Latest results on the search for

Fabrizio Palla (INFN Pisa) on behalf of the CMS Collaboration INTERNATIONAL WORKSHOP ON DISCOVERY PHYSICS AT THE LHC KRUGER 2012 DECEMBER 3 - 7, 2012

Motivations

In SM $B_{s/d}^{0} \rightarrow \mu \mu$ and $D^{0} \rightarrow \mu \mu$ have highly suppressed rates:

- 1. forbidden at tree level and can only proceed through higher-order loop diagrams
- **2.** helicity suppressed by factors of $(m_{\mu}/m_{B/D})^2$
- **3.** require an internal quark annihilation within the B (D) meson
- 4. Long-distance effects sizable in D⁰

Decay channel	BR SM predictions*		
$B_s \rightarrow \mu^+ \mu^-$	(3.2 ± 0.2) × 10 ⁻⁹		
$B^0 \rightarrow \mu^+ \mu^-$	$(1.0 \pm 0.1) \times 10^{-10}$		
$D^0 \to \mu^+ \mu^-$	~10^{−18} − 10 ^{−13}		

*Buras arXiv:1009.1303. Burdnam et al, Phys. Rev. D66:014009, 2002

Physics Beyond SM

- BR(B_(s,d)/D⁰→µµ) are potentially sensitive probes for Physics Beyond SM:
 - Sensitivity to extended Higgs boson sectors
 - 2HDM: BR(B_{s/d} \rightarrow µµ) \propto tan⁴ β and m(H⁺)
 - ➡ J. R. Ellis et al, JHEP 05 (2006) 063
 - MSSM: BR($B_{s/d} \rightarrow \mu \mu$) $\propto \tan^6 \beta$
 - ➡ J.Parry, Nucl. Phys. B 760 (2007) 38
 - Leptoquarks
 - S. Davidson and S. Descotes-Genon, JHEP 11 (2010) 073
- Any difference in branching ratio from the SM will be evidence of new Physics
 - LHC experiments are close to reaching the SM predictions. LHCb reported an evidence at 3.5 σ consistent with the SM prediction (see E. Grauges talk this morning)
 - An observation could come with the 2012 LHC run.

F. Palla - INFN Pisa

Latest Results on D⁰, B_{s/d} →µµ from CMS - KRUGER 2012, DECEMBER 3 - 7, 2012

Muon reconstruction

- Tracks: Excellent p_T resolution ≈ 1%
 - Tracking efficiency > 99% for central muons
 - Excellent vertex reconstruction and impact parameter resolution (≈ 15 µm)
- Muon candidates:
 - Match between muon segments and a silicon track
 - Large pseudorapidity coverage: |η| < 2.4
- Muon identification and trigger efficiencies evaluated with
 - MC methods
 - Data-driven methods: Tag & Probe
- Muon misidentification rates measured in data using
 - $D^* \rightarrow D^0 \pi$, $D^0 \rightarrow K\pi$
 - Λ→ pπ
 - Misid π/K→μ (0.10 ± 0.02)%
 - Misid p→µ (0.05 ± 0.01)%

Latest Results on D⁰, $B_{s/d} \rightarrow \mu \mu$ from CMS - KRUGER 2012, DECE

 p_T threshold for the low- p_T muon trigger had to be steadily increased with the increased instantaneous luminosity

- Single μ: p_T threshold went from p_T>3 GeV (2010 run), to more than 19 GeV (2012 run)
- Dimuon:p_T threshold stayed at p_T>3 GeV thanks to further kinematic cuts on the dimuon vertex and invariant mass

The rare Beauty decays JHEP 04 (2012) 033

©Scott Ramsay www.yearinthewild.com

- Cut analysis with blinding of signal region on 5 fb⁻¹ data at \sqrt{s} =7 TeV in 2011
- Backgrounds estimated from the sidebands and from MC
 - <u>Normalization sample</u> $B^{\pm} \rightarrow J/\psi K^{\pm} \rightarrow (\mu^{+}\mu^{-}) K^{\pm}$ to:
 - avoid uncertainties in the b production cross section
 - eliminate the need for luminosity measurement
 - mitigate the effects of uncertainties in efficiencies

$$Br(B_s^0 \to \mu^+ \mu^-) = \frac{N_s}{N_{obs}^{B^+}} \frac{f_u}{f_s} \frac{\varepsilon_{tot}^{B^+}}{\varepsilon_{tot}} Br(B^+)$$

 $f_s / f_u = 0.267 \pm 0.021$ [LHCb arxiv:1111.2357] Br(B⁺) from the PDG

Region definitions	Invariant mass (GeV)
overall window	4.90 < m _{µ1µ2} < 5.90
blinding window	5.20 < m _{µ1µ2} < 5.45
B⁰ → µ⁺µ⁻ window	5.20 < m _{µ1µ2} < 5.30
B _s → μ⁺μ⁻ window	5.30 < m _{µ1µ2} < 5.45

Ontrol sample B_s → J/ψφ→(μ⁺μ⁻)(K⁺K⁻) to compare and validate B_s mesons in data and MC simulations

Divide the sample in two groups:

- both muons in the barrel ($|\eta| < 1.4$) better sensitivity, B_s mass resolution ≈ 40 MeV
- ► $\geq 1 \mu$ in the endcap There events but B_s mass resolution $\approx 60 \text{ MeV}$

Signal selection: most discriminating variables

F. Palla - INFN Pisa

Latest Results on D⁰, B_{s/d} →µµ from CMS - KRUGER 2012, DECEMBER 3 - 7, 2012

Isolation

Isolation cone around the Primary vertex:

$$I = \frac{p_{T}(B)}{p_{T}(B) + \sum_{\Delta R < 0.7, p_{T} > 0.9 GeV} p_{T}}$$

- Include all tracks within cone of ΔR=0.7 with p_T>0.9 GeV from the same PV or (if not associated to any PV) d_{ca}<500 µm from B vertex.</p>
- **Given State and State and**

Isolation on the Secondary vertex:

- **Distance of the closest track to SV (d⁰ca)>150µm**
- **W** Number of close tracks in $d_{ca} < 300 \mu m$ and $p_T > 0.5 GeV$

Data - Simulation comparison

- Needed to validate signal (through the control sample) and normalization samples
- Differences data MC taken as systematics uncertainties:
 - ightarrow On B[±] → J/ψK[±], max diff = 2.5% (isolation) tot = 4%
 - P On B_s \rightarrow J/ $\psi \phi$, max diff = 1.6% (secondary vertex $\chi^{2/n}$ dof) tot = 3%

Excellent MC – data comparison

F. Palla - INFN Pisa

Latest Results on D⁰, $B_{s/d} \rightarrow \mu \mu$ from CMS - KRUGER 2012, DECEMBER 3 - 7, 2012

Pile-up

- In 2011: <N_{PV}> = 8, RMS(z) = 5.6 cm
- Selections have been tuned to be pile-up independents
 - e.g. isolation searches only for tracks coming from the same primary vertex or not associated with any

- Efficiencies of all selection criteria have been evaluated versus the number of reconstructed primary vertices
- All selections are compatible with a constant efficiency up to at least 30 PV

Normalization sample $B^{\pm} \rightarrow J/\psi K^{\pm}$

Control sample $B_s \rightarrow J/\psi \phi$

F. Palla - INFN Pisa

Latest Results on D⁰, $B_{s/d} \rightarrow \mu \mu$ from CMS - KRUGER 2012, DECEMBER 3 - 7, 2012

Acceptance

- mixture of production processes (gluon fusion, flavor excitation and gluon) splitting)
 - bb pairs $\Delta R < 0.8$ and $\Delta R > 2.4$ in data and MC half of the difference
 - Also studied variables sensitive to mixture, but r e MC mixture is questionable
 - muon vs B candidate: $\Delta R(B, \mu), p_T(\mu)$
- **Selection efficiency**
 - from data/MC comparisons
- Muon trigger and efficiency
 - ♦ full variation, for thresholds 4 < p_T < 8 GeV</p>
 - efficiency difference between data and MC
- Rare backgrounds
 - uncertainties from production cross-section (for B_s and Λ_b), BR and muon mis-id.
 - 20% error for both Barrel and Endcap

nait of the	aittere	nce			
not clear indication that th					
Barrel Endca					
	3.5%	5%			

Category

 μ ID

category		Darret		Endcap	
$arepsilon_{ m tot}$ (signal)		3%		3%	
$arepsilon_{ m tot}$ (normalization)		4%		4%	
kaon tracking		4%		4%	
Category	Bar	rel	Endcap		
μ trigger	3	%		6%	

4%

Barrol

Endcar

8%

Checking of BR($B_s \rightarrow J/\psi \phi$)/BR($B^{\pm} \rightarrow J/\psi K^{\pm}$)

- consistent results with PDG both in barrel and in endcap
- validate B⁺ fitting procedure
- validate the factorization of the acceptances and efficiencies
- Inverted isolation sample (I < 0.7, not blinded)</p>
 - comparison of prediction vs. observation
 - validation of rare backgrounds
 - background interpolation
- Stability vs. time (HLT changes)
 - yields (dimuons, normalization and control sample)
 - ♦ yield ratios

All checks performed give us confidence that the result is robust

CMS Experiment at LHC, CERN Data recorded: Wed Aug 17 06:31:23 2011 CEST Run/Event: 173389 / 173713433 Lumi section: 137

- -

Results

Unblinded results

F. Palla - INFN Pisa

Latest Results on D⁰, B_{s/d} →µµ from CMS - KRUGER 2012, DECEMBER 3 - 7, 2012

Upper limits

Decay	Expected (95% CL)	Observed (95% CL)	Background-only p-value
B₅→µµ	8.4 × 10 ⁻⁹	7.7 × 10 ⁻⁹	0.11 (1.2 σ)
B _d →µµ	1.6×10 ⁻⁹	1.8×10 ⁻⁹	0.24 (0.7 σ)

Bkg only hypothesis

Bkg + SM hypothesis

Searching for the rarest birds

F. Palla - INFN Pisa

- The strategy of the analysis is to measure the ratio of the branching ratios
 - $D^{*+} \rightarrow D^{0}(\mu^{+}\mu^{-})\pi^{+}/D^{*+} \rightarrow D^{0}(K^{-}\mu^{+}v)\pi^{+}$

so as to cancel most of the systematic uncertainties

- The semileptonic decay mode minimizes the differences between the two decay modes and reduces the uncertainties in the trigger efficiencies. Other topologically similar hadronic topological decays such as $D^0 \rightarrow \pi\pi$ are not feasible in CMS
- The detection of double µ is doable in CMS, but the real problem is the normalization channel - that has a single muon trigger

Topological analysis

- Very tight cuts on muons identification and kaon reconstruction
- Trigger events using the same single muon trigger
 - Seven different periods of data taking in 2010 and 2011, single-muon p_T trigger thresholds, from 3 GeV to 15 GeV. 90 pb⁻¹ in total
 - Bulk of the data with $p_T(\mu) > 15 \text{ GeV} (54 \text{ pb}^{-1})$
- Reconstruct a D*+ by pairing candidate D⁰ candidates with π_{soft} from primary vertex
- Secondary Vertex CL > 1%
- Require
 - D⁰(µµ) pointing to the primary vertex
 - L/σ >3

Yield($D^{*+} \rightarrow D^0(K^-\mu^+\nu) \pi^+$) = 16458 ± 204 candidates

stituto Nazional li Fisica Nuclear

$D^{*+} \rightarrow D^{0}(\mu^{+} \mu^{-})\pi^{+}$ analysis

stituto Nazional di Fisica Nuclear

Upper limits

$$B(D^0 \to \mu^+ \mu^-) \le B(D^0 \to K^- \mu^+ \nu) \times \frac{N(\mu\mu)}{N(K\mu\nu)} \times \frac{a(K\mu\nu)}{a(\mu\mu)} \times \frac{\epsilon_{\rm trig}(K\mu\nu)}{\epsilon_{\rm trig}(\mu\mu)} \times \frac{\epsilon_{\rm rec}(K\mu\nu)}{\epsilon_{\rm rec}(\mu\mu)}$$

- B(D⁰(K⁻µ⁺v)) from PDG
- Ratio of acceptances and efficiencies from Monte Carlo simulation
 - The efficiency is validated using data by checking that the efficiency corrected yields in different periods of data taking do not depend on the different HLT triggers, at the level of 13.1%
 - Uncertainty from the fitting function range from 1% to 9% in different run periods
 - Contamination from $D^0 \rightarrow K^*(K^-\pi^0)\mu^+\nu 1.8\%$

$$B(D^0 \to \mu^+ \mu^-) \le 5.4 \times 10^{-7} (90\% \text{ CL})$$

Although this measurement is not the best limit, it is the first with a semileptonic channel used as normalization

Experiment	Upper limit at 90% CL
BABAR [13]	$< 1.3 \times 10^{-6}$
CDF [14]	$<2.1 imes10^{-7}$
BELLE [15]	$< 1.4 imes 10^{-7}$
this measurement	$< 5.4 imes 10^{-7}$

Comparison data/mc

Good agreement between Data and MC simulation for all 7 periods with different single-µ p⊤ trigger thresholds

NFN

Istituto Nazionale di Fisica Nucleare

F. Palla - INFN Pisa

Conclusions

- We have looked for rare decays of B_{s/d} and D⁰ mesons decaying into µ⁺µ[−] in CMS in pp collisions at √s= 7 TeV
 - The data sample corresponds to an integrated luminosity of 5 fb⁻¹ in 2011 for Beauty mesons, and to 90 pb⁻¹ for Charm.
 - The $B_{d/s} \rightarrow \mu^+\mu^-$ result supersedes our previous measurements and gives a 95% CL upper limit of 7.7x10⁻⁹ for B_s and 1.8x10⁻⁹ for B_d
 - Stricter selection requirements are applied resulting in a better sensitivity and a higher signal-to-background ratio
 - * The $D^0\!\!\to\mu^+\mu^-$ is normalized to $D^0\!\to K^-\mu^+\nu$ decay mode, giving 5.4x10^-7 upper limit at 90% CL
 - The main limitation in the analysis relies on the efficiency of the normalization sample
- With the luminosity to be collected by the end of the 2012 LHC run (a factor 5 more than the current one), we will be able to tackle the B_{s/d} Standard Model predicted BR and either establish or exclude it.

Projected CMS sensitivity on $B_s \rightarrow \mu\mu$

tituto Nazionale

LHC combination

- ATLAS, CMS and LHCb searches combined into a single limit
 - Use CL_S method
 - Normalized to $B^{\pm} \rightarrow J/\psi K^{\pm}$ for ATLAS and CMS
 - f_s/f_u = 0.267±0.021 from LHCb

95% CL CL_s exclusion bounds

Random grid optimization 14 variables included in 1.4 × 10⁶ runs

Variable	Barrel	Endcap	units
$p_{T\mu,1} >$	4.5	4.5	GeV
$p_{T\mu,2} >$	4.0	4.2	${\rm GeV}$
$p_{TB} >$	6.5	8.5	${\rm GeV}$
$\delta_{3D} <$	0.008	0.008	\mathbf{cm}
$\delta_{3D}/\sigma(\delta_{3D}) <$	2.000	2.000	
$\alpha <$	0.050	0.030	rad
$\chi^2/{ m dof} <$	2.2	1.8	
$\ell_{3d}/\sigma(\ell_{3d}) >$	13.0	15.0	
I >	0.80	0.80	
$d_{ m ca}^0 >$	0.015	0.015	\mathbf{cm}
$N_{ m trk}^{ m close} <$	2	2	tracks

Systematics on B_s

Systematics	Barrel	Endcap
fs/fu uncertainty	8%	8%
acceptance	3.5%	5%
mass scale & resol.	3%	3%
Bs efficiency	3%	3%
$B^{+} \rightarrow J/\psi \; K^{+} \; efficiency$	4%	4%
K tracking efficiency	4%	4%
Trigger efficiency	3%	6%
Muon Id	4%	8%
$B^{+} \rightarrow J/\psi \; K^{+}$ mass fit pdf	5%	5%
Background shape	4%	4%
Rare decays background	20%	20%

$D^0 \rightarrow \mu \mu$ systematics

Trigger	$\epsilon_{\rm trig}(K\mu\nu)/\epsilon_{\rm trig}(\mu\mu)$	$\epsilon_{\rm rec}(K\mu\nu)/\epsilon_{\rm rec}(\mu\mu)$	$Y(D^0 \rightarrow K^- \mu^+ \nu)$	$N_{\rm obs}, N_{\rm bkg}$	Systematic uncertainty
HLT_Mu3	0.149 ± 0.002	2.215 ± 0.197	2412 ± 145	0, 0	19.1%
HLT_Mu5	0.112 ± 0.002	1.651 ± 0.128	2447 ± 357	1, 0	18.0%
HLT_Mu7	0.102 ± 0.003	1.268 ± 0.152	11799 ± 215	6, 4	19.0%
HLT_Mu9	0.099 ± 0.003	1.018 ± 0.097	9982 ± 176	6, 6	17.4%
HLT_Mu11	0.097 ± 0.003	0.947 ± 0.069	10079 ± 185	3, 5	16.4%
HLT_Mu15 (2010)	0.085 ± 0.003	0.844 ± 0.088	5302 ± 118	1, 3	17.9%
HLT_Mu15 (2011)	0.087 ± 0.002	0.814 ± 0.048	16458 ± 204	6, 5	15.6%

INFN

Istituto Nazionale di Fisica Nucleare