

Performance of the CMS electromagnetic calorimeter and its role in the hunt for the Higgs boson in the two-gamma channel

Federico De Guio on behalf of the CMS collaboration

International Workshop on Discovery Physics at the LHC KRUGER 2012 December 3 - 7, 2012

- The H $\rightarrow\gamma\gamma$ search channel played a crucial role in the discovery of a new resonance at a mass of 125 GeV
 - Small branching ratio, but very clear signature
 - Narrow resonance of two high E_T photons over a non-resonant background of genuine or fake diphoton events
- The discovery potential strongly depends on the invariant mass resolution
 - Energy resolution
 - Position/angle resolution
 - background rejection (π^0/γ separation)

Observed excess consistent with a narrow resonance with a mass of around 125 GeV at 4.1σ [5.1 fb⁻¹ @ 7TeV + 5.3 fb⁻¹ @ 8TeV]

CMS Experiment at LHC, CERN Data recorded: Sun May 13 22:08:14 2012 CEST Run/Event: 194108 / 564224000 Lumi section: 575

- The electromagnetic calorimeter of CMS (ECAL)
 - Description and performance
 - In-situ operation
- Energy calibration
 - e/ γ energy measured with ECAL
 - Response stability and channel-to-channel calibration
 - Energy corrections
- Qualification of the performance with $Z \rightarrow ee$ events
 - Measurement of the energy scale and resolution
- Impact of the performance on the $H \rightarrow \gamma \gamma$ signal
 - Progress in understanding ECAL
- Summary

Outside

TEC

TOB

TIB+TID Pixel

Beam Pipe

x/X₀

2

1.8

1.6

1.4

1.2

- ECAL is a homogeneous, compact, hermetic, fine grain scintillating calorimeter composed of 75848 lead tungstate crystals (PbWO₄) organized in barrel (EB) and endcaps (EE)
- Excellent energy resolution for photons and electrons ($H \rightarrow \gamma \gamma$, $H \rightarrow ZZ \rightarrow 4e$)

- ECAL 'standalone' energy resolution measured at **test beams** (120 GeV electrons)
 - No magnetic field, no material upstream of ECAL
 - Negligible systematic term from channel response variations (inter-calibration)
- Energy resolution for central impact on 3x3 arrays of barrel crystals

$$\frac{\sigma_E}{E} = \underbrace{\frac{2.8\%}{\sqrt{E(GeV)}} \oplus \underbrace{\frac{0.128}{E(GeV)} \oplus 0.3\%}$$

Stochastic term (A)Noise term(B)Constant term(C)

- Results used to tune MC simulation
- At high energy, the photon resolution is dominated by the constant term C
- Additional contribution to the energy resolution in CMS:
 - Environmental stability and response uniformity
 - The target is to keep C ~ 0.5%

ECAL stably and efficiently running

- Fraction of working channels stable in the last three years: EB 99.2%, EE 98.5%, ES 96.9%
- Temperature stability:
 - negligible contribution to the energy resolution constant term if temperature of the Barrel/Endcap stable within 0.05 °C/0.1 °C
- High Voltage stability (EB):
 - APD gain very sensitive to the bias voltage: 3%/Volt
 - High Voltage stability: ~0.1% contribution to the C term
- Excellent triggering efficiency (Level-1 e/γ trigger with 15 GeV E_T threshold)
 - Efficiency estimate with the tag and probe method from the Z→ee decay
 - at 100 GeV: 99.95% in EB and 99.84% in EE
 - Response corrections applied at trigger level since the beginning of the 2012 run
- Removal of anomalous signals already at trigger level
 - consisting of isolated large signals coming from the direct ionization of the active silicon layers of the APDs

- In-situ calibration to get the **best estimate of the energy of e/\gamma**
- Energy spread over several crystals \Rightarrow

 $E_{e/Y} = F_{e/Y} \cdot G \cdot \Sigma_{i} [S_{i}(t) \cdot C_{i} \cdot A_{i}]$

- A_i: single channel amplitude (ADC counts)
- c_i : inter-calibration constant
- $S_i(t)$: time-dependent correction for response variations
- G: global scale calibration (GeV/ADC)
- $F_{e/Y}$: particle energy correction (geometry, clustering, ...)

- The intercalibration [c_i] and the response stability [S_i(t)] precision directly affect the constant term C
- In-situ calibration and monitoring sources with collision events
 - π⁰/η→γγ mass
 - φ- and time-invariance of the energy flow per crystal in Minimum bias events
 - Electron E/p and Z→ee mass
- Energy scale and resolution (and efficiency and particle id)
 - Z→ee and Z→μμγ

06/12/2012

f. de guio

Dedicated high-rate calibration data streams

ECAL response variation with irradiation INFN

- The PbWO₄ scintillation mechanism is not affected by irradiation. But irradiation causes: 1.1
 - variations in crystal transparency
 - **VPT** ageing
- Response monitored with laser light at ۲ 440 nm (close to max. scintillation emission) and 798 nm
- Crystal response to laser and e.m. ۲ shower light linked by $S/S_0 = (R/R_0)^{\alpha}$

1.01

APD

- Stable energy scale after correcting for response changes.
- Barrel:
 - <signal loss> ~ 2.5%,
 - RMS stability ~0.12%
- Endcap:
 - <signal loss> ~10%,
 - RMS stability ~0.45%
- Corrections include:
 - Barrel: α = 1.52
 - Endcap: <α>~1.28
- Further tuning of the corrections in progress:
 - Residual effective corrections from E/p and π^0 history

 $E_{e/\gamma} = F_{e/\gamma} \cdot G \cdot \Sigma_i \left[S_i(t) \cdot C_i \cdot A_i \right]$

Monitoring the stability of the response vs time

- ECAL resolution (from Z→ee peak width) stability before and after the application of Laser Monitoring corrections (LM):
 - ECAL Barrel: resolution stable within errors
 - ECAL Endcaps: resolution worsens by ~1.5% in quadrature
- Further tuning of corrections and/or pileup effects is required
 - e.g. in-situ measurement of the 'effective α ' at single crystal level

$$E_{e/Y} = F_{e/Y} \cdot G \cdot \Sigma_i \left[S_i(t) \cdot c_i \cdot A_i \right]$$

INFN

Single channel inter-calibration

- Several methods to calibrate in-situ:
 - φ-symmetry calibration: invariance around the beam axis of energy flow in minimum bias events. Intercalibrate crystals at the same pseudorapidity.
 - π⁰ and η calibration: mass constraint on photon energy, use unconverted γ's reconstructed in 3x3 matrices of crystals.
 - High energy electron from W and Z decays (E/p with single electrons and invariant mass with double electrons).

$$E_{e/Y} = F_{e/Y} \cdot G \cdot \Sigma_{i} [S_{i}(t) \cdot C_{i} \cdot A_{i}]$$

Impact of the calibration on the Z \rightarrow ee peak

- Impact on the reconstructed dielectron invariant mass of:
 - inter-calibration coefficients
 - inter-calibration + laser corrections
- The three inter-calibration methods are approaching the **asymptotic precision** in EB
 - The estimate of the IC and their precision is in agreement in 2010, 11 and 12 data
 - Some improvement can be obtained trying to correct for time instabilities
- On top of the single channel calibration, e/γ dependent algorithmic corrections based on simulation (MC) are applied.

 $E_{e/Y} = F_{e/Y} \cdot G \cdot \Sigma_{i} \left[\begin{array}{c} S_{i}(t) \cdot c_{i} \cdot A_{i} \end{array} \right]$

- **Cluster energy corrections** vs pseudo-rapidity for non-showering and showering electrons:
 - compensate for unclustered energy and energy not reaching the calorimeter: strongly related to the amount of material in front of ECAL.
 - energy lost inside gaps: intermodule boundary visible in the Barrel
- Current best corrections from an MC driven MVA analysis including shower location, shower-shape, and global event variables

- Studied E/p vs η
 - ad-hoc p calibration obtained
 from Z→ee events applied
 - fit each η ring with a template distribution
 - $\quad MC \text{ is flat} \Leftrightarrow F_{e/\gamma} \text{ well tuned}$
 - data/MC difference used to adjust the scale along η

- Studied E/p vs local η
- all ECAL folded in 1 crystal four η regions defined
- residual dependence on the electron impact position observed

$$E_{e/Y} = \mathbf{F}_{e/Y} \cdot G \cdot \Sigma_{i} [S_{i}(t) \cdot c_{i} \cdot A_{i}]$$

0.06

Data (inclusive)

- The **Z**→ee invariant mass peak is the main tool to estimate energy resolution and scale.
- The $Z \rightarrow ee$ events are fitted with the convolution of a Breit-Wigner and a Crystal-Ball function.
- An extra-smearing is applied to the simulation in order to match the energy resolution measured in the data

CMS 2011 Preliminary, \sqrt{s} = 7 TeV, L = 4.98 fb⁻

• Energy scale:

•consistent with PDG within 0.6% syst.

• Energy resolution:

- 1.01 GeV/ c^2 for low bremsstrahlung
- 1.56 GeV/c^2 inclusive category

110

14

Energy and mass resolution

Room for improvement in EE

- reduce the inter-calibration systematic effects
- optimization of cluster corrections
- Tuning of the simulation in order to reduce the data-MC discrepancy:
 - single crystal response description
 - energy and geometry corrections
 - tracker material description
- Consistent results from $Z{\rightarrow}\mu\mu\gamma$ both in barrel and in endcap

- All the improvements in the **understanding of the ECAL** energy reconstruction and corrections contribute significantly to enhance the $H \rightarrow \gamma \gamma$ discovery potential
- Inclusive $H \rightarrow \gamma \gamma$ invariant mass distribution after the MC energy smearing
- Golden category (unconverted photons in EB): FWHM/2.35 = 1.04 GeV (0.87%)

- Stable and efficient running during 2011 and 2012 data taking
 - Negligible impact on the energy resolution from the operation of the cooling and high voltage
 - Data taking efficiency: > 97.5% for ECAL, nearly 100% for the preshower
- Excellent performance
 - Decisive contribution to the discovery of a new resonance with a mass of 125 GeV
 - Mass resolution of 125 GeV Higgs boson decaying to two photons: 0.87% achieved for golden category in the barrel
- Still room for improvement in the endcaps (less contributing to the $H \rightarrow \gamma \gamma$ sensitivity with respect to the barrel)
 - tuning of the inter-calibration and energy correction to the data
 - tracker material description in simulation

- CMS Coll., ECAL 2011 performance results, CMS-DP-2012-007 and CMS-DP-2012-008 (2012)
- CMS Coll., Electromagnetic calorimeter calibration with 7 TeV data, CMS- PAS-EGM-2010-003 (2010)
- CMS Coll., Electromagnetic calorimeter commissioning and first results with 7 TeV data, CMS NOTE-2010/012 (2010)
- CMS coll., Performance and operation of the CMS electromagnetic calorimeter, J.Inst. 5 T03010 (2010)
- P.Adzic et al. (CMS ECAL), Intercalibration of the barrel electromagnetic calorimeter of the CMS experiment at start-up, J.Inst. 3 P10007 (2008)
- P.Adzic et al. (CMS ECAL), Energy resolution of the barrel of the CMS Electromagnetic Calorimeter, J.Inst. 2 P04004 (2007)
- M. Anfreville et al., Laser monitoring system for the CMS lead tungstate crystal calorimeter, NIM A594 (2008) 292-320
- CMS coll., Physics Tech. Design Report, Vol. I, CERN-LHCC-2006-001 (2006) CERN

The Compact Muon Solenoid

Total weight: 14000 t Overall length: 28.7 m Overall diameter: 15 m

TRACKER

Pixels: ~66M ch. ~1m² Si sensors **Strips**: ~9.6M ch. ~200m² Si sensors \tracker coverage: |η| < 2.5

3.8 T solenoid

Muon chambers drift tubes + resistive plate chamb. + cathode strip chamb.

ECAL• EB/EE: ~76k scintillating PbWO4 crystals ES: ~136k ch. - Si strips

HCAL⁴ ~7k ch. - plastic scintillator/brass

06/12/2012

ron yoke

PbWO₄

- high density to allow a compact calorimeter (p = 8.3 g/cm³)
- short radiation length ($X_0 = 0.89 \text{ cm} \Rightarrow \text{a crystal is about } 25 X_0$)
- small Molière radius (r_M = 2.2 cm)
- low light yield (LY) / fast emission (~30 γ/MeV, 80% within 25 ns)
- LY spread between crystals ~10%
- LY variation with temperature: -2.2%/°C
- transparency variation with radiation

- two APDs of 5x5 mm² per crystal: ~4.5 p.e./MeV
- nominal gain: 50
- gain variation: $\Delta G/\Delta T = -2.4\%/^{\circ}C$, $\Delta G/\Delta V = 3.1\%/V$
- Endcap photo-detectors: Vacuum Photo Triodes
 - one VPT of ~280 mm² per crystal: ~4.5 p.e./MeV
 - gain spread among VPTs ~25%

- Invariant mass distribution of Z→μµγ final states from 2011 DATA. The photon energy scale and resolution are extracted from de-convoluting the Z line shape in this final state. The inclusive categories are shown.
- The energy scale and resolution are in agreement with the values measured for electrons from Z->ee decays.

Elp ~1 for non-showering,

well reconstructed electrons

- The *E/p* variable can be used to study the ECAL relative energy scale
 - E is the electron energy as measured by ECAL
- Implicitly assuming that all instabilities arise from E
- ad-hoc momentum calibration applied in specific cases (e.g. studies vs. η)

 $f(E/p) = N \cdot \mathbf{k} \cdot T(\mathbf{k} E/p)$

• The plots show the impact on the $Z \rightarrow ee$ energy scale and resolution from the incorporation of more sophisticated clustering and cluster correction algorithms.

- Irreducible background is dominant:
 - 70% from 2 prompt photons

06/12/2012

Class boundaries optimized to give the best expected limit using MC background

• Exclude the SM Higgs at 95% CL: 114–121, 129–132, 138–149 GeV

 Observed excess consistent with narrow resonance around 125 GeV mass at 4.1σ