

Studies on B hadron production, spectroscopy and decays at CMS

Kruger 2012

Xin Shi

National Taiwan University

On behalf of CMS collaboration

- Introduction
- B-Hadron Production
- Λ_b lifetime
- B_s lifetime difference ($\Delta\Gamma_s$)
- Summary

- CMS is a general purpose detector at the LHC.
- Inner tracker consists of silicon pixel and silicon strip layers.
- Muons are measured by drift tubes (DT), cathode strip chambers (CSC) and resistive plate chambers (RPC).
- The dimuon mass resolution is less than 1%.
- Powerful tool for B-physics study.

Dimuon mass distribution

• Dimuon mass distribution collected with various dimuon triggers.

B-Hadron Production

Observation of Ξ_b^{*0}

- M $({\Xi_{\rm b}}^{*0})$ = 5945.0 ± 0.7 (stat.) ± 0.3 (syst.) ± 2.7 (PDG) MeV
- Measured mass and width are compatible with theoretical expectations for the $J^{P} = 3/2^{+}$ baryon*

* arXiv:1203.3378.

Measurement of the Λ_b lifetime

- Study of b-baryons is an important ingredient in understanding b-hadron production.
- The non-perturbative QCD model of Heavy Quark Theory provides predictions.
- Recent measurements include those from CDF, D0 and ATLAS.
- Use $\Lambda_b \rightarrow J/\psi \Lambda^0$, $J/\psi \rightarrow \mu \mu$, $\Lambda^0 \rightarrow p \pi$.

Event Selection

- Two oppositely charged muons.
- Constrain the dimuon invariant mass to the known J/ ψ mass.
- Select two other oppositely charged tracks as the proton and pion with the $p_T(proton) > p_T(pion)$.
- Constrain the proton-pion invariant mass to the Λ^0 mass,
 - reject events with $m(p\pi)$ close to K_s mass.

Likelihood Fit and Efficiency

• 2-D unbinned maximum likelihood fit:

Signal: Double Gaussian in *m*, decay in $t \leftarrow proper time$

$$M_{\rm sig}(m) \cdot M_{\rm sig}(t) = G_{\rm sig}(m; \mu_m, \sigma_1, \sigma_2, f) \cdot D_{\rm sig}(t; \tau, \sigma_1, \sigma_2, f)$$

Prompt background: Linear in *m*, Double Gaussian in *t*

$$M_{ ext{prompt}}(m) \cdot M_{ ext{prompt}} = (a_0 + a_1 m) \cdot G_{ ext{prompt}}(t; \mu_t, \sigma_1, \sigma_2, f)$$

Non-prompt background: Linear in m, decay in $t \leftarrow t$ assumptions in the mass or incompletely reconstructed events

$$M_{ ext{non-prompt}}(m) \cdot M_{ ext{non-prompt}} = (a_0 + a_1 m) \cdot D_{ ext{non-prompt}}(t; au, \sigma_1, \sigma_2, f)$$

• Constant efficiency

Fit Projection Λ_b

- Systematic uncertainty sources:
 - Efficiency (main source)
 - Alignment
 - Event selection
 - Fit model
- Final results Λ_b lifetime:

```
1.503 ± 0.052 (stat.) ± 0.031 (syst.) ps
```

Comparison with Previous Results

$\Lambda_{\rm b} \text{ lifetime}$

CMS pr	J/ ψΛ	
ATLAS	(2011)	J/ ψΛ
D 0	(02-11)	J/ ψΛ
CDF2	(02-09)	J/ ψΛ
D0	(02-06)	J/ ψΛ
D 0	(02-06)	$Λ^+_c$ μ
CDF2	(02-06)	$Λ^+_c π$
OPAL	(90-95)	$\Lambda^+_{\mathbf{c}}l, \Lambda l^-l^+$
CDF1	(91-95)	$\Lambda^+_{\mathbf{c}}l$
ALEPH	(91-95)	$\Lambda l^{-}l^{+}$
ALEPH	(91-95)	$\Lambda^+_{\mathbf{c}}l$
DELPH	(91-94)	$\Lambda^+_{\mathbf{c}}l$

errors in black: statistical only errors in grey: syst. added in quadrature band: current best value

data from arXiv:1010.1589 prepared for PDG2011

Measurement of the B_s lifetime difference

B_s lifetime difference

- Two flavour eigenstate of B_s oscillate.
- $B_s B_s$ mixing gives rise to a CP violation phase:

$$\Phi_s = \Phi_M - 2\Phi_D$$

 $\beta_s = arg(-V_t)$

• The final state is an admixture of the CP-even and CP-odd eigenstates.

B_s lifetime difference

• Since B_s is a pseudo-scalar meson, while

 $B_{s}^{0} \xrightarrow{\phi_{D}\approx 0} J/\psi\phi$ $\phi_{M} \xrightarrow{\bar{B}^{0}} -\phi_{D}\approx 0$

J/ ψ and Φ are vector mesons, the orbital angular momentum can have the values L = 0, 1, 2.

- To measure the lifetime difference (ΔΓ_s)
 for the decay rates of the two B_s mass
 eigenstates, an analysis is needed to
 disentangle the two CP eigenstates.
- Decay topology is described by:

 $\Theta = (\theta_T, \psi_T, \varphi_T)$

Two oppositely charged muons.

• Two oppositely charged tracks.

- Build B_s from 4-track vertex fit:
 - Constrain the dimuon invariant mass to the known J/ ψ mass.
 - Constrain the K^+K^- to the ϕ mass.

- The overall efficiency includes: detector acceptance, the trigger conditions, and the selection cuts.
- No sizable correlation between the proper time and the angular variables is found.
- The correlation amongst the angular observables is also negligible.
- The proper decay length efficiency is almost flat in the range [0.02-0.3]cm.

Maximum likelihood fit

- 5-D fit procedure
 - I-D fit of Bs mass to get the mean and the smaller of the two Gaussian function widths.
 - Fit sideband region for the angular background shapes.
 - Fit the full mass range.

Kruger 2012

Systematics

Uncertainty source	$\Delta\Gamma_s [\mathrm{ps}^{-1}]$	ст [cm]	$ A_0 ^2$	$ A_{\perp} ^2$	$\delta_{ }$ [rad]
Signal PDF modeling					11
Signal mass model	0.00072	0.00012	0.0022	0.0006	0.039
Proper time resolution	0.00170	0.00006	0.0007	0.0000	0.007
ϕ_s approximation	0.00000	0.00001	0.0000	0.0000	0.002
S-wave assumption	0.00109	0.00001	0.0130	0.0066	0.056
Background PDF modeling					
Background mass model	0.00019	0.00000	0.0000	0.0001	0.003
Background lifetime model	0.00040	0.00000	0.0001	0.0002	0.003
Peaking B^0 background	0.00025	0.00006	0.0002	0.0022	0.050
Background angular model	0.00175	0.00003	0.0001	0.0064	0.161
Limited simulation statistics					
Angular efficiency parameters	0.00019	0.00002	0.0057	0.0055	0.037
Temporal efficiency parameters	0.00000	0.00005	0.0000	0.0000	0.000
Temporal efficiency parametrization	0.00181	0.00014	0.0005	0.0007	0.001
Angular efficiency parametrization	0.00063	0.00003	0.0021	0.0086	0.007
Likelihood function bias	0.00000	0.00004	0.0004	0.0000	0.014
Total uncertainty	0.00341	0.00022	0.0146	0.0140	0.187

B_s lifetime result

- $\Delta \Gamma_s ~=~ 0.048 \pm 0.024 ~({\rm stat.}) \pm 0.003 ~({\rm syst.}) \, {\rm ps}^{-1}$,
- $c\tau_{B_s} = 0.04580 \pm 0.00059 \text{ (stat.)} \pm 0.00022 \text{ (syst.) cm},$
- $|A_0|^2 = 0.528 \pm 0.010 \text{ (stat.)} \pm 0.015 \text{ (syst.)},$
- $|A_{\perp}|^2 = 0.251 \pm 0.013 \text{ (stat.)} \pm 0.014 \text{ (syst.)},$
 - $\delta_{||} \ \ = \ \ 2.79 \pm 0.14 \; ({\rm stat.}) \pm 0.19 \; ({\rm syst.}) \; {\rm rad} \; . \label{eq:delta_linear}$

- CMS is a powerful detector for studying B physics because of its excellent tracking and lepton identification.
- New measurement of the Λ_b lifetime:

1.503 ± 0.052 (stat.) ± 0.031 (syst.) ps

• New measurement of the B_s lifetime difference:

 $\Delta \Gamma_s = 0.048 \pm 0.024 \text{ (stat.)} \pm 0.003 \text{ (syst.)} \text{ ps}^{-1}$

• Stay tuned for more exciting B physics results!

All public results can be found at:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBPH

Kruger 2012

Backup

Kinematic observables

$$\frac{d^4\Gamma(B_s(t))}{d\Theta dt} = f(\Theta, t; \alpha) = \sum_{i=1}^6 O_i(\alpha, t) g_i(\Theta)$$

$$\begin{array}{lll} O_{1} &=& |A_{0}(t)|^{2} = |A_{0}(0)|^{2}e^{-\Gamma_{s}t}[\cosh(\Delta\Gamma_{s}t/2) - \cos\phi_{s}\sinh(\Delta\Gamma_{s}t/2)] \\ O_{2} &=& |A_{||}(t)|^{2} = |A_{||}(0)|^{2}e^{-\Gamma_{s}t}[\cosh(\Delta\Gamma_{s}t/2) - \cos\phi_{s}\sinh(\Delta\Gamma_{s}t/2)] \\ O_{3} &=& |A_{\perp}(t)|^{2} = |A_{\perp}(0)|^{2}e^{-\Gamma_{s}t}[\cosh(\Delta\Gamma_{s}t/2) + \cos\phi_{s}\sinh(\Delta\Gamma_{s}t/2)] \\ O_{4} &=& Im(A_{||}^{*}(t)A_{\perp}(t)) = |A_{||}(0)||A_{\perp}(0)|e^{-\Gamma_{s}t}[-\cos(\delta_{\perp} - \delta_{\parallel})\sin\phi_{s}\sinh(\Delta\Gamma_{s}t/2)] \\ O_{5} &=& Re(A_{0}^{*}(t)A_{||}(t)) = |A_{0}(0)||A_{||}(0)|\cos\delta_{\parallel}e^{-\Gamma_{s}t}[\cosh(\Delta\Gamma_{s}t/2) - \cos\phi_{s}\sinh(\Delta\Gamma_{s}t/2)] \\ O_{6} &=& Im(A_{0}^{*}(t)A_{\perp}(t)) = |A_{0}(0)||A_{\perp}(0)|e^{-\Gamma_{s}t}[-\cos\delta_{\perp}\sin\phi_{s}\sinh(\Delta\Gamma_{s}t/2)] , \end{array}$$

$$g_{1} = 2\cos^{2}(\psi_{T})(1 - \sin^{2}(\theta_{T})\cos^{2}(\varphi_{T})),$$

$$g_{2} = \sin^{2}(\psi_{T})(1 - \sin^{2}(\theta_{T})\sin^{2}(\varphi_{T})),$$

$$g_{3} = \sin^{2}(\psi_{T})\sin^{2}(\theta_{T}),$$

$$g_{4} = -\sin^{2}(\psi_{T})\sin^{2}(2\theta_{T})\sin(\varphi_{T}),$$

$$g_{5} = \frac{1}{\sqrt{2}}\sin(2\psi_{T})\sin^{2}(\theta_{T})\sin(2\varphi_{T}),$$

$$g_{6} = \frac{1}{\sqrt{2}}\sin(2\psi_{T})\sin(2\theta_{T})\sin(\varphi_{T}).$$

Fit Projection B⁰

