

Studies of Exotic Quarkonium States at CMS

Alessandra Fanfani (Univ. & INFN Bologna) on behalf of CMS Collaboration

Physical Motivations

- Observation of new states that do not fit into the conventional quark model has renewed the interest in exotic spectroscopy
 - Proliferation of new unconventional states above the open charm threshold
 - * Theoretical picture far from being clear!
- Opportunities at LHC to confirm these states and study their properties

- Focus on first targets in exotic spectroscopy program in CMS:
 - * X(3872) : First of the exotic charmonium states discovered by Belle (2003)
 - * **Y(4140)** : State reported by CDF in $B^+ \rightarrow J/\psi \phi K^+$

presenting recent CMS results on:

- * Production of X(3872) via decay to $J/\psi \pi^+ \pi^-$
- * Observation of structures in the J/ $\psi\phi$ mass spectrum

Excellent CMS performances for quarkonium studies

Muon system

- # High-purity muon identification
- ★ Good dimuon mass resolution (△m /m~0.6%)

Silicon Tracking detector

- * excellent track momentum resolution ($\Delta p_T / p_T \sim 1\%$)
- * excellent vertex reconstruction and impact parameter resolution

LHC luminosity and CMS trigger

- able to collect data at increasing instantaneous luminosity
 - about 5fb⁻¹ from 2011 data at $\sqrt{s}=7$ TeV
- * clever triggers are essential ingredients
 - specific trigger paths developed for different analyses

Production of X(3872)

The X(3872) State

The X(3872) was discovered by Belle in 2003 300

- * properties studied at B-factories and Tevatron
- its nature still remains unclear. Possibilities:
 - a cc(bar) charmonium state
 - a multi-quark molecule: loosely bound state of D⁰ and D^{*0} 3500
 - a tetra-quark: bound state of diquark and anti-diquark
- A clean experimental signature for X(3872) \rightarrow J/ $\psi\pi^+\pi^-$ decay
 - * J/ ψ reconstructed with 2 μ and combined with pairs of charged tracks
 - 4 tracks fit to a common vertex with constraint on J/ψ mass to the nominal value MeV 100

Exotic Quarkonium States at CMS -- Kruger 2012

psiprime(3686

X(3872)

4000 M(J/psi pi+pi-)

4250 (MeV)

3750

Number of Events

200

100

X(3872) Production with 2010 data

Inclusive production measurement in CMS based on 40 pb⁻¹ data sample from 2010

L = 4.8 fb

- The larger event sample collected in 2011 (4.8fb⁻¹) allows for more detailed studies
- Ratio between the X(3872) and ψ (2S) cross_{x10}? sections times *BR*(X(3872) \rightarrow J/ $\psi\pi^+\pi$)⁻ is Ve' measured as a function of p_{T} Candidates/
 - from 10 GeV up to 50 GeV
 - with rapidity |y(X)| < 1.2
 - ***** X(3872) and ψ (2S) yields are extracted from fits to the $J/\psi \pi^+\pi^-$ invariant-mass distribution

$$R = \frac{N_{X(3872)} \cdot \langle \frac{1}{A \cdot \epsilon} \rangle_{X(3872)}}{N_{\psi(2S)} \cdot \langle \frac{1}{A \cdot \epsilon} \rangle_{\psi(2S)}}$$

- corrected for acceptance and efficiency from simulation
 - data-driven verification of ε evaluation

Exotic Quarkonium States at CMS -- Kruger 2012

3872

 $R_{fiducial} = 0.0700 \pm 0.0038(\text{stat}) + 0.0038(\text{syst})$

- ***** Typical uncertainty in individual p $_{T}$ bins ~10% stat. and 6-7% syst.
- * Largest systematic uncertainty from lack of knowledge of the X(3872) p_T spectrum
- No significant dependence on p_T

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBPH11011

Fraction of X(3872) from B Decays

- $\psi(2S)$ data used as control sample
 - to estimate lxy resolution and pile-up effects from data
- The non-prompt X(3872) fraction is about half that of the $\psi(2S)$

non-prompt fraction = 0.259 ± 0.029 (stat.) ± 0.016 (syst.)

no significant dependence on p_{T}

primary

secondar

- Decay properties are investigated by measuring the $\pi^+\pi^$ invariant-mass distribution from the decays to $J/\psi \pi^+\pi^-$
- X(3872) yields are extracted from J/ψπ⁺π⁻ invariant-mass fit for slices of m(π⁺π⁻)
- corrected by relative acceptance and efficiency

normalized to the integrated cross section for 0.5 < $m_{\pi\pi}$ < 0.78GeV

★ Data shows better agreement with predictions from simulation for intermediate resonant ρ⁰ → π⁺π⁻ decay, confirming previous indications by CDF and Belle

Search for structures in the J/ψφ Mass Spectrum

- The observation of Y(3930) [1] near the $J/\psi\omega$ threshold motivated searches for similar structures near $J/\psi\phi$ threshold
- CDF observed a narrow peak with a significance greater than 5σ [2]

LHCb did not confirm the existence of Y(4140) [3]

BELLE Phys. Rev. Lett. 94, 182002 (2005), BABAR Phys. Rev. Lett. 101, 082001 (2008)
 <u>http://www-cdf.fnal.gov/physics/new/bottom/100701.blessed-jpsiphi6.0/myFig11.eps</u>, arXiv:1101.6058v1
 Phys. Rev. D85 (2012) 091103

Search for states in the J/ψφ mass spectrum via the B⁺→J/ψφ K⁺ decay

J/\u03c6 J Invariant-mass Spectrum

- ► To search for possible structures in $J/\psi\phi$ using the B⁺→ $J/\psi\phi$ K⁺ decay, the mass difference $\Delta m = m(\mu^+\mu^-K^+K^-) m(\mu^+\mu^-)$ is used
- ► Extracting the ∆m spectrum
 - * Divide the dataset into the 20 MeV Δm bins

 - ***** Plot the B yield as a function of Δm

Correct the spectrum by relative efficiency

• The relative-efficiency-corrected Δm distribution from $B^+ \rightarrow J/\psi \phi K^+$ decays

> **Background**: 3-body phase space **Signal**: S-wave relativistic Breit-Wigner functions convolved with a Gaussian resolution function

*background + 1 signal hypothesis

Exotic Quarkonium States at CMS -- Kruger 2012

*only background hypothesis

CMS Preliminary, \sqrt{S} = 7 TeV, L=5.2 fb⁻¹

1.3

1.2

S-Weighting ∆m-

 $m(\mu^+\mu^-K^+K^-)-m(\mu^+\mu^-)$ [GeV]

1.5

240 MeV

220

100

60

1.1

20 200

per 180 160

Candidates

- Several checks to validate the robustness of the two structures
 - * Variations on selection cuts, Δm binning, background and signal shape
 - * Background-subtraction technique based on *sPlot* formalism
 - Tighter B selection to reduce the combinatorial background

Results on Structures in the J/ $\psi\phi$ invariant mass

► The efficiency-corrected $\Delta m = m(\mu^+\mu^-K^+K^-) - m(\mu^+\mu^-)$ from the exclusive $B^+ \rightarrow J/\psi \phi K^+$ decays

	Mass (MeV)	Signal Yield
First Peak	1051.5 ± 2.0	355 ± 46
Second Peak	1220.0 ± 3.0	445 ± 83

Fitted mass of the two structures:

m (1st) = 4148.2 \pm 2.0 (stat.) \pm 4.6 (syst.) MeV m (2nd) = 4316.7 \pm 3.0 (stat.) \pm 7.3 (syst.) MeV

- \blacktriangleright observed a J/ $\psi\phi$ structure at 4148MeV with a significance greater than 5σ
- evidence for a second structure at ~4317MeV in the same mass spectrum

- The CMS Collaboration has an active exotic spectroscopy program
 Production of X(3872) via decay to J/ψπ⁺π⁻
 - * ratio of cross section times branching fractions of the X(3872) and ψ (2S)
 - no p_T dependence up to 50GeV
 - ★ fraction of X(3872) from B decays is measured ← first time at LHC
 - $f_B = 0.261 \pm 0.028$ (stat) ± 0.016 (sys) about half that of the $\psi(2S)$
 - * prompt X(3872) cross section x*BR* measured as a function of $p_T \leftarrow first time$
 - ${\ensuremath{\, \ensuremath{ \$
- Structures in the J/ $\psi\phi$ mass spectrum at 4148MeV and ~4317MeV
- These results demonstrate the CMS potential in the exotic quarkonium sector
- More to be expected with the large data sample from 2012
 - * should help to better understand the nature of the observed structures

BACKUP

- Systematic uncertainties on cross-section ratio R:
- ▶ Signal and background parametrisation \rightarrow 1-2%
- Data-Driven estimate of $\pi\pi$ efficiency and muon efficiency \rightarrow 1-2%
- Limited MC statistic $\rightarrow 1\%$
- ► ψ (2S) pT dependence \rightarrow 2-4%
- Lack of knowledge of the pT distribution of the X(3872): 3-10%
- ► X(3872) decay kinematics → 1-2% Polarization scenarios: rough estimate of relative shifts
- from few % up to 30% if only one state is assumed polarized in extreme scenarios
- up to 30% (90%) in Collins-Soper (helicity) frame for both states in extreme pol. scenarios
- Systematic uncertainties on nonprompt X(3872) fraction:
 - Primary vertex selection $\rightarrow 1\%$
 - Background parametrization \rightarrow 2-3%
 - Difference between prompt and nonprompt efficiencies \rightarrow 3-4%
 - Decay length resolution \rightarrow 4%
 - Effect of PileUp \rightarrow 2%

*Sideband subtracted KKK mass distribution in Phase Space MC(red) and in data (black).

*The x projection $(J/\psi\phi \text{ space})$ of dalitz plot for the generated events (red) and for the reconstructed events (shown as black, after all event selections). The dalitz plot is obtained from CMS Phase Space MC.

CMS Detector

