tags: 70% efficiency per tag (mistag ~1%)

$\textbf{ZH} \rightarrow \textbf{IIbb}$

- Two leptons
- E_T^{miss} < 60 GeV</p>
- 83 < m_z < 99 GeV</p>
- Single & di-lepton trigger

$\textbf{WH} \rightarrow \textbf{Ivbb}$

- One lepton
- E_T^{miss} > 25 GeV
- $40 < m_T^W < 120 \text{ GeV}$
- Single lepton trigger

A. Farilla - Kruger 2012

 $\textbf{ZH} \rightarrow \nu\nu \textbf{bb}$

- No leptons
- E_T^{miss} >120 GeV

 W^{+}

E_T^{miss} trigger

Analysis Overview

- ✤ Signal over Background ratio increases with p_T^{bb}
- * To enhance the sensitivity, the analysis is categorised as a function of p_T^V
- ✤ 16 signal categories:
- 0-lepton: E_T^{miss} [120-160] [160-200] [>200] GeV (2 jets or 3 jets)
- 1 & 2 leptons: p_T^{W/Z} [0-50], [50-100], [100-150], [150-200], [>200] GeV
- Recent important improvements:
- Cuts are optimized for each category (~30% increase in sensitivity)
- Muon energy (p_T>4 GeV) added for b-jets (~10% increase in resolution)
- Additional ttbar based b-tagging calibration (~50% reduction in systematics)

Background and MC

Background and flavours fit

Events with 0,1 and 2 b-jets have different flavour contribution: this allows to fit the normalisation of the several components

- Flavour maximum likelihood fit to signal and control regions:
 - Determine V+jets (b/c/light) and top scale factors
 - One scale factor applied for each bkg
 - Scale factors are consistent for the 7 TeV and 8 TeV data samples (Z+c factor changes due to different MC treatment)

	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$
Z + c-jet	1.99 ± 0.51	0.71 ± 0.23
Z+ light jet	0.91 ± 0.12	0.98 ± 0.11
W + c-jet	1.04 ± 0.23	1.04 ± 0.24
W+ light jet	1.03 ± 0.08	1.01 ± 0.14

	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$
Тор	1.10 ± 0.14	1.29 ± 0.16
Z + b-jet	1.22 ± 0.20	1.11 ± 0.15
W + b-jet	1.19 ± 0.23	0.79 ± 0.20

- ✤ Almost all SF ~1 : the MC simulation is performing very well !
- Improved understanding of background in recent analysis:
 - Analyzing the 8 TeV data we discovered that the V p_T spectrum falls more rapidly in data than expected from MC
 - W + jets and Z + jets: 5-10% correction required
 - Top bkg: 15% correction required

Examples of m_{bb} distributions

- In this slide: three examples of final m_{bb} in specific bins of p_T^Z, p_T^W, E_t^{miss} (more plots in backup slides)
- Full m_{bb} distribution is used in the limit setting procedure

2 leptons (50 < p_T^z< 100 GeV)

1 lepton ($p_T^W > 200 \text{ GeV}$)

0 lepton (120 < E_T^{miss}< 160 GeV)

9

Diboson Production

- WZ & ZZ production with $Z \rightarrow bb$: *
 - Signature similar to VH with H \rightarrow bb but cross section 5 times larger

Perform a separate fit to search diboson events and to validate the analysis: **

- **Profile likelihood fit performed (with full systematics)**
- All backgrounds (except diboson) subtracted
- All lepton channels combined, no separation in p_T^V bins

* **Result in agreement with SM:**

- $\sigma/\sigma_{SM} = \mu_{D} = 1.09 \pm 0.20 \text{ (stat)} \pm 0.22 \text{ (sys)}$
- Significance = 4.0σ

Systematics Uncertainties

Main experimental uncertainties:

- Jets: components (7 JES, 1pTReco, resol.)
- E_T^{miss}-scale and resolution of soft components. Data/MC for E_T^{miss} trigger
- bTagging-light, c & 6 p_T bins for b-jet efficiency
- Lepton energy, resolution, efficiency
- Multijet / Diboson / Luminosity /MC stat

✤ Main theoretical uncertainties:

- W/Z+jet m_{bb} (20%) and V p_T (5-10%)
- Single top/top normalisation
- W+c/W+jets (30%), Z+c/z+jets (30%)
- Diboson (11%)
- BR(H → bb) @m_H=125 GeV

Background systematics

Uncertainty [%]	0 lepton	1 lepton	2 leptons
<i>b</i> -tagging	6.5	6.0	6.9
<i>c</i> -tagging	7.3	6.4	3.6
light tagging	2.1	2.2	2.8
Jet/Pile-up/ $E_{\rm T}^{\rm miss}$	20	7.0	5.4
Lepton	0.0	2.1	1.8
Top modelling	2.7	4.1	0.5
W modelling	1.8	5.4	0.0
Z modelling	2.8	0.1	4.7
Diboson	0.8	0.3	0.5
Multijet	0.6	2.6	0.0
Luminosity	3.6	3.6	3.6
Statistical	8.3	3.6	6.6
Total	25	15	14

Signal systematics

Uncertainty [%]	0 le	pton	1 lepton	2 leptons
	ZH	WH	WH	ZH
<i>b</i> -tagging	8.9	9.0	8.8	8.6
Jet/Pile-up/ $E_{\rm T}^{\rm miss}$	19	25	6.7	4.2
Lepton	0.0	0.0	2.1	1.8
$H \rightarrow bb \text{ BR}$	3.3	3.3	3.3	3.3
$VH p_T$ -dependence	5.3	8.1	7.6	5.0
VH theory PDF	3.5	3.5	3.5	3.5
VH theory scale	1.6	0.4	0.4	1.6
Statistical	4.9	18	4.1	2.6
Luminosity	3.6	3.6	3.6	3.6
Total	24	34	16	13

Results

Combined results (2011&2012):

- Use standard CLs profiling method
- Fit full m_{bb} distribution
- Observed (expected) limit at m_H = 125 GeV:
 - 1.8 (1.9) x SM prediction
- Observed (expected) p0 value: 0.64 (0.15)
- σ/σ_{SM} = μ = -0.4 ±0.7 (stat) ± 0.8 (syst)
- No significant excess observed

A. Farilla - Kruger 2012

Higgs decay to τ**-lepton pair**

- ✤ H →ττ is one of the leading decay modes for m_H = 125 GeV
- Very important to establish the couplings to the fermions
- Three Higgs production processes are considered in this search: ggF, VBF, VH
- VBF has the highest sensitivity thanks to its signature (2 high-p_T jets with high Δη_{ii} and high m_{ii})

Event display (VBF category)

 $\textbf{H} \rightarrow \tau_{\text{lep}} \, \tau_{\text{had}},$ with $\, \tau \rightarrow \mu \nu \nu$

Analysis Categories (8 TeV)

- Analysis divided into channels based on τ decays
- In each channel the search is optimized separately in a set of (mutually exclusive) analysis categories, which differ by number of jets (0,1 or 2 jets) and kinematic features

*Categories for 8 TeV data:

 $\begin{array}{ll} \bullet H \rightarrow \tau_{lep} \tau_{lep} & (BR ~12.4\%) & 2\text{-jets VBF}, \ Boosted, \ 2\text{-jet VH}, \ 1\text{-jet} \\ \bullet H \rightarrow \tau_{lep} \tau_{had} & (BR ~45.6\%) & 2\text{-jets VBF}, \ Boosted, \ 1\text{-jet}, \ 0\text{-jet} \\ \bullet H \rightarrow \tau_{had} \tau_{had} & (BR ~42\%) & 2\text{-jets VBF}, \ Boosted \\ \end{array}$

Quite similar categories for 7 TeV data (more details in the backup slides)

+In each channel and category the final discriminant (used for limit setting) is the invariant mass of the τ -pair $m_{\tau\tau}$

m_{ττ} reconstructed with the Missing Mass Calculator using measured momenta, E_T^{miss} and the simulated distribution of the opening angle between visible and missing
 Momenta
 A. Farilla - Kruger 2012
 15

Background estimation

Arbitrary Units

0.16

0.14

0.12

0.1

0.08

0.06

0.04 0.02

500

50

100

+ $\mu \tau_{had}$ Preselection

 $Z \rightarrow \tau \tau$ Embedded

 $Z \rightarrow \tau \tau$ Alpgen MC

 $L dt = 13.0 \text{ fb}^{-1}$

ATLAS Preliminary

200

MMC mass $m_{\tau\tau}$ [GeV]

250

150

 $\mu \tau_{had} H+1$ -jet

Data

Emb. syst.

s = 8 TeV

* The main background for all analysis categories is due to $Z \rightarrow \tau \tau$ process

*****Data driven estimation of $Z \rightarrow \tau \tau$:

• Use $Z \rightarrow \mu\mu$ data and replace the μ 's with τ 's from MC simulation (τ -embedded) All other objects (jets, underlying event, etc) are obtained from data Good agreement between data and MC

✤For VBF lep-had category the estimation of $Z \rightarrow \tau \tau$ is performed with high statistic MC samples with jet-selection cuts at generator level (VBF-filter), plus correction and normalization from data

Events / 10 GeV 10 x *H*(125)→ττ 400 $Z \rightarrow \tau \tau$ (OS-SS) Others (OS-SS) Same Sign Data *****Other background sources: 300 ///// Bkg. uncert. $L dt = 4.6 \text{ fb}^{-1}$ •Z (\rightarrow ee/µµ) + jets, Top, di-boson 200 $v_s = 7 \text{ TeV}$ ATLAS Preliminary (estimated from MC + corrections from data) 100 •Multijet and W+ jets (data driven estimation) 50 100 150 200 250 300 350 400 MMC mass $m_{\tau\tau}$ [GeV]

Results for VBF: $m_{\tau\tau}$

*VBF category has the highest sensitivity

*Limited statistics but good S/B ratio

In this slide: results for 8 TeV data (more plots in the backup slides)

Results for Boosted: $m_{\tau\tau}$

Solution States Sensitivity among non-VBF categories

In this slide: results for 8 TeV data (more plots in the backup slide)

Systematics uncertainties

*Main systematic uncertainties for $\textbf{Z}{\rightarrow}\,\tau\tau\,$ Background and the Signal

*Dominant systematic : Embedding, τ Energy Scale, Jet Energy Scale

Uncertainty	$H \rightarrow \tau_{\rm lep} \tau_{\rm lep}$	$H \rightarrow \tau_{\rm lep} \tau_{\rm had}$	$H \rightarrow \tau_{\rm had} \tau_{\rm had}$				
	$Z \to \tau^+ \tau^-$						
Embedding	1-4% (S)	2-4% (S)	1-4% (S)				
Tau Energy Scale	-	4-15% (S)	3-8% (S)				
Tau Identification	-	4-5%	1-2%				
Trigger Efficiency	2-4%	2-5%	2-4%				
Normalisation	4.7%	4% (non-VBF), 16% (VBF)	9-10%				
		Signal					
Jet Energy Scale	1.0-5.0% (S)	3-9% (S)	2-4% (S)				
Tau Energy Scale	-	2-9% (S)	4-6% (S)				
Tau Identification	-	4-5%	10%				
Theory	7.9-28%	18-23%	3-20%				
Trigger Efficiency	small	small	5%				

Uncertainties with (S) are also applied bin-by-bin (affect the shape of the final distribution)

Results

Combined results (2011&2012):

- Use standard CLs profiling method
- Fit full m_{ττ} distribution
- Observed (expected) limit at m_H = 125 GeV:
 - 1.9 (1.2) x SM prediction
- $\sigma/\sigma_{SM} = \mu = 0.7 \pm 0.7$
- No significant excess observed

0

100

110

120

140

150

m_µ [GeV]

130

Results

• Contour plot obtained introducing, in the likelihood function, signal strenght parameters $\mu_i = \sigma_i / \sigma_{i,SM}$ for each production mode ggF, VBF, VH (μ_{VBF} and μ_{VH} are combined since they both depend on the VVH coupling)

 Not enough sensitivity to probe SM Higgs against the background only prediction, but provides good constraint in VBF and ggF plane

Conclusions

> Updated ATLAS results on H \rightarrow bb and H $\rightarrow \tau \tau$ are now available for 4.7 fb⁻¹ at \sqrt{s} = 7 TeV (in 2011) and 13 fb⁻¹ at \sqrt{s} = 8 TeV (in 2012)

> For H \rightarrow bb @ m_H = 125 GeV: μ = -0.4 ±0.7 (stat) ± 0.8 (syst) Observed (expected) p0 value: 0.64 (0.15)

> For $H \to \tau \tau @m_{H} = 125 \text{ GeV}$: $\mu = 0.7 \pm 0.7$ Observed (expected) p0 value: 0.135 (0.047)

> No excess observed yet for $H \rightarrow bb$ and $H \rightarrow \tau \tau$

> Including the new data sample of ~10 fb⁻¹ at $\sqrt{s} = 8$ TeV collected by ATLAS in the last weeks could provide new insights into these two extremely interestings Higgs decays

Backup Slides

$H{\rightarrow}bb$: Expected and Observed events

_		0-le	pton, 2 je	et	0-le	pton, 3 je	et			1-leptor	l				2-leptor	1	
	Bin			$E_{ m T}^{ m miss}$	[GeV]					$p_{\rm T}^W$ [GeV]				$p_{\rm T}^{\rm Z}[{\rm GeV}]$]	
		120-160	160-200	>200	120-160	160-200	>200	0-50	50-100	100-150	150-200	> 200	0-50	50-100	100-150	150-200	>200
	ZH	2.9	2.1	2.6	0.8	0.8	1.1	0.3	0.4	0.1	0.0	0.0	4.7	6.8	4.0	1.5	1.4
	WH	0.8	0.4	0.4	0.2	0.2	0.2	10.6	12.9	7.5	3.6	3.6	0.0	0.0	0.0	0.0	0.0
	Тор	89	25	8	92	25	10	1435	2276	1120	147	43	230	310	84	3	0
И	V + c, l	30	10	5	9	3	2	576	585	209	36	17	0	0	0	0	0
I	W + b	35	13	13	8	3	2	774	778	288	77	64	0	0	0	0	0
Z	Z + c, l	35	14	14	8	5	8	17	17	4	1	0	201	231	91	12	15
	Z + b	144	51	43	41	22	16	50	63	13	5	1	1010	1182	469	75	51
D	iboson	23	11	10	4	4	3	53	59	23	13	7	37	39	16	6	4
N	Iultijet	3	1	1	1	1	0	893	522	68	14	3	12	3	0	0	0
To	tal Bkg.	361	127	98	164	63	42	3810	4310	1730	297	138	1500	1770	665	97	72
		± 29	± 11	± 12	± 13	± 8	± 5	± 150	± 86	± 90	± 27	± 14	± 90	±110	± 47	± 12	± 12
	Data	342	131	90	175	65	32	3821	4301	1697	297	132	1485	1773	657	100	69

$H \rightarrow bb$: Selection cuts

Object	0-lepton	1-lepton	2-lepton
Lantona	0 loose leptons	1 tight lepton	1 medium lepton
Leptons		+ 0 loose leptons	+ 1 loose lepton
	2 <i>b</i> -tags	2 b-tags	2 b-tags
Late	$p_{\rm T}^1 > 45 { m ~GeV}$	$p_{\rm T}^1 > 45 { m ~GeV}$	$p_{\rm T}^1 > 45 { m ~GeV}$
Jets	$p_{\rm T}^2 > 20 { m GeV}$	$p_{\rm T}^2 > 20 {\rm GeV}$	$p_{\rm T}^2 > 20 { m GeV}$
	$+ \leq 1$ extra jets	+ 0 extra jets	-
Missing F_	$E_{\rm T}^{\rm miss} > 120 { m ~GeV}$	-	$E_{\rm T}^{\rm miss}$ < 60 GeV
Witssing LT	$p_{\rm T}^{\rm miss} > 30 { m ~GeV}$		
	$\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, p_{\mathrm{T}}^{\mathrm{miss}}) < \pi/2$		
	$Min[\Delta \phi(E_{T}^{miss}, jet)] > 1.5$		
	$\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, b\bar{b}) > 2.8$		
Vector Boson	-	$m_{\rm T}^W < 120 { m ~GeV}$	$83 < m_{\ell\ell} < 99 \text{ GeV}$

B-tagging

- Algorithms to identify heavy flavour content in reconstructed jets
- Impact parameter of tracks in jet
 - IP3D uses track weights based on longitudinal and transverse IP significance
- Displaced secondary vertex
 - SV1 reconstructs inclusive displaced vertex
 - **JetFitter** reconstructs multiple vertices along implied b-hadron line of flight
 - Cascade decay topologies
- Advanced NN based algorithms
 - JetFitterCombNN: IP3D+JetFitter
 - MV1: IP3D+JetFitterCombNN+SV1

MC calibration results illustrated with MV1 @ 70% b-jet efficiency

С

$H \rightarrow bb$: Flavour Fit Results

$H \rightarrow bb:\,m_{bb}$ distribution for the six categories of zero lepton analysis

 $H \rightarrow bb: m_{bb}$ distribution for the five categories of one lepton analysis

$H \rightarrow bb: m_{bb}$ distribution for the five categories of 2 leptons analysis

 τ_{had} identification

Hadronic decays of τ leptons: one or three charged hadrons plus a neutrino and possibly neutral hadrons giving a collimated jet with few associated tracks

•The visible decay products are combined in τ_{had} candidates

•Jets for τ_{had} candidates are re-calibrated to account for the different calorimeter response to hadronic τ -decays w.r.t. hadronic jets

•Multivariate analysis based on Boosted Decision Tree (BDT) is performed to reject mis-identified τ_{had} jets (tracking and calorimeter information is used by BDT)

•Loose, medium and tight τ_{had} candidates are found with efficiencies of 60%, 50% and 30% respectively and jet mis-identification probability < 1%

•Selection of τ_{had} candidates: $|\eta| < 2.5$, $p_T > 20$ GeV, one or three associated tracks (with $p_T > 1$ GeV) within $\Delta R < 0.2$ around the τ_{had} direction and a total charge of ±1 computed from the associated tracks.

 $H \rightarrow \tau \tau : m_{\tau \tau}$ reconstruction with Missing Mass Calculator (MMC)

- MMC is a more sophisticated version of the collinear approximation
- Main improvement : require that the relative orientations of the v's and the other decay products are consistent with mass and kinematics of a τ decay

This is achieved by maximasing a probability defined in the kinematically allowed phase space region

•This results in very high reconstruction efficiency (>99%) and 13-20% resolution in $m_{\tau\tau}$, depending on event topology and final state

•Collinear approximation (used for lep-lep 7 TeV data with at least 1 jet) : for high $p_T \tau$'s we can assume that the v direction is along the visible decay products

•For lep-lep data at 7 TeV with 0-jets the effective mass $m_{\tau\tau}^{eff}$ (the invariant mass of the di-lepton and E_{τ}^{miss} system) is used since the performance of the collinear approximation is not optimal when the τ -decay products are back-to-back in the transverse plane

$H \to \tau \tau$: Event Selection for lep-had channel

7 Te	eV	8 TeV		
VBF Category	Boosted Category	VBF Category	Boosted Category	
$\triangleright p_{\rm T}^{\tau_{\rm had-vis}} > 30 {\rm ~GeV}$	-	$\triangleright p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}} > 30 \mathrm{GeV}$	$\triangleright p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}} > 30 \mathrm{GeV}$	
$\triangleright E_{\rm T}^{\rm miss} > 20 { m GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 { m GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 { m GeV}$	
$\triangleright \geq 2$ jets	$\triangleright p_{\mathrm{T}}^{\mathrm{H}} > 100 \mathrm{GeV}$	$\triangleright \geq 2$ jets	$\triangleright p_{\mathrm{T}}^{\mathrm{H}} > 100 \mathrm{GeV}$	
▷ $p_{\rm T} {}^{j1}, p_{\rm T} {}^{j2} > 40 \text{ GeV}$	$> 0 < x_1 < 1$	▷ $p_{\rm T}$ $^{j1} > 40, p_{\rm T}$ $^{j2} > 30 {\rm GeV}$	$> 0 < x_1 < 1$	
$\triangleright \Delta \eta_{jj} > 3.0$	▶ $0.2 < x_2 < 1.2$	$\triangleright \Delta \eta_{jj} > 3.0$	▶ 0.2 < <i>x</i> ₂ < 1.2	
$> m_{jj} > 500 \text{ GeV}$	▹ Fails VBF	$ ightarrow m_{jj} > 500 \text{ GeV}$	⊳ Fails VBF	
▷ centrality req.	-	▷ centrality req.	-	
$\triangleright \eta_{j1} \times \eta_{j2} < 0$	-	$\triangleright \eta_{j1} \times \eta_{j2} < 0$	-	
$\triangleright p_{\rm T}^{\rm Total} < 40 { m GeV}$	-	$\triangleright p_{\mathrm{T}}^{\mathrm{Total}} < 30 \mathrm{GeV}$	-	
-	-	$\triangleright p_{\mathrm{T}}^{\ell} > 26 \mathrm{GeV}$	-	
• <i>m</i> _T <50 GeV	• $m_{\rm T}$ <50 GeV	• $m_{\rm T} < 50 { m GeV}$	• <i>m</i> _T <50 GeV	
• $\Delta(\Delta R) < 0.8$	• $\Delta(\Delta R) < 0.8$	• $\Delta(\Delta R) < 0.8$	• $\Delta(\Delta R) < 0.8$	
• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 1.6$	• $\sum \Delta \phi < 2.8$	-	
_	-	 <i>b</i>-tagged jet veto 	 <i>b</i>-tagged jet veto 	
1 Jet Category	0 Jet Category	1 Jet Category	0 Jet Category	
▶ ≥ 1 jet, $p_{\rm T}$ >25 GeV	$\triangleright 0$ jets $p_{\rm T} > 25$ GeV	$\triangleright \ge 1$ jet, $p_{\rm T} > 30$ GeV	$\triangleright 0$ jets $p_{\rm T} > 30$ GeV	
$\triangleright E_{\rm T}^{\rm miss} > 20 { m GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 { m GeV}$	
▹ Fails VBF, Boosted	 Fails Boosted 	▹ Fails VBF, Boosted	▹ Fails Boosted	
• <i>m</i> _T <50 GeV	• <i>m</i> _T <30 GeV	• <i>m</i> _T <50 GeV	• <i>m</i> _T <30 GeV	
• $\Delta(\Delta R) < 0.6$	• $\Delta(\Delta R) < 0.5$	• $\Delta(\Delta R) < 0.6$	• $\Delta(\Delta R) < 0.5$	
• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 3.5$	
-	• $p_{\mathrm{T}}^{\ell} - p_{\mathrm{T}}^{\tau} < 0$	-	• $p_{\mathrm{T}}^{\ell} - p_{\mathrm{T}}^{\tau} < 0$	

_

$\textbf{H} \rightarrow \tau \tau$: Examples of Event Yield for $\tau_{\mu} \tau_{had} \textbf{channel}$

	Process	Events						
7 7 . \/		0-Jet	1-Jet					
/ Iev	$gg \rightarrow H (125 \text{ GeV})$	$4.6 \pm 0.2 \pm 1.1$	$6.4 \pm 0.2 \pm 1.2$					
	VBF <i>H</i> (125 GeV)	$0.04 \pm 0.00 \pm 0.01$	$1.35 \pm 0.03 \pm 0.09$					
	WH (125 GeV)	$0.03 \pm 0.01 \pm 0.00$	$0.40 \pm 0.03 \pm 0.03$					
	ZH (125 GeV)	$0.01 \pm 0.00 \pm 0.00$	$0.26 \pm 0.02 \pm 0.02$					
	$Z/\gamma^* \rightarrow \tau \tau$ embedded (OS-SS)	$(0.88 \pm 0.01 \pm 0.17) \times 10^3$	$(1.20 \pm 0.02 \pm 0.17) \times 10^3$					
	Diboson (OS-SS)	$2.3 \pm 0.3 \pm 0.4$	$9.1 \pm 1.2 \pm 0.8$					
	$Z/\gamma^* \rightarrow \ell\ell (\text{OS-SS})$	$10 \pm 3 \pm 2$	$13 \pm 3 \pm 4$					
	Top (OS-SS)	$0.5 \pm 0.2 \pm 0.1$	$92 \pm 3 \pm 14$					
	W boson + jets (OS-SS)	$65 \pm 11 \pm 6$	$(0.15 \pm 0.02 \pm 0.02) \times 10^3$					
	Same sign data	$60 \pm 8 \pm 3$	$(0.31 \pm 0.02 \pm 0.02)) \times 10^3$					
	Total background	$(1.01 \pm 0.02 \pm 0.17) \times 10^3$	$(1.78 \pm 0.03 \pm 0.18) \times 10^3$					
	Observed data	958	1701					

	Process	Eve	ents
		0-Jet	1-Jet
8 TeV	$gg \rightarrow H (125 \text{ GeV})$	$34.3 \pm 0.9 \pm 8.0$	$46 \pm 1 \pm 11$
	VBF H (125 GeV)	$0.47 \pm 0.06 \pm 0.04$	$8.5 \pm 0.3 \pm 0.6$
	WH (125 GeV)	$0.09 \pm 0.04 \pm 0.01$	$2.4 \pm 0.2 \pm 0.2$
	ZH (125 GeV)	$0.11 \pm 0.03 \pm 0.01$	$1.3 \pm 0.1 \pm 0.1$
	$Z/\gamma^* \to \tau \tau (\text{OS-SS})$	$(7.13 \pm 0.04 \pm 0.48) \times 10^3$	$(6.14 \pm 0.04 \pm 0.45) \times 10^3$
	Diboson (OS-SS)	$10.5 \pm 0.7 \pm 0.9$	$30 \pm 1 \pm 3$
	$Z/\gamma^* \to \ell\ell(\text{OS-SS})$	$(0.10 \pm 0.02 \pm 0.02) \times 10^3$	$(0.12 \pm 0.02 \pm 0.03) \times 10^3$
	Top (OS-SS)	$10.4 \pm 2.3 \pm 0.6$	$(1.03 \pm 0.03 \pm 0.05) \times 10^3$
	W boson + jets (OS-SS)	$(0.51 \pm 0.09 \pm 0.04) \times 10^3$	$(1.0 \pm 0.1 \pm 0.14) \times 10^3$
	Same sign data	$(1.03 \pm 0.03 \pm 0.07) \times 10^3$	$(3.27 \pm 0.06 \pm 0.24) \times 10^3$
	Total background	$(8.8 \pm 0.1 \pm 0.5) \times 10^3$	$(11.6 \pm 0.1 \pm 0.5) \times 10^3$
	Observed data	8300	11373

$H \to \tau \tau$: Event Selection for had-had channel

	· · · · · · · · · · · · · · · · · · ·
Cut	Description
Preselection	No muons or electrons in the event
	Exactly 2 medium τ_{had} candidates matched with the trigger objects
	At least 1 of the τ_{had} candidates identified as tight
	Both τ_{had} candidates are from the same primary vertex
	Leading $\tau_{had-vis}$ $p_T > 40$ GeV and sub-leading $\tau_{had-vis}$ $p_T > 25$ GeV, $ \eta < 2.5$
	τ_{had} candidates have opposite charge and 1- or 3-tracks
	$0.8 < \Delta R(\tau_1, \tau_2) < 2.8$
	$\Delta \eta(\tau, \tau) < 1.5$
	if $E_{\rm T}^{\rm miss}$ vector is not pointing in between the two taus, min $\left\{\Delta\phi(E_{\rm T}^{\rm miss},\tau_1),\Delta\phi(E_{\rm T}^{\rm miss},\tau_2)\right\} < 0.2\pi$
VBF	At least two tagging jets, j_1 , j_2 , leading tagging jet with $p_T > 50$ GeV
	$\eta_{j1} \times \eta_{j2} < 0, \ \Delta \eta_{jj} > 2.6$ and invariant mass $m_{jj} > 350$ GeV
	$\min(\eta_{j1}, \eta_{j2}) < \eta_{\tau 1}, \eta_{\tau 2} < \max(\eta_{j1}, \eta_{j2})$
	$E_{\rm T}^{\rm miss} > 20 { m GeV}$
Boosted	Fails VBF
	at least one tagging jet with $p_T > 70(50)$ GeV in the 8(7) TeV dataset
	$\Delta R(\tau_1, \tau_2) < 1.9$
	$E_{\rm T}^{\rm miss} > 20 {\rm GeV}$
	if $E_{\rm T}^{\rm miss}$ vector is not pointing in between the two taus, min $\left\{\Delta\phi(E_{\rm T}^{\rm miss},\tau_1),\Delta\phi(E_{\rm T}^{\rm miss},\tau_2)\right\} < 0.1\pi$.

- *****Backgroud estimation for $H \rightarrow \tau \tau$ (lep-lep channel):
- Top contribution estimated from MC and corrected using data in top-enriched Control Region (CR)
- Fake lepton contribution obtained from data with a template method using a CR in which lepton isolation requirement is reversed (template from p_T distribution of the sub-leading lepton)
- Diboson contribution estimated from MC and validated in a 3-lepton CR enriched with WZ events

*****Backgroud estimation for $H \rightarrow \tau \tau$ (had-had channel):

- •Data driven estimation of the dominant bck (Z $\rightarrow \tau \tau$ and multijet) both for normalisation and shape
- Two-dimensional template fit to track multiplicity distributions
- •Template modelled by the simulation for $Z \rightarrow \tau \tau$ and from same-sign (SS) data for multijet

*****Backgroud estimation for $H \rightarrow \tau \tau$ (lep-had channel):

•Bckg estimation (except VBF category) based on assumption that for multijet the shape of $m_{\tau\tau}$ in signal region is the same for opposite-sign (OS) and same-sign (SS) events after all kinematic cuts (except charge requirement)

The number of SS events and the shape of $m_{\tau\tau}$ derived from CR obtained by inverting the OS requirement

SS sample dominated by multijet but contain contribution from other bckg: for these bck OS-SS terms are required to cover any excess of OS components over SS components

W+jets bckg normalised to data using bckg-enriched CR

For VBF category W+jet and multijet bckg estimated using a Fake Factor F = N_{id} / N anti-id

 $H{\rightarrow}\,\tau\tau$: Results for VBF

*VBF category has the highest sensitivity

*Limited statistics but good S/B ratio

*In this slide: results for 7 TeV data

$H\!\rightarrow\!\tau\tau$: Results for Boosted

Solution States Sensitivity among non-VBF categories

♦In this slide: results for 7 TeV data

Jet energy resolution for samples with different values of $<\mu>$, the mean number of pile-up interactions per bunch crossing.

The improvement in the turn-on curve for simulated pp \rightarrow ZH $\rightarrow v\bar{v}bb$ (using Pythia and m_H = 120 <u>GeV</u>) using either the lowest unprescaled trigger chain in 2011 (L1 XE50 \rightarrow L2 xe55 noM \rightarrow xe60 verytight noMu) or in 2012 (L1 XE40 BGRP7 \rightarrow L2 xe45T \rightarrow xe80T tclcw loose) are shown.

The ATLAS detector components

INFN

 η coverage

Subdetector

http://atlas.ch

Required resolution

	-	Measurement	Trigger
Tracking	$\sigma_{p_T}/p_T=0.05\% p_T\oplus 1\%$	± 2.5	
EM calorimetry	$\sigma_E/E = 10\%/\sqrt{E} \oplus 0.7\%$	± 3.2	± 2.5
Hadronic calorimetry (jets)			
Barrel and Endcap	$\sigma_E/E=50\%/\sqrt{E}\oplus3\%$	± 3.2	± 3.2
Forward	$\sigma_E/E = 100\%/\sqrt{E} \oplus 10\%$	3.1 - 4.9	3.1 - 4.9
Muon spectrometer	$\sigma_{p_T}/p_T = 10\%$ at $p_T = 1$ TeV	± 2.7	± 2.4