Studies on B hadron production, spectroscopy and decays at CMS

Kruger 2012

Xin Shi

National Taiwan University

On behalf of CMS collaboration
Outline

• Introduction
• B-Hadron Production
• Λ_b lifetime
• B_s lifetime difference ($\Delta \Gamma_s$)
• Summary
Introduction

• CMS is a general purpose detector at the LHC.

• Inner tracker consists of silicon pixel and silicon strip layers.

• Muons are measured by drift tubes (DT), cathode strip chambers (CSC) and resistive plate chambers (RPC).

• The dimuon mass resolution is less than 1%.

• Powerful tool for B-physics study.
Dimuon mass distribution collected with various dimuon triggers.
B-Hadron Production

CMS $\sqrt{s} = 7$ TeV

- B^+ (l$^B,l < 2.4$)
- B^+ Tsallis fit
- B^0 (l$^B,l < 2.2$)
- B^0 Tsallis fit
- B_s^0 (l$^B,l < 2.4$)
- B_s^0 Tsallis fit
- $\bar{\Lambda}_b$ (l$^\bar{\Lambda}_b,l < 2.0$)
- $\bar{\Lambda}_b$ Tsallis fit

CMS Preliminary, $\sqrt{s} = 7$ TeV

- $pp \rightarrow \Lambda_b X \rightarrow J/\psi \Lambda X$
 $p_T > 10$ GeV, |y| < 2.0 (x10000)
 $11.6 \pm 0.6 \pm 1.2 \pm 2.0$
 (1900 pb$^{-1}$)

- $pp \rightarrow B^+ X$
 $p_T > 5$ GeV, |y| < 2.4
 $28.1 \pm 2.4 \pm 2.0 \pm 3.1$
 (6 pb$^{-1}$)

- $pp \rightarrow B^0 X$
 $p_T > 5$ GeV, |y| < 2.2
 $33.3 \pm 2.5 \pm 3.1 \pm 3.6$
 (40 pb$^{-1}$)

- $pp \rightarrow B_s X \rightarrow J/\psi \phi X$
 $8 < p_T < 50$ GeV, |y| < 2.4 (x1000)
 $6.9 \pm 0.4 \pm 0.7 \pm 0.3$
 (40 pb$^{-1}$)

Theory: MC@NLO / POWHEG
CTEQ6M PDF, $\mu = (m_b^2 + p_T^2)^{1/2}$, $m_b = 4.75$ GeV
Observation of Ξ_b^{*0}

CMS

$pp, \sqrt{s} = 7\text{ TeV}$
$L = 5.3\text{ fb}^{-1}$

(b)

$M(J/\psi\Xi^-\pi^+) - M(J/\psi\Xi^-) - M(\pi) \ [\text{MeV}]$

$14.84 \pm 0.74 \text{ (stat.)} \pm 0.28 \text{ (syst.) \ MeV}$
$\Gamma = 2.1 \pm 1.7 \text{ (stat.) \ MeV}$

$M(\Xi_b^{*0}) = 5945.0 \pm 0.7 \text{ (stat.)} \pm 0.3 \text{ (syst.)} \pm 2.7 \text{ (PDG) MeV}$

Measured mass and width are compatible with theoretical expectations for the $J^P = 3/2^+$ baryon

Measurement of the Λ_b lifetime
Study of b-baryons is an important ingredient in understanding b-hadron production.

The non-perturbative QCD model of Heavy Quark Theory provides predictions.

Recent measurements include those from CDF, D0 and ATLAS.

Use $\Lambda_b \rightarrow J/\psi \Lambda^0$, $J/\psi \rightarrow \mu \mu$, $\Lambda^0 \rightarrow p\pi$.
Event Selection

- Two oppositely charged muons.
- Constrain the dimuon invariant mass to the known J/ψ mass.
- Select two other oppositely charged tracks as the proton and pion with the p_T(proton) $>$ p_T(pion).
- Constrain the proton-pion invariant mass to the Λ^0 mass,
- reject events with $m(p\pi)$ close to K_s mass.
Likelihood Fit and Efficiency

- **2-D unbinned maximum likelihood fit:**
 - **Signal:** Double Gaussian in m, decay in t
 $$M_{\text{sig}}(m) \cdot M_{\text{sig}}(t) = G_{\text{sig}}(m; \mu_m, \sigma_1, \sigma_2, f) \cdot D_{\text{sig}}(t; \tau, \sigma_1, \sigma_2, f)$$
 - **Prompt background:** Linear in m, Double Gaussian in t
 $$M_{\text{prompt}}(m) \cdot M_{\text{prompt}} = (a_0 + a_1 m) \cdot G_{\text{prompt}}(t; \mu_t, \sigma_1, \sigma_2, f)$$
 - **Non-prompt background:** Linear in m, decay in t
 $$M_{\text{non-prompt}}(m) \cdot M_{\text{non-prompt}} = (a_0 + a_1 m) \cdot D_{\text{non-prompt}}(t; \tau, \sigma_1, \sigma_2, f)$$

- **Constant efficiency**

![Graph](image)

CMS simulation

$\sqrt{s} = 7$ TeV \ $L = 5$ fb$^{-1}$

fit with turn-on curve for systematic study.
Fit Projection Λ_b

CMS preliminary $\sqrt{s} = 7$ TeV $L = 5$ fb$^{-1}$

- **Λ_b**:
 - fit function
 - signal
 - prompt background
 - non-prompt background

Prompt bkgd

Non-prompt bkgd

Events / (0.006 GeV/c²)

Invariant mass $J/\psi \Lambda$ (GeV/c²)

Pull

Proper decay time (ps)

Events / (0.16 ps)

B²

See backup for B^0 fits.

Xin Shi

Kruger 2012
Systematic and Results

• Systematic uncertainty sources:
 • Efficiency (main source)
 • Alignment
 • Event selection
 • Fit model

• Final results Λ_b lifetime:

$$1.503 \pm 0.052 \text{ (stat.)} \pm 0.031 \text{ (syst.) ps}$$
Comparison with Previous Results

Λ_b lifetime

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Year(s)</th>
<th>Decays</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS pre(2011)</td>
<td></td>
<td>$J/\psi\Lambda$</td>
</tr>
<tr>
<td>ATLAS (2011)</td>
<td></td>
<td>$J/\psi\Lambda$</td>
</tr>
<tr>
<td>D0 (02-11)</td>
<td></td>
<td>$J/\psi\Lambda$</td>
</tr>
<tr>
<td>CDF2 (02-09)</td>
<td></td>
<td>$J/\psi\Lambda$</td>
</tr>
<tr>
<td>D0 (02-06)</td>
<td></td>
<td>$J/\psi\Lambda$</td>
</tr>
<tr>
<td>D0 (02-06)</td>
<td></td>
<td>$\Lambda_c^+\mu$</td>
</tr>
<tr>
<td>CDF2 (02-06)</td>
<td></td>
<td>$\Lambda_c^+\pi$</td>
</tr>
<tr>
<td>OPAL (90-95)</td>
<td></td>
<td>$\Lambda_c^+l, \Lambda l^-l^+$</td>
</tr>
<tr>
<td>CDF1 (91-95)</td>
<td></td>
<td>Λ_c^+l</td>
</tr>
<tr>
<td>ALEPH (91-95)</td>
<td></td>
<td>Λl^-l^+</td>
</tr>
<tr>
<td>ALEPH (91-94)</td>
<td></td>
<td>Λ_c^+l</td>
</tr>
<tr>
<td>DELPHI (91-94)</td>
<td></td>
<td>Λ_c^+l</td>
</tr>
</tbody>
</table>

Errors in black: statistical only
Errors in grey: syst. added in quadrature
Band: current best value
data from arXiv:1010.1589
prepared for PDG2011
Measurement of the B_s lifetime difference
B_s lifetime difference

\[B_s \rightarrow J/\psi \phi \text{ with } J/\psi \rightarrow \mu^+ \mu^- \text{ and } \phi \rightarrow K^+ K^- \]

- Two flavour eigenstate of B_s oscillate.
- B_s-\bar{B}_s mixing gives rise to a CP violation phase:
 \[\Phi_s = \Phi_M - 2\Phi_D \]
- The final state is an admixture of the CP-even and CP-odd eigenstates.
• Since B_s is a pseudo-scalar meson, while J/ψ and Φ are vector mesons, the orbital angular momentum can have the values $L = 0, 1, 2$.

• To measure the lifetime difference ($\Delta \Gamma_s$) for the decay rates of the two B_s mass eigenstates, an analysis is needed to disentangle the two CP eigenstates.

• Decay topology is described by:

$$\Theta = (\theta_T, \psi_T, \varphi_T)$$
Bs Decay Formula

- The differential decay rate:

\[\frac{d^4\Gamma(B_s(t))}{d\Theta \, dt} = f(\Theta, t; \alpha) = \sum_{i=1}^{6} O_i(\alpha, t) \cdot g_i(\Theta) \]

- Proper decay time
- Kinematics-independent observables
- Angular distributions
- Physics parameters of interest

\[(\Gamma_s, \Delta\Gamma_s, |A_0|^2, |A_\perp|^2, \delta_\parallel) \]

- Longitudinal amplitudes
- Transverse amplitudes
- Strong phase
Event Selection

- Two oppositely charged muons.
- Two oppositely charged tracks.

- Build B_s from 4-track vertex fit:
 - Constrain the dimuon invariant mass to the known J/ψ mass.
 - Constrain the K^+K^- to the ϕ mass.
• The overall efficiency includes: detector acceptance, the trigger conditions, and the selection cuts.
• No sizable correlation between the proper time and the angular variables is found.
• The correlation amongst the angular observables is also negligible.
• The proper decay length efficiency is almost flat in the range [0.02-0.3]cm.
Maximum likelihood fit

- **Event likelihood function:**
 \[
 L = L_{\text{signal}} + L_{\text{background}},
 \]
 \[
 L_{\text{signal}} = (f(\Theta, t; \alpha) \otimes G(t, \kappa, \sigma(t))) \cdot M(m) \cdot \epsilon(t) \epsilon(\Theta),
 \]
 \[
 L_{\text{background}} = b(\Theta, t, m),
 \]
 signal mass PDF (sum of two Gaussian)
 proper decay time uncertainty
 Gaussian resolution function
 Legendre polynomials and sinusoidal function

- **5-D fit procedure**
 - 1-D fit of Bs mass to get the mean and the smaller of the two Gaussian function widths.
 - Fit sideband region for the angular background shapes.
 - Fit the full mass range.
Fit to the Data

Signal yield: 14456 ± 140

mass: 5366.8 ± 0.1 MeV

PDG 5366.77 ± 0.24 MeV

Events / (0.0045 GeV)

Events / (0.0034 cm)

B_s proper decay length [cm]

CMS preliminary, 5 fb$^{-1}$ $\sqrt{s} = 7$ TeV

Data
Signal
Background
Fit
Systematics

| Uncertainty source | $\Delta \Gamma_s$ [ps$^{-1}$] | $c\tau$ [cm] | $|A_0|^2$ | $|A_\perp|^2$ | $\delta ||$ [rad] |
|---|-------------------------------|--------------|----------|-----------|-------------|
| **Signal PDF modeling** | | | | | |
| Signal mass model | 0.00072 | 0.00012 | 0.0022 | 0.0006 | 0.039 |
| Proper time resolution | **0.00170** | 0.00006 | 0.0007 | 0.0000 | 0.007 |
| ϕ_s approximation | 0.00000 | 0.00001 | 0.0000 | 0.0000 | 0.002 |
| S-wave assumption | 0.00109 | 0.00001 | 0.0130 | 0.0066 | 0.056 |
| **Background PDF modeling** | | | | | |
| Background mass model | 0.00019 | 0.00000 | 0.0000 | 0.0001 | 0.003 |
| Background lifetime model | 0.00040 | 0.00000 | 0.0001 | 0.0002 | 0.003 |
| Peaking B^0 background | 0.00025 | 0.00006 | 0.0002 | 0.0022 | 0.050 |
| Background angular model | **0.00175** | 0.00003 | 0.0001 | 0.0064 | 0.161 |
| **Limited simulation statistics** | | | | | |
| Angular efficiency parameters | 0.00019 | 0.00002 | 0.0057 | 0.0055 | 0.037 |
| Temporal efficiency parameters | 0.00000 | 0.00005 | 0.0000 | 0.0000 | 0.000 |
| Temporal efficiency parametrization | **0.00181** | 0.00014 | 0.0005 | 0.0007 | 0.001 |
| Angular efficiency parametrization | 0.00063 | 0.00003 | 0.0021 | 0.0086 | 0.007 |
| Likelihood function bias | 0.00000 | 0.00004 | 0.0004 | 0.0000 | 0.014 |
| **Total uncertainty** | **0.00341** | **0.00022** | **0.0146**| **0.0140**| **0.187** |
B_s lifetime result

\[\Delta \Gamma_s = 0.048 \pm 0.024 \text{ (stat.)} \pm 0.003 \text{ (syst.)} \text{ ps}^{-1}, \]

\[c\tau_{B_s} = 0.04580 \pm 0.00059 \text{ (stat.)} \pm 0.00022 \text{ (syst.)} \text{ cm}, \]

\[|A_0|^2 = 0.528 \pm 0.010 \text{ (stat.)} \pm 0.015 \text{ (syst.)}, \]

\[|A_\perp|^2 = 0.251 \pm 0.013 \text{ (stat.)} \pm 0.014 \text{ (syst.)}, \]

\[\delta_{||} = 2.79 \pm 0.14 \text{ (stat.)} \pm 0.19 \text{ (syst.)} \text{ rad}. \]
Summary

- CMS is a powerful detector for studying B physics because of its excellent tracking and lepton identification.

- New measurement of the Λ_b lifetime:

 \[1.503 \pm 0.052 \text{ (stat.)} \pm 0.031 \text{ (syst.)} \text{ ps} \]

- New measurement of the B_s lifetime difference:

 \[\Delta \Gamma_s = 0.048 \pm 0.024 \text{ (stat.)} \pm 0.003 \text{ (syst.)} \text{ ps}^{-1} \]

- Stay tuned for more exciting B physics results!

All public results can be found at:
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBPH
Backup
Kinematic observables

\[
\frac{d^4 \Gamma(B_s(t))}{d\Theta \, dt} = f(\Theta, t; \alpha) = \sum_{i=1}^{6} O_i(\alpha, t) \cdot g_i(\Theta)
\]

\begin{align*}
O_1 &= |A_0(t)|^2 = |A_0(0)|^2e^{-\Gamma_s t}[\cosh(\Delta\Gamma_s t/2) - \cos \phi_s \sinh(\Delta\Gamma_s t/2)] \\
O_2 &= |A_t(t)|^2 = |A_t(0)|^2e^{-\Gamma_s t}[\cosh(\Delta\Gamma_s t/2) - \cos \phi_s \sinh(\Delta\Gamma_s t/2)] \\
O_3 &= |A_\perp(t)|^2 = |A_\perp(0)|^2e^{-\Gamma_s t}[\cosh(\Delta\Gamma_s t/2) + \cos \phi_s \sinh(\Delta\Gamma_s t/2)] \\
O_4 &= \text{Im}(A_{t}^*(t)A_{\perp}(t)) = |A_t(0)||A_\perp(0)|e^{-\Gamma_s t}[-\cos(\delta_\perp - \delta_t) \sin \phi_s \sinh(\Delta\Gamma_s t/2)] \\
O_5 &= \text{Re}(A_{0}^*(t)A_{t}(t)) = |A_0(0)||A_t(0)| \cos \delta_t e^{-\Gamma_s t}[\cosh(\Delta\Gamma_s t/2) - \cos \phi_s \sinh(\Delta\Gamma_s t/2)] \\
O_6 &= \text{Im}(A_{0}^*(t)A_{\perp}(t)) = |A_0(0)||A_\perp(0)|e^{-\Gamma_s t}[-\cos \delta_\perp \sin \phi_s \sinh(\Delta\Gamma_s t/2)],
\end{align*}

\begin{align*}
g_1 &= 2\cos^2(\psi_T)(1 - \sin^2(\theta_T) \cos^2(\varphi_T)), \\
g_2 &= \sin^2(\psi_T)(1 - \sin^2(\theta_T) \sin^2(\varphi_T)), \\
g_3 &= \sin^2(\psi_T) \sin^2(\theta_T), \\
g_4 &= -\sin^2(\psi_T) \sin^2(2\theta_T) \sin(\varphi_T), \\
g_5 &= \frac{1}{\sqrt{2}} \sin(2\psi_T) \sin^2(\theta_T) \sin(2\varphi_T), \\
g_6 &= \frac{1}{\sqrt{2}} \sin(2\psi_T) \sin(2\theta_T) \sin(\varphi_T).
\end{align*}
Fit Projection B^0

CMS preliminary
$\sqrt{s} = 7$ TeV $L = 5$ fb$^{-1}$

- fit function
- signal
- prompt background
- non-prompt background

Events / (0.0059 GeV/c2)

Pull

Pull

Proper decay time (ps)

Invisible mass $J/\psi K_s$(GeV/c2)

Proper decay time (ps)

Events / (0.16 ps)

Ks