

Z' Boson Decay to Di-Muon Final States

Name: Catherine Hsu (University of the Witwatersrand) Supervisor: Dr Oana Boeriu

The Standard Model

- Building blocks of matter: Leptons, quarks
- Force mediators: gauge bosons

The symmetry group of the Standard Model is:

 $SU(3)_{C} \times SU(2)_{L} \times U(1)_{Y}$

- Strong force mediated by gluons
- Weak force mediated by W⁺, W⁻,
 Z⁰ boson
- Electromagnetic force mediated by photons

Theories Beyond the SM (BSM)

The short-comings of the SM leads to theories beyond the SM.

The Z' boson is a hypothetical particle beyond the SM that has been predicted by many theories.

Its existence could:

- Explain further how forces are related to one another
- Contribute to the search for extra dimensions
- Give insight into the mystery of dark matter

The LHC

- Ring circumference: 27 km
- Built about 100 m underground in Geneva

LHC consists of a few smaller accelerating structures:

- LINAC 2 \rightarrow 50 MeV
- PSB \rightarrow 1.4 GeV
- PS \rightarrow 26 GeV
- SPS \rightarrow 450 GeV
- LHC ring -> 4 TeV

The ATLAS Detector

- ATLAS: one of the four major detectors
- Tracking chamber detects charged particles
- EM calorimeters measure electron and photon energy
- Hadronic calorimeters measure energy of hadrons
- Muon spectrometer slows down muons, and detect them as tracks

- Samples :
 - Data from 8 TeV muon stream was used

Monte Carlo signals were generated with PYTHIA for masses at 1 TeV and 1.5 TeV.

Background generated with ALPGEN.

Background process: Drell-Yan process + 2 jets

- Truth Level and Detector Level invariant mass were considered
- MC signals: Truth Level and Detector Level plots
- Data: Detector Level plots
- Histograms generated with ROOT

- Truth Level: Z' boson's invariant mass reconstructed if muons originate from same parent particle.
- Detector Level:

Object reconstruction and pre-selection

- Primary vertex requirements: at least one vertex with at least two tracks.
- Isolate objects to identify muons, electrons, jets:
 - ΔR > 0.2 for lepton-lepton
 - $> \Delta R > 0.5$ for lepton-jet
- Muons: |η| < 2.5, P_T > 20GeV
- Electrons: |η| < 2.47, 1.37 < |η| <1.52 ("crack" region), P_T > 20GeV
- Jets: |η| < 4.0, P_T > 20GeV

Analysis Selection

- Muon cuts:
 - Need at least 2 good muons
 - > 1 TeV: P_T > 300GeV
 - 1.5 TeV: P_T > 500GeV
- $S_T = \sum p_{T\mu 1} + p_{T\mu 2}$
- S_T > 300 GeV

Reduced the background

 Invariant mass was calculated from the relativistic energymomentum equation:

$$m = (E^2 - P^2)^{1/2}$$
, c=1

Where
$$P=p_x + p_y + p_z$$

and $p_x = P_T \cos(\Phi)$
 $p_y = P_T \sin(\Phi)$
 $p_z = P_T \sin(\eta)$

 Required muon information: pseudorapidity (|η|), scattering angle phi (Φ) and transverse momentum (P_T).

>

η, Φ, P_T Plots

Detector Level

Invariant Mass Plots

Thank You!