Jet physics and vector boson plus jet physics at CMS

Tom Cornelis

International workshop on discovery physics at the LHC, Kruger 2012

- Measurement of differential jet cross section
- Jet mass in dijet and W/Z+jet events
- Jet production in association with vector bosons
- ► Azimuthal correlations & event shapes in Z+jets
- ► EWK production of Z+jets

- Analysis done with 2011 CMS data at $\sqrt{s} = 7$ TeV
- ▶ 4.67 fb⁻¹
- anti- k_T clustering algorithm with size parameter R = 0.7
- extending to rapidity | y | < 2.5
- ► Measurement of the double-differential inclusive jet cross section with 0.1 TeV < p_T(jet) < 2 TeV</p>
- Measurement of the double-differential dijet cross section with 0.3 TeV < M_{jj} < 5 TeV

 \Rightarrow Good agreement between pQCD@NLO and data

- ► Within errors all PDF agree with our measurements
- Theoretical and experimental uncertainties are comparable

- ► Within errors all PDF agree with our measurements
- Theoretical and experimental uncertainties are comparable

- Within errors all PDF agree with our measurements
- Theoretical and experimental uncertainties are comparable

- ► Within errors all PDF agree with our measurements
- Theoretical and experimental uncertainties are comparable

- ► Within errors all PDF agree with our measurements
- Theoretical and experimental uncertainties are comparable

Jet mass in dijet and W/Z+jet events

- Analysis done with 2011 CMS data at √s = 7 TeV
 5 fb⁻¹
- anti- k_T clustering algorithm with size parameter R = 0.7
- extending to rapidity |y| < 2.5
- Measurement of the jet mass in dijet events
- Measurement of the jet mass in W+jet events
- Measurement of the jet mass in Z+jet events

 $\frac{1}{\hat{\sigma}} \frac{d\hat{\sigma}}{dm_{J}^{NVG}} \left(\frac{1}{\text{GeV}} \right)$

10

10

10 10

10

Jet mass in dijet events

- Best agreement with Herwig++ parton shower model
- Disagreement largest at very low jet masses \rightarrow most sensitive region to UE/PU, MC underestimates showering

Jet mass in Z+jet events

Jet mass in W+jet events

- Analysis done with 2010 CMS data at $\sqrt{s} = 7$ TeV
- ▶ 36 pb⁻¹
- ▶ p_T(jet) > 30 GeV
- Measurements of $\sigma(V + \ge n \text{ jets}) / \sigma(V)$
- Measurements of $\sigma(V + \ge n \text{ jets}) / \sigma(V + \ge (n-1) \text{ jets})$
- Test of the Berends-Giele scaling
- Measurements of $\sigma(W + \ge n \text{ jets}) / \sigma(Z + \ge n \text{ jets})$
- Measurement of the W charge asymmetry A_W

 $\sigma(V + \ge n \text{ jets}) / \sigma(V + \ge 0 \text{ jets})$

MadGraph simulation agrees well with the data

 $\sigma(V + \ge n \text{ jets}) / \sigma(V + \ge 0 \text{ jets})$

MadGraph simulation agrees well with the data

Berends-Giele scaling

- ► Test the constant scaling law $\frac{\sigma(V + \ge n \text{ jets})}{\sigma(V + \ge (n+1) \text{ jets})} = \alpha$
- Additional parameter β for possible deviation

Berends-Giele scaling

► Test the constant scaling law $\frac{\sigma(V + \ge n \text{ jets})}{\sigma(V + > (n+1) \text{ jets})} = \alpha$

• Additional parameter β for possible deviation

 $\sigma(W+ \ge n \text{ jets})/\sigma(Z+ \ge n \text{ jets})$

- Many important systematics cancel in the ratio
- The maximal difference between expected and measured values is at the level of one standard deviation

 A_W depends on the number of associated jets because the fraction of u/d quarks contributing to the process is different in each case

- Analysis done with 2011 CMS data at $\sqrt{s} = 7$ TeV
- ▶ 5 fb⁻¹
- ▶ p_T(jet) > 50 GeV

Measurements of

- $\Delta \Phi(Z, J_1)$
- $\Delta \Phi(J_i, J_k)$
- Transverse thrust

Azimuthal correlations & event shapes in Z+jets

*p*_T(*j*) > 50 GeV
 | η(*j*) |< 2.5

Azimuthal correlations & event shapes in Z+jets

- ▶ *p*_T(*j*) > 50 GeV
- ▶ | η(j) |< 2.5</p>
- ▶ Both inclusively and in a boosted regime: p_T(Z) > 150 GeV → Phase space which is very critical for new phenomena

 $\Delta \Phi(Z, J_1)$

Azimuthal angles between the Z boson and the leading jet:

Error bars: statistical uncertainties Yellow band: sum of statistical and systematic uncertainties

Measurement is in good agreement with MadGraph prediction

 $\Delta \Phi(Z, J_1)$

Azimuthal angles between the Z boson and the leading jet:

Error bars: statistical uncertainties Yellow band: sum of statistical and systematic uncertainties

Azimuthal correlations & event shapes in Z+jets 18/34

Azimuthal angles among the three leading jets:

Error bars: statistical uncertainties Yellow band: sum of statistical and systematic uncertainties

Transverse thrust

$$\tau_{\rm T} \equiv 1 - \max_{\vec{n}_{\tau}} \frac{\sum_{i} |\vec{p}_{{\rm T},i} \cdot \vec{n}_{\tau}|}{\sum_{i} p_{{\rm T},i}}$$

- Thrust axis: \vec{n}_{τ}
- In the limit of a perfectly balanced, pencil-like Z + 1 jet events, T_T tends to zero
- ► In the limit of a spherical, homogeneously-distributed events: $\tau_{\rm T} \rightarrow 1 - \frac{2}{\pi}$
- The value of thrust increases with additional jet emission

Transverse thrust

Azimuthal correlations & event shapes in Z+jets 21/34

EWK production of Z+jets

- Analysis done with 2011 CMS data at $\sqrt{s} = 7$ TeV
- ▶ 5 fb⁻¹
- Cross section measurement of the pure EWK production of Z+2jets
- Measurement of the hadronic activity
- Measurement of radiation patterns

Vector boson fusion in Z+2jets

Features of VBF WW \rightarrow Z are:

- Central Z decay associated with energetic forward-backward jets
- A large η separation between the jets
- A large invariant dijet mass
- Pure EWK process: no color exchange between the tagging quarks

Vector boson fusion in Z+2jets

bremsstrahlung

VBF

multi-peripheral

- Many other pure EWK processes lead to the same 2 leptons + 2 jets final state
- There are strong negative interference effects between these diagrams (EWK gauge cancellations)

Features of VBF WW \rightarrow Z are:

- Central Z decay associated with energetic forward-backward jets
- A large η separation between the jets
- A large invariant dijet mass
- Pure EWK process: no color exchange between the tagging quarks

Features of VBF WW \rightarrow Z are:

- Central Z decay associated with energetic forward-backward jets
- A large η separation between the jets
- A large invariant dijet mass
- Pure EWK process: no color exchange between the tagging quarks

Quark-gluon tagger

A quark-gluon likelihood, built out of 5 variables:

- Major axis of the angular spread (RMS) in the $\eta \phi$ plane
- Minor axis of the angular spread (RMS) in the $\eta \phi$ plane
- Asymmetry of the jet constituents with respect to the center of the jet
- Multiplicity of the jet constituents
- Maximum energy fraction carried by a single constituent

EWK signal is more quark-like

EWK production of Z+jets 27/34

Fit the contributions of EWK signal and backgrounds to BDTD output:

 $\sigma^{EWK}_{meas,\mu\mu+ee} = 154\pm24$ (stat) \pm 46 (syst) \pm 27 (theory) \pm 3 (lumi) fb

NLO prediction from VBFNLO: $\sigma_{NLO}^{EWK} = 166 \text{ fb} \text{ [CT10 PDFs, scale} = 90 \text{ GeV]}$

Kinematic region of the reported cross section: $M_{II} > 50 \text{ GeV}$ $M_{ii} > 120 \text{ GeV}$

 $m_{II} > 50 \text{ GeV}$ $m_{JJ} > 120 \text{ GeV}$ $p_T(\text{jet}) > 25 \text{ GeV}$ $|\eta(\text{jet})| < 4.0$

Central hadronic activity

- Use of high-purity tracks associated with the PV, and not associated with the 2 leptons or the 2 jets
- Clustering of these tracks into soft track-jets with anti- k_T algorithm
- Selection of track jets between the 2 tagging jets $\Rightarrow \eta_{\min}^{\text{tag.jet}} + 0.5 < \eta < \eta_{\max}^{\text{tag.jet}} - 0.5$
- $H_T(3)$: Scalar sum of 3 leading (p_T -ordered) soft track jets

- Use of high-purity tracks associated with the PV, and not associated with the 2 leptons or the 2 jets
- Clustering of these tracks into soft track-jets with anti- k_T algorithm
- Selection of track jets between the 2 tagging jets $\Rightarrow \eta_{\min}^{\text{tag,jet}} + 0.5 < \eta < \eta_{\max}^{\text{tag,jet}} - 0.5$
- ► $H_T(3)$: Scalar sum of 3 leading (p_T -ordered) soft track jets

Radiation patterns in Z+jets events

Data observation is in agreement with MadGraph + Pythia (ME+PS) prediction

EWK production of Z+jets 31/34

Radiation patterns in Z+jets events

Data observation is in agreement with MadGraph + Pythia (ME+PS) prediction

EWK production of Z+jets 32/34

- ▶ We have measured the EWK production of Z+jets in the di-muon and di-electron channels at $\sqrt{s} = 7$ TeV giving a combined result of $\sigma_{meas,\mu\mu+ee}^{EWK} = 154$ fb which is in good agreement with the VBFNLO prediction
- We presented results on the hadronic activity between the two tagging jet using soft track-jet activity
- ► We have performed radiation pattern measurements

Conclusions

- ► A selection of results of jet physics and vector boson plus jet physics from pp data at $\sqrt{s} = 7$ TeV have been presented:
 - Cross section measurements
 - Angular correlations
 - Hadronic activity
 - ► ...
- ► In general good agreement between data and MC predictions
- ► Analyses will be updated in the future with 2012 LHC 8TeV data

Back-up slides

Back-up 35/34

 $\Delta \Phi(Z, J_i)$

Azimuthal angles between the Z boson and the i^{th} leading jet:

Error bars: statistical uncertainties Yellow band: sum of statistical and systematic uncertainties

 $\Delta \Phi(Z, J_i)$

Azimuthal angles between the Z boson and the i^{th} leading jet:

Error bars: statistical uncertainties Yellow band: sum of statistical and systematic uncertainties

 $\Delta \Phi(J_i, J_k)$

Azimuthal angles among the three leading jets:

Error bars: statistical uncertainties Yellow band: sum of statistical and systematic uncertainties

BDTD variables in EWK Z+2jets

- ▶ p_T^{j1} , p_T^{j2}
- ► *M*_{jj}
- Zeppenfeld variable: $y^* = y_Z \frac{y_{j1} + y_{j2}}{2}$
- $p_T^{\mu\mu}$ and $y_{\mu\mu}$
- $\Delta \eta_{jj} = |\eta_{j1} \eta_{j2}|$
- $\eta_{j1} + \eta_{j2}$
- $\phi_{j1} \phi_{j2}$
- $\phi_{\mu\mu} \phi_{j1}$ and $\phi_{\mu\mu} \phi_{j2}$
- Quark-gluon likelihood for the 2 tagging jets (only in e^+e^- mode)

Uncertainties EWK Z+2jets

source of uncertainty	uncertainty	
	$\mu^+\mu^-$ mode	${ m e^+e^-}$ mode
background modeling	0.15	0.16
signal modeling	0.05	0.05
JES+JER	0.22	0.29
pileup modeling	0.03	0.03
MC stat.	0.13	0.19
gluon-quark discriminator	not used	0.02
$\mathrm{t}\overline{\mathrm{t}}$ cross-section	0.03	0.03
diboson cross-sections	0.02	0.02
dilepton selection	0.02	0.02
luminosity	0.02	0.03

Bibliography

- CMS Collaboration, "Measurement of Differential Jet Cross Sections at $\sqrt{s} = 7$ TeV with the CMS detector", CMS PAS QCD-11-004
- CMS Collaboration, "Jet Mass and Substructure in Dijet and V+jets Events at 7 TeV", CMS PAS SMP-12-019
- CMS Collaboration, "Jet Production Rates in Association with W and Z Bosons in pp Collisions at $\sqrt{s} = 7$ TeV", CMS PAS EWK-10-012
- CMS Collaboration, "Azimuthal Correlations and Event Shapes Distributions in Z+jets Production", CMS PAS EWK-11-021
- CMS Collaboration, "EWK production of Z bosons with Forward/Backward Jets", CMS PAS FSQ-12-019