Highlights from the Relativistic Heavy Ion Collider BROOKHAVEN NATIONAL LABORATORY

Sonia Kabana SUBATECH and University of Nantes, France

International Workshop on New Discoveries at the LHC, Kruger Park, South Africa, 3-7 Dec 2012

Outline

Introduction – physics goals and experimental set up

Results on: 1 Direct photons 2 Jet quenching 3 Open heavy flavour 4 Quarkonia 5 Dileptons 6 Beam Energy Scan and flow 7 Beam Energy Scan and search for the critical point

Conclusions Outlook

Introduction – physics goals and experimental set up

Heavy lon program at RHIC: Map out the QCD phase diagram

Study QCD matter under extreme conditions of densities and Temperatures with Cu+Cu, Au+Au and U+U (2012) collisions up to $\sqrt{s_NN}=200~GeV$

RHIC HI program:

- study sQGP properties at high energy up to 200 GeV
- scan the phase diagram with Beam Energy Scan

Beam Energy scan at RHIC

Talk of G. Odyniec, this conference

Beam Energy Scan (BES): $\sqrt{s_{NN}}$ =7.7, 11.5, 19.6, 27, 39 GeV Au+Au collisions, to

- Discover a possible critical point,
- Search the √s at which QGP signals switch off,
- Study the nature of the phase boundary

	BES I - STAR				
Year	√s _{NN} (GeV)	Events (10 ⁶)			
2010	39	130			
2011	27	70			
2011	19.6	36			
2010	11.5	12			
2010	7.7	5			
2012*	5	Test Run			

botech

3-7 Dec 2012 Sonia Kabana, RHIC Highlights, Kruger2012

Relativistic Heavy Ion Collider

at the Brookhaven Lab, Long Island, New York, USA

ubatech

RHIC has been exploring nuclear matter at extreme conditions over the last decade 2000-2011

4 experiments: STAR PHENIX BRAHMS PHOBOS

Colliding systems:

p↑+p↑, d+Au, Cu+Cu, Au+Au Cu+Au, U+U Energies A+A : $\sqrt{s_{NN}} = 62, 130, 200 \text{ GeV}$ and low energy scan 7.7, 11.5, 19.6, 22.4, 27, 39 GeV

STAR and PHENIX detectors at RHIC

PHENIX: two central arms cover midrapidity: Drift Chamber, multiwire proportional pad chamber, ring-imaging Cherenkov counter (RICH) and electr. Cal. and forward muon measurement.

Direct photons

Direct photons in p+p described by NLO

batech

Direct photon excess in min. bias Au+Au at 200 GeV over p+p at 200 GeV below pT ~2.5 GeV

Exponential spectrum in Au+Au - consistent with thermal below pT ~2.5 GeV with inverse slope 220 ± 20 MeV --> T (init) from hydrodynamic models : 300-600 MeV, depending on thermalization time

Critical d+Au check : No exponential excess in d+Au

Direct thermal photons firmly established for the first time !

BNL press release, 15 Feb 2010 : 'Perfect' Liquid Hot Enough to be Quark Soup

9

Direct photons in d+Au from PHENIX

PHENIX 1208.1234

 RdAu direct photons pT=1-16 GeV consistent with unity

- Standard cold-nuclear-matter effects describe the RdAu data at all pts

- RAuAu consistent with unity at high pt, while it shows large enhancement below pt=2 GeV compared to d+Au

 dAu data indicate that the RAuAu enhancement is due to a source other than the initial state nuclear effects.

Jet quenching

Jet quenching

R_{AA} of pi⁰ in Au+Au 200 GeV PHENIX compared to ALICE

Sakaguchi, PHENIX, QM2012

very similar

Fractional momentum loss from PHENIX arXiv:1208.2254

botech

RHIC BES: Energy dependence of dpt/pt from PHENIX

dpt/pt decreases significantly from 200 GeV to 62.4 and 39 GeV

ubatech

3-7 Dec 2012

At what collision energy does jet quenching dissapear ?

STAR Coll., QM2012

Dissappearance of R_{cp} suppression at lower energies below 39 GeV

3-7 Dec 2012 Sonia Kabana, RHIC Highlights, Kruger2012

Open Charm and Beauty

D^0 and $D^* p_T$ spectra in p+p 200 GeV

botech

Is there a mass dependence of jet quenching ?

 R_{AA} suppression at high p_T with new Non Photonic Electron (NPE) measurement of STAR is consistent with R_{AA} (pion)

Comparison of R_{AA} NPE to models

High $p_T R_{AA}$ disfavours radiative energy loss as the only mechanism All other ploted energy loss mechanisms agree with data at high p_T

-> more measurements are needed to differentiate the scenaria eg beauty/charm separation, simultaneous prediction of R_{AA} and v_2 , collision, p_T and centrality dependence

R_{AA} of D^0 in Au+Au at 200 GeV

Suppression of R_{AA} in central Au+Au collisions at high $p_T \sim 2-6$ GeV/c, consistent with pions R_{AA}

Deviation of D⁰ RAA from Blast Wave fit prediction from pions, kaons and protons indicates that D mesons may freeze out earlier than light hadrons

STAR Coll., Utrecht 2012

Open Heavy Flavour in PHENIX

- First direct c/b decomposition in p+p 200 GeV using the new vertex detector
- New direct measurement of beauty fraction agrees with FONLL (M Rosati, R Nouicer QM2012)

First RAA for charm and beauty measured in MinBias Au+Au from PHENIX

3-7 Dec 2012 Sonia Kabana, RHIC Highlights, Kruger2012

R_{AA}(b) in central Au+Au at 200 GeV

 $R_{AA}(D^0)$ of ~ 0.3+-0.1 in 0-10% central Au+Au collisions at p_T ~6 GeV/c and the 90% CL R_{AA} (b->e) vs $R_{AA}(c->e)$ correlation in 0-5% Au+Au and $p_T>5$ GeV suggest:

R_{AA}(b->e) < 0.4

in central Au+Au at $p_T \sim 6$ GeV/c (90% CL).

Consistent with PHENIX R_{AA} (b->e) < 0.4 at 90% CL in p_T ~4.5 GeV/c, in min. bias Au+Au 200 GeV (M Rosati, PHENIX Coll., QM2012).

 \rightarrow Heavy Flavour Tracker upgrade of STAR (2014) for precise R_{AA}(b)

RHIC vs LHC: Quenching of open charm

Ч

1.8

1.6

1.4

The RAA of Charm and Beauty are both suppressed at RHIC and LHC.

Pb-Pb, \ s_NN = 2.76 TeV

Average D⁰, D⁺, D⁺, |y|<0.5, 0-7.5%

with pp p,-extrapolated reference

* The RAA of D0 at RHIC (STAR) is suppressed after pT=3 GeV, and is similar to the RAA of charged hadrons at pT~6 GeV.

* The RAA of D0 at LHC (ALICE) is suppressed and is similar to the RAA of charged hadrons at high pT.

Beauty suppression :at the LHC

b-quark suppression in Pb+Pb

ubatech

Does charm exhibit flow at RHIC? v₂ from charm in Au+Au at 200 GeV

* Large v_2 of Non-Photonic-Electrons in 0-60% centrality Au+Au at 200 GeV

* Large v₂ of D⁰ in 0-80% centrality Au+Au at 200 GeV

Conclusions 1st part

Direct gammas in d+Au 200 GeV consistent with Cold Nuclear Matter effects -> confirms results for T(init) Au+Au > Tc

RAA pi0 (5-20 GeV) agrees with LHC, while fractional energy loss shows collision energy dependence (RHIC+BES, LHC)

Jet quenching dissappears at energies $\leq \sqrt{s}=27$ GeV

 $R_{AA}(D^0)$ and $R_{AA}(b,c->e)$ suppression, similar to $R_{AA}(pion)$: no mass dependence observed

First RAA(b->e) measurement at RHIC (PHENIX) in min. bias Au +Au beauty is more suppressed than charm.

Charm exhibits large v₂

Quarkonia

Quarkonia

Ch. Powel, STAR Coll., talk in this conference.

state	$J/\psi(1S)$	$\chi_c(1P)$	$\psi'(2S)$	$\Upsilon(1S)$	$\chi_b(1P)$	$\Upsilon(2S)$	$\chi_b(2P)$	$\Upsilon(3S)$
T_d/T_c	2.10	1.16	1.12	> 4.0	1.76	1.60	1.19	1.17

Quarkonia: Thermometer of QGP through hierarchy of T(dissociation)

Many effects can play a role, like color screening, cold nuclear matter absorption, recombination from c and cbar, feeding

Hidden charm

First measurement of Psi prime in d+Au from PHENIX

Psi prime is strongly suppressed in d+Au

Jootech

J/Psi in Cu+Au 200 GeV from PHENIX

J/Psi in Cu+Au is more suppressed in the Cu going direction as compared to Au going direction

J/Psi suppression in Au-going direction is the same as Au+Au

Cu-going direction shows stronger suppression than in Au+Au

J/Ψ in d+Au collisions at 200 GeV from STAR

Absorption cross section estimated : Ch. Powell, STAR Coll., this conference $\sigma_{abs} = 2.8 + 3.5 + 4.0 + 4.0 + 4.0 + 1.1 + 1.8 + 1.1 + 1.8 + 1.1 +$

STAR and PHENIX results are consistent with eachother

$J/\Psi p_T$ distribution in Au+Au collisions at 200 GeV

STAR, arXiv:1208.2736

STAR preliminary

J/ Ψ R_{AA} in Au+Au collisions at 200 GeV

J/Ψ R_{AA} in Au+Au collisions at 200 GeV

Ch Powell, STAR Coll., this conference

- J/Ψ suppression increases with collision centrality
- J/ Ψ suppression decreases with increasing p_T at all centralities
- At low p_T data agree with two models including color screening and regeneration effects
- At high p_T Liu et al model describes the data reasonably well

STAR: Arxiv:1208.2736, Arxiv:1111.6944v2 PHENIX: Phs.Rev.Lett.98:232301,2007 Zhao, Rapp: Phys. Rev. C 82, 064905 (2010) Liu et. al: Phys. Lett B. 678, 72 (2009).

Does the J/Ψ exhibit elliptic flow in Au+Au collisions at 200 GeV ?

STAR Coll., QM2012

J/ Ψ v₂ consistent with zero for p_T>2 GeV

Disfavours J/Ψ production dominantly through coalescence from thermalized charm, anticharm quarks.

Best fit is for :

- Initially produced J/Ψ (1)
- Coalescence + initial J/Ψ (mix) (5),(6)

Hidden beauty

Y in p+p 200 GeV vs world data

STAR's Y+Y'+Y"->e+e- cross section in p+p collisions at 200 GeV consistent with world data trend and pQCD

Y suppression in A+A collisions discovered at RHIC (STAR) and LHC

First results from 2011

* Suppression of Y(2S+3S) with respect to Y(1S)

Y in Au+Au at 200 GeV

Ch. Powel, STAR Coll., talk in this conference.

M. Strickland, PRL 107, 132301 (2011).

Y more clean probe than ccbar's :

- Y recombination can be neglected at RHIC
- * Final state comover absorbtion small

* STAR observes a significant suppression of Y(1S+2S+3S) in central Au+Au at 200 GeV.

The data are consistent with a model requiring strong Y(2S) and complete Y(3S) suppression

In agreement with LHC results on Y(2S)+Y(3S)/Y(1S) suppression in Au+Au

Joatech 3-7 Dec 2012

Temperature estimate from Y

M. Strickland, PRL 107, 132301 (2011).

STAR Coll., Utrecht 2012

botech

Conclusions part 2

First measurement of Psi': strongly suppressed in d+Au 200 GeV.

J/Ψ measurement in d+Au -> allows CNM effect estimate

 R_{AA} of J/ Ψ suppressed in central Au+Au collisions and in Cu+Au 200 GeV. The J/ Ψ suppression in Au+Au increases with centrality, and decreases with increasing pT at all centralities.

J/ Ψ v₂ is zero above p_T> 2 GeV/c -> regeneration not dominant

Y+Y'+Y" measured in p+p and d+Au in agreement with worlds data trend and pQCD

Y+Y'+Y" suppressed in central Au+Au, consistent with complete Y" suppression, strong Y' suppression and Y surviving -> in agreement with sequentiel dissociation of quarkonia and the LHC.

-> T(init) ~ 428-442 MeV ~ 2.7 Tc and 3 > 4π η/S > 1

Dileptons

Dielectron invariant mass vs collision

energy STAR Coll., QM2012

Enhancement in Low Mass Range (LMR) observed from 200 GeV down to 19.6 GeV

Model assuming In-medium broadening of p reproduce the LMR excess at 19.6-200 **GeV**

Beam Energy Scan

Flow and Beam Energy Scan

 v_1 = directed flow, v_2 = elliptic flow, v_3 = triangular flow, ...

Initial anisotropy in position space becomes final anisotropy in momentum space

Antiparticles v₂ vs. m_T-m₀

For antiparticles the baryon–meson splitting is almost gone within errors at 11.5 GeV.

G Odyniec, this conference

batech

* Universal trend for most of particles and the corresponding anti-particles * ϕ meson v₂ deviates from other particles ~ 2 σ at the highest p_T data in 7.7 and 11.5 GeV collisions

Hadronic interactions are more important at lower energies More data for 7.7 and 11.5 GeV are needed

v₂: difference of particles and anti-particles

STAR Coll. QM2012

- ➢ Beam energy ≥ 39 GeV
- Δv₂ for baryon and anti-baryon within 10%
- Almost no difference for mesons
- Beam energy < 39 GeV</p>
- The difference of baryon and anti-baryon v_2

Increasing with decrease of beam energy

- v₂(K⁺)>v₂(K⁻) at 7.7-19.6 GeV
- $v_2(\pi) > v_2(\pi)$ at 7.7-19.6 GeV

NCQ scaling is broken between particles and anti-particles at low energies

Flow harmonics n=1-5 in 0-10% Au+Au at 200 GeV vs p_T and shear viscosity estimates

- Model curves for n=1 are from Retinskaya, Luzum & Ollitrault, PRL 108, 252302 (2012) (η/s=0.16); higher n curves are from Gardim et al., arXiv:1203.2882 (ideal hydro) and for n=2 and n=3 with η/s= 0.16 are from B. Schenke et al., PRL 106, 042301 (2011).
- The models do a good job describing the general features of the data. These comparisons suggest that low or zero viscosity is favored.

* Non-monotonic behaviour of v1 slope of net protons (p-antip) observed as a function of collision energy

* UrQMD and AMPT models do not describe the data on net-protons

ubatech

Search for the critical point

Higher moments of net-protons

STAR Coll. QM2012

Joatech

$$\sigma^{2} = \langle (N - \langle N \rangle)^{2} \rangle$$

$$S = \langle (N - \langle N \rangle)^{3} \rangle / \sigma^{3}$$

$$\kappa = \langle (N - \langle N \rangle)^{4} \rangle / \sigma^{4} - 3$$

Higher moments are sensitive to critical point induced fluctuations

Deviation from Poisson baseline in 0-5% Au+Au collisions (red points) at $\sqrt{s} > 7.7$ GeV

UrQMD shows monotonic behaviour

-> More data needed at low energies

Conclusions part 3

Dileptons: deviations in Low Mass Range observed at several energies can be explained as due to rho mass broadening.

Flow harmonics up to n=5 provide constraints on initial conditions and transport coefficients

Observed « turn off » of several sQGP signatures e.g. : baryon-meson splitting for antiparticles, v_2 (part-antipart), jet quenching - RCP suppression

Search for sign of a 1st order phase transition: v_1 slope changes with energy. More theoretical input is needed to understand these data.

Search for a possible critical point:, deviations observed in higher moments of net-protons need more data to be explored

Conclusions

STAR and PHENIX at RHIC entered a new era of high statistics precision measurements thanks to major recent upgrades.

At top energy, above Tc, STAR and PHENIX have measured signatures and characteristics of sQGP, among which J/ Ψ suppression and the <u>discovery of Y</u> <u>suppression in Au+Au</u> collisions at RHIC, consistent with <u>sequential</u> <u>suppression of quarkonia (J/ Ψ , Y', Y")</u>

In the low Beam Energy Scan towards and below Tc, STAR and PHENIX observed several key signatures of sQGP dissapear at low \sqrt{s} .

Outlook

Near future (2014-2018) upgrades (run of 2014) will allow high precision quarkonia, open heavy flavour and dilepton measurements in STAR.

BES II (2016-2019): electron cooling for Lumi x 10 (Au+Au: 7.7, 11.5, 15, 19.6 and U+U 20 GeV) and fixed target program

pA/eA (2017-)

Outlook

Outlook

Short term upgrades of STAR which are underway:

Heavy Flavour Tracker: Open Heavy Flavour precision studies, (eg D reconstruction at low and high p_T)

Muon Detector (MTD): B -> J/ Ψ -> $\mu\mu$, Y/Y'/Y" separation, QGP thermal dilepton radiation, understand background via e- μ correlations