

Search for Higgs decaying to WW at CMS

<u>Leonardo Di Matteo (INFN & Univ. Milano-Bicocca)</u> on behalf of the CMS Collaboration Kruger2012, Kruger Park, 4th Dec. 2012

 \bullet

٠

٠

٠

٠

٠

Talk overview

$H \rightarrow WW \rightarrow Ivqq$

- Pros/Cons
 - Very high cross-section x branching ratio
 - Event is kinematically closed
 → can recontruct a mass peak
 - Only one final state lepton → huge W+jets background, QCD contamination, tight trigger
 - Final state $E_T^{miss} \rightarrow$ worsening in the mass resolution

CMS Experiment at LHC, CERN Data recorded: Wed Aug 10 09:00:48 2011 CES Run/Event: 172992 / 728157871 Lumi section: 519	
w→w lepton	
F _T miss	
	jet1
	jet ₂
	W→qq

- Analysis optimized for gluon fusion production & for real Ws
 - 1! lepton, E_t^{miss}, 2/3 jets in the central part of the detector
 - di-jet mass constrained around m_w
 - **4** total **categories** (e/µ) x (2j/3j)

- Train MVA likelihood discriminators, one for each mass hypothesis and category (e|2j, e|3j, μ|2j, μ|3j)
- Include 5 Higgs decay angles, lepton charge, WW p₁ and rapidity

 Optimize cut to maximize the performance on the expected limit

Background normalization

- Stack backgrounds, perform <u>unbinned maximum likelihood fit</u> to $m_{_{\rm II}}$ data
 - Exclude 65-95 GeV signal region from the fit, retain signal sensitivity
 - W+Jets is unconstrained, let data best determine its normalization
 - QCD multijet normalization contrained to estimation from fit to data lep-MET m₁
 - Apply gaussian constraints for other backgrounds to NLO/NNLO predictions + uncertainties
- Extract relative background normalizations in m_{jj} signal window for the next step
- diboson contribution visible http://arxiv.org/abs/1210.7544

lvqq

Background m_{ww} Shapes

- m_{ww} shapes used for limit setting
 - Signal and minor backgrounds taken from simulation
 - QCD multijet from data in a non-isolated control region
 - W+jets m_w shape as a linear combination of the shapes from high and low m_i data sidebands (SBH, SBL)

Results with 7 + 8 TeV data [vqq U

• Results obtained with 7 TeV (5 fb⁻¹) and 8 TeV (12 fb⁻¹) data

CMS

e: 34 GeV

MET 47GeV

μ: 32 GeV

- Pros/Cons
 - High cross-section x branching ratio
 - Two final state leptons → high S/B, high signal acceptance
 - No mass peak → need precise background estimation → heavily data driven
- Analysis optimized for different production modes
 - 2! leptons opposite charge, large E_t^{miss}, 0/1/2 jets
 - **0/1** jet → **ggH 2** jet → **VBF**
 - Additional **flavour** based **categorization**: different flavour (DF) and same flavour (SF) \rightarrow 6 total **categories** (ee-µµ/eµ) x (0j/1j/2j)
- Two different approaches for signal extraction
 - Cut&Count
 - **2-D shape** [m₁ | m₇] fit

	0 jet	1 jet	2 jet
SF	cut	cut	cut
DF	2D shape	2D shape	cut

Two levels of selection

- **WW level** \rightarrow reduce non-WW backgrounds
- **Higgs level** → reduce non resonant WW

process	characteristic	selection
W+jets (~36000 pb)	Lepton + fake lepton	2 well identified & isolated leptons
Z+jets (~5700 pb)	Z peak, no real E _T ^{miss}	 MVA (0-jet/1-jet) E_t^{miss} > 45/20 GeV (SF/DF 2-j) m_{II} - m_z > 15 GeV (SF)
tī (~225 pb), tW (~22 pb)	Additional b-jets	Jet anti b-tagging
W,Z+photon (~250 pb)	Electron from γ conversions	Conversion veto
WW (~47 pb)	Non resonant	$m_{_{\rm H}}$, $m_{_{\rm T}}$ ($m_{_{\rm H}}$ dependent selection)
WZ (~18 pb), ZZ (~6 pb)	Z peak	• 3^{Rd} lepton veto • $ m_{\parallel} - m_{z} > 15 \text{ GeV} (SF)$

relative importance after selection depends on m_" and jet bin

decreasing cross-section (8 TeV)

Measuring backgrounds

- Measure all backgrounds from data control samples
 - WW from signal free region ($\mathbf{m}_{\parallel} > 100 \text{ GeV}$)
 - For $m_{_{\rm H}}$ > 200 GeV use only simulation
 - Top from b-tagged events
 - DY from Z in-peak data events
 - W+jets from fake-enriched sample, weighted with fake→lepton probability
- Cut&Count analysis dominated by systematics on background normalization
 - **WW** : 5-10%
 - **Top** : 5-20 %
 - **Drell-Yan** : 30 %
 - W+jets : 30-40 %

N_{b-tag} jets in 1-jet bin

Continuous efforts to improve background measurement precision

Cut&Count selections

- To improve S/B further cuts on kinematic variables: <u>m_H dependant optimization</u>
 - For m_H ~ 125 GeV excess found in data

m _H	$p_{\mathrm{T}}^{\ell,\mathrm{max}}$	$p_{\mathrm{T}}^{\ell,\mathrm{min}}$	$m_{\ell\ell} \Delta \phi_{\ell}$		m_{T}	
[GeV]	[GeV]	[GeV]	[GeV]	[°]	[GeV]	
	>	>	<	<	[,]	
120	20	10	40	115	[80,120]	
125	23	10	43	100	[80,123]	
130	25	10	45	90	[80,125]	
160	30	25	50	60	[90,160]	
200	40	25	90	100	[120,200]	
250	55	25	150	140	[120,250]	
300	70	25	200	200 175 [
400	90	25	300	175	[120,400]	

Search for Higgs decaying to WW at CMS

2-D shapes fit

Alternatively: improve discrimination power with 2-d approach (DF 0jet and 1-jet) \rightarrow simple selections applied and S&B [m₁, m₂] distributions are fitted on data

04/12/2012

Results: signal significance

Results: anatomy of the excess

- H → WW deals a poor mass resolution in the excess characterization
 - eg. 125 Higgs lies in [120,135]
- H → WW provides the best handle in the signal crosssection measurement
 - See eg. comparison with $H \rightarrow ZZ$

$VH \rightarrow WW^*$

- Exploit the associated Higgs production which is non-negligible @ low mass
 - $\sigma(WH(mH=125)) \sim 0.7 \text{ pb}$
- $Ivvqq \rightarrow 2!$ leptons o.ch. + 2 Jets + MET
 - Similar to 2-jet bin lvlv analysis
 - Require $m_{jj} \sim m_z/m_w$
- Analysis based on 7 TeV dataset
- $|v|v|v \rightarrow 3!$ leptons |tot. ch| = 1 + MET
 - Similar to 0-jet bin lvlv analysis
 - Require additional lepton
 - Extend acceptance
 (looser cuts on MET and leptons)
 - Analysis based on ICHEP dataset
 - 5 fb⁻¹@ 7 TeV + 5 fb⁻¹@ 8 TeV

$VH \rightarrow WW^*$: Results

- Both analyses to be updated with full 2011-2012 dataset
 → expect news for next spring/summer !
 - CMS will be capable of probing H \rightarrow WW decay also in the VH production mode

νινιν

 CMS has produced 4 different analysis exploiting the H → WW decay based on ggH, VBF and VH production modes

- The Standard Model Higgs boson is excluded, at 95% CL, above 128 GeV up to 600 GeV
 - 225-485, 550-600 GeV in the semileptonic mode
 - 128-600 GeV in the fully leptonic mode

- A broad excess is seen in $H \rightarrow WW \rightarrow IvIv$ analysis compatible with a low m_{H}
 - Observed significance of the excess for $m_{\mu} = 125$ GeV of 3.1 σ (expected 4.1 σ)
 - Best **signal strenght** fit **0.74 \pm 0.25** $\sigma^{M} \rightarrow$ compatible with SM prediction

Search for Higgs decaying to WW at CMS

21

CMS preliminary, $\sqrt{s} = 8$ TeV a.u -Up mu2j H₆₀₀ Down Nominal 0.1 ٠ ٠ 0 500 600 700 400 m_{kjj} (GeV)

Source of uncertainty Magnitude Background $m_{\ell \nu jj}$ shape See Fig. 5 **Background normalization** 0-2% Higgs boson cross-section 13-15% Theory acceptances (PDF) 1-2% Scale uncertainties from jet binning 4-28% Luminosity 4.4% Lepton selection eff. 1-2% Lepton trigger eff. 1% Jet energy scale, resolution, and E_T <1% Likelihood selection 10% See Fig. 7 Signal shape (interference)

Uncertainty propagated to the lvjj mass spectra

- Dominant systematics are background normalization and shape
- Signal systematics include $gg \rightarrow WW$ interference correction uncertainty
 - Correction and related uncertainty significant for $m_{\mu} > 500$
 - •

Cut-based selection DF

$m_{\rm H}$	Н	PP	WZ + ZZ	Top	W + jets	W~(*)	all bkg	data	
	$\rightarrow W^+W^-$	$\rightarrow W^+W^-$	$+Z/\gamma^* \rightarrow \ell^+ \ell^-$	юр	in + jets		an ong.	ciata	
	0-jet category $e\mu$ final state								
120	34.0 ± 7.3	162 ± 16	5.3 ± 0.5	8.6 ± 2.0	38 ± 14	23.1 ± 8.8	237 ± 23	285	
125	58 ± 12	203 ± 19	6.6 ± 0.6	11.0 ± 2.5	44 ± 16	25.6 ± 9.5	291 ± 27	349	
130	86 ± 18	226 ± 21	7.1 ± 0.7	12.2 ± 2.8	47 ± 17	27 ± 10	319 ± 29	388	
160	238 ± 51	125 ± 12	3.7 ± 0.4	13.1 ± 3.1	5.9 ± 2.7	2.6 ± 1.5	160 ± 13	197	
200	95 ± 21	204 ± 19	6.3 ± 0.6	28.9 ± 6.4	7.7 ± 3.5	1.3 ± 0.9	278 ± 21	309	
400	40 ± 11	133 ± 15	6.2 ± 0.7	50 ± 11	7.6 ± 3.3	3.5 ± 2.1	200 ± 19	198	
600	6.6 ± 2.3	42.2 ± 4.8	2.5 ± 0.3	16.5 ± 3.8	4.4 ± 2.0	2.4 ± 1.8	67.9 ± 6.7	64	
	1-jet category <i>e</i> μ final state								
120	14.9 ± 4.3	38.9 ± 6.4	5.3 ± 0.6	40.3 ± 3.0	19.1 ± 7.4	7.1 ± 3.4	111 ± 11	123	
125	27.3 ± 8.0	47.9 ± 7.8	6.5 ± 0.7	49.5 ± 3.3	22.4 ± 8.6	7.1 ± 3.4	134 ± 13	160	
130	40 ± 12	53.9 ± 8.8	7.3 ± 0.8	55.2 ± 3.6	24.5 ± 9.4	7.1 ± 3.4	148 ± 14	182	
160	131 ± 37	44.4 ± 7.0	5.3 ± 0.7	51.8 ± 3.5	9.0 ± 3.9	0.6 ± 0.4	111.1 ± 8.8	145	
200	58 ± 15	80 ± 13	6.8 ± 0.8	114.6 ± 6.5	16.1 ± 6.5	0.4 ± 0.3	238 ± 16	276	
400	29.4 ± 8.1	81 ± 13	7.9 ± 1.2	129.0 ± 7.1	16.8 ± 6.6	0.6 ± 0.5	235 ± 16	226	
600	6.9 ± 1.8	30.0 ± 4.8	3.1 ± 0.4	40.3 ± 3.0	8.4 ± 3.5	0.0 ± 0.0	81.8 ± 6.6	74	
2-jet category <i>eµ</i> final state									
120	1.7 ± 0.2	0.8 ± 0.5	0.1 ± 0.0	0.9 ± 0.3	0.3 ± 0.2	0.1 ± 0.1	2.2 ± 0.6	2	
125	2.8 ± 0.4	0.9 ± 0.5	0.1 ± 0.0	1.5 ± 0.5	0.3 ± 0.2	0.1 ± 0.1	2.9 ± 0.8	2	
130	4.4 ± 0.6	1.3 ± 0.7	0.1 ± 0.0	1.6 ± 0.5	0.3 ± 0.2	0.1 ± 0.1	3.4 ± 0.9	4	
160	11.7 ± 1.5	1.2 ± 0.6	0.0 ± 0.0	1.5 ± 0.5	0.0 ± 0.0	0.1 ± 0.1	2.9 ± 0.8	4	
200	9.3 ± 1.2	2.5 ± 1.2	1.7 ± 1.6	4.6 ± 1.3	0.3 ± 0.4	0.0 ± 0.0	9.1 ± 2.4	8	
400	3.9 ± 0.5	3.5 ± 2.2	1.7 ± 1.6	4.6 ± 1.3	0.0 ± 0.0	0.0 ± 0.0	9.8 ± 3.0	7	
600	1.4 ± 0.2	1.6 ± 1.0	0.0 ± 0.0	1.9 ± 0.8	0.3 ± 0.2	0.0 ± 0.0	3.7 ± 1.3	3	

Expected limits by category UN

WH > |v|v|v focus

Search for Higgs decaying to WW at CMS

- $H \rightarrow WW \rightarrow Ivqq \rightarrow CMS-HIG-12-046$
- $H \rightarrow WW \rightarrow IvIv \rightarrow CMS-HIG-12-042$
- VH \rightarrow VWW \rightarrow jjlvlv \rightarrow CMS-HIG-12-014
- WH \rightarrow WWW \rightarrow IvIvIv \rightarrow CMS-HIG-12-039