Quarkonium Production at STAR

Christopher Powell for the STAR Collaboration

Lawrence Berkeley National Laboratory / University of Cape Town

Kruger Gate, South Africa Christopher 2 – 7, 2012 *KRUGER2012* Kruger Gate, South Africa

Outline

- Introduction
- Experiment
- Particle identification
- J/ ψ production in p+p, d+Au, Au+Au at 200 GeV – Spectra, elliptic flow, nuclear modification factor.
- Υ production in p+p, d+Au, Au+Au at 200 GeV
	- Cross section, nuclear modification factor.
- Summary

Introduction

Charmonia: J/ ψ , ψ^{\prime} , $\chi_{\overline{c}}$ Bottomonia: $\varUpsilon(IS)$, $\varUpsilon(2S)$, $\varUpsilon(S)$, $\chi_{\overline{b}}$

- Heavy quarks are created in the initial hard scattering \rightarrow exposed to the evolution of the system.
- Expect a suppression of quarkonia in a QGP [T. Matsui and H. Satz, Phys Lett. B 178, 416 (1986).]
	- → color screening of heavy quark pair potential
	- \rightarrow unique probe of deconfined medium
- Sequential melting of different states \rightarrow melting depends on binding energy and T. \rightarrow provides a thermometer of QGP

Introduction

However, there are complications to quarkonium production:

- Production mechanism unclear;
- Modifications from Cold Nuclear Matter effects \rightarrow modification of nuclear PDFs (shadowing), nuclear absorption
- *Additional Hot Nuclear Matter effects*
	- \rightarrow regeneration in QGP
	- \rightarrow system size and formation time effects (high- $p_{\overline{\textit{p}}}$ escape from suppression zone) [leakage]
- Feed-down from resonances and decays

 \rightarrow Need to systematically study quarkonia production $\,$ in p+p, d+Au, Au+Au collisions: Measure $\bm{p}_{_{\bm{T}}}$ spectra, elliptic flow, nuclear modification factor to disentangle effects.

STAR Experiment

Solenoidal Tracker at RHIC TOF \mathbb{R} **BEMC TPC** $\boxed{\eta \mid \langle 1, 0 \rangle \langle 0, 2\pi \rangle}$ V Maria & Alex S

 J/ψ , $\Upsilon \rightarrow e^+ \, e^ (BR = 5.9\%, 2.4\%)$

Large Acceptance:

Time Projection Chamber: Tracking \rightarrow p_{T} , η , ϕ $dE/dx \rightarrow PID$

Time Of Flight: Timing res. < 100 ps
 $1/\beta$ \rightarrow PID \rightarrow PID

Barrel Electromagnetic Calorimeter: Tower $\Delta \eta$ x $\Delta \phi$ $= 0.05 \times 0.05$

Large acceptance, excellent particle identification, fast DAQ!

hristopher Powell *KRUGER2012, December 3-7, 2012* 5/20
Kruger Gate, South Africa

Particle Identification: low p

TPC: momentum reconstruction, good separation of electrons from pions using dE/dx. TOF: good separation of electrons from heavier hadrons for $p < 1.5$ GeV/c using $1/\beta$.

hristopher Powell *KRUGER2012, December 3-7, 2012* 6/20
Kruger Gate, South Africa

Particle Identification: high p_{π}

BEMC energy E, TPC momentum p, E/p ~ 1 for electrons. Good electron-hadron separation in E/p for $p > 1.5$ GeV/c.

hristopher Powell *KRUGER2012, December 3-7, 2012* 7/20
Kruger Gate, South Africa

Results

Results from quarkonium production at STAR have been obtained in $p+p$, $d+Au$, and $Au+Au$ collisions

- Production in $p+p$ collisions \rightarrow understand production mechanism \rightarrow provide baseline for heavy ion collisions
- Production in $d+Au$

 \rightarrow constrain modification from cold nuclear matter effects

■ Production in Au+Au

 \rightarrow constrain modifications from hot nuclear matter effects

J/ψ in p+p at 200 GeV

hristopher Powell *KRUGER2012, December 3-7, 2012* 9/20
Kruger Gate, South Africa

$B \rightarrow J/\psi$ (incl.) decays

Contribution from $B \rightarrow J/\psi$ decay ~ 10 – 25 % in p+p collisions at 200 GeV

hristopher Powell *KRUGER2012, December 3-7, 2012* 10/20

J/ψ in d+Au at 200 GeV

J/ψ in d+Au collisions used to constrain CNM effects.

More data required for precise measurement! EPS09 nPDFs + absorption cross section (fit to STAR data): +3.5 -2.6 $+4.0$ -2.8 $\sigma_{\rm abs}$ = 2.8 $^{+3.5}_{-2.6}$ (stat.) $^{+4.0}_{-2.8}$ (syst.) $^{+1.8}_{-1.1}$ (EPS09) EPS09, Nucl. Phys. A 830, 599 (2009) R. Vogt, Phys. Rev. C 81, 044903 (2010) Suppression in central d+Au collisions, however large uncertainties.

J/ψ in Au+Au at 200 GeV

STAR $\bm{p}_{_{\bm{T}}}$ spectrum extended to $0 < p_{T} < 10 \text{ GeV/c.}$

Softer spectra as compared to Blast Wave for lighter hadrons.

 $\rightarrow Regeneration$ at low-p $_{_{T}}$?

 \rightarrow Smaller radial flow?

STAR: Arxiv:1208.2736, Arxiv:1111.6944v2 PHENIX: Phs.Rev.Lett.98:232301,2007 Tsallis Blast-Wave model: arXiv:1101.1912, JPG 37, 08194 (2010)

KRUGER2012, December 3-7, 2012 Christopher Powell *Kruger Gate, South Africa* 12/20

J/ψ in Au+Au at 200 GeV

 J/ψ from recombination of thermalized charm quarks expected to acquire flow and populate low $\mathrm{p_{_{T}}}\rightarrow \textit{Look}$ at J/ψ $\mathrm{p_{_{T}}}$ spectrum and $\mathrm{v_{_{2}}}$

 $J\!/\!\not\!\psi^-_{Z}$ consistent with zero within errors. Disfavor regeneration from thermalized charm quarks in 20-60%.

 \rightarrow Good agreement with initial + regeneration. \rightarrow Regeneration expected to be significant in 0-20%.

 (1) (4) Phys. Rev. Lett. 97, 232301 (2006) (2) Phys. Lett. B595, 202 (2004) (3) Phys. Lett. B655, 126 (2008) (5) X.Zhao, R.Rapp, 24th WWND (2008) (6) Nucl. Phys. A834, 317 (2010) (7) U.Heinz, C. Shen, private communication *Phys. Lett B. 678, 72 (2009).*

hristopher Powell *KRUGER2012, December 3-7, 2012* 13/20

J/ψ in Au+Au at 200 GeV

J/ ψ nuclear modification factor $\rm R_{_{AA}}$ versus $\rm p_{_{T}}\rm{.}$

Good agreement with theory $(i\nu$ nitial + regeneration).

Suppression for $pT < 5$ GeV/c \rightarrow color screening

Increase of $R_{_{AA}}$ with $p_{_{T}}$ $[R_{\rm\scriptscriptstyle AA}^{\rm\scriptscriptstyle A} -1~{\rm for}~pT\,{>}\,5~{\rm GeV\!/c}~{\rm in}~40{\text{-}}60\%]$ \rightarrow formation time effects?

Expect an increase in $R_{_{AA}}$ at low- $\overline{p}_{_{T}}$ in central events from $^{\prime}$ regeneration.

STAR: Arxiv:1208.2736, Arxiv:1111.6944v2 PHENIX: Phs.Rev.Lett.98:232301,2007 Zhao, Rapp: Phys. Rev. C 82, 064905 (2010) Liu et. al: Phys. Lett B. 678, 72 (2009).

hristopher Powell *KRUGER2012, December 3-7, 2012* 14/20
Kruger Gate, South Africa

J/ψ in Au+Au at 200 GeV

J/ ψ nuclear modification factor $\rm R_{_{AA}}$ versus $\rm N_{_{part}}$.

PHENIX: Phs.Rev.Lett.98:232301,2007 Zhao, Rapp: Phys. Rev. C 82, 064905 (2010) Liu et. al: Phys. Lett B. 678, 72 (2009).

Good agreement with theory $(i\nu$ nitial + regeneration). \rightarrow Zhao, Rapp under-estimate R_{AA} at high- $p_{\scriptscriptstyle T}$

Significant suppression in central events \rightarrow high $p_{_{T}}$ is less sensitive to $^$ regeneration, cold nuclear effects.

Less suppression at high p_{τ} compared to low pT STAR: Arxiv:1208.2736, Arxiv:1111.6944v2 \rightarrow formation time effects?

hristopher Powell *KRUGER2012, December 3-7, 2012* 15/20
Kruger Gate, South Africa

Υ in p+p at 200 GeV

KRUGER2012, December 3-7, 2012 Christopher Powell *Kruger Gate, South Africa* 16/20

Υ in d+Au at 200 GeV

 Υ is heavier than J/ψ , less sensitive to nuclear absorption.

Good agreement with anti-shadowing (EKS98) and no Υ nuclear absorption.

> R_{dAu} $= 0.78 \pm 0.28 \pm 0.20$ Drell-Yan and bb not subtracted.

Published 2006 p+p cross section used as baseline (~114 pb).

hristopher Powell *KRUGER2012, December 3-7, 2012* 17/20

Υ in Au+Au at 200 GeV

 Υ nuclear modification factor R_A versus N part

Suppression increases with increasing centrality \rightarrow color screening

Lattice-based potentials \rightarrow Disfavors free energy \rightarrow Consistent with internal energy

Calculations include melting and feed down $(\chi_{b}^{\circ}$ ~50%)

Consistent with complete melting of higher states $\Upsilon(2S+3S)$

 \rightarrow assumes a direct fraction of 51%

hristopher Powell *KRUGER2012, December 3-7, 2012* 18/20
Kruger Gate, South Africa

Summary

In p+p collisions:

- \Box J/ ψ p_T spectrum extended to 0 < p_T < 14 GeV/c;
- \Box B \rightarrow J/ ψ feed-down calculated at 10-25%;
- ▫High statistics ϒ cross section consistent with NLO CEM.

In d+Au collisions:

- \Box Suppression of J/ψ in central events;
- \Box J/ ψ R_{dA} fitted with EPS09 shadowing + absorption,
	- J/ ψ absorption cross section $\sigma_{_{abs}}$ extracted;
- Γ Γ R_{dA} consistent with EKS98 anti-shadowing + no abs.

In Au+Au collisions:

 \Box J/ ψ p_r spectrum softer than TBW from light hadrons, disfavors hydro, good agreement with initial+regeneration; $\mathbb{I}/\mathscr{\psi}$ v₂ consistent with zero, favors initial (initial+regen.); \mathbb{Z} J/ ψ $R_{_{AA}}$ suppressed in central events, decreasing at high $p_{_{T}}$ and in peripheral collisions, agrees with initial+regen.; ▫Υ suppressed in central events, good agreement with latticebased internal energy potential.

Future

Muon Telescope Detector

Heavy Flavor Tracker

MRPC technology (similar to TOF) Acceptance ~ 45% (| η | < 0.5) 118 modules, 1416 readout strips, 2832 readout channels No photon conversion Less Dalitz decay \rightarrow J/ ψ trigger across pT range in central Au+Au collisions

Pixel and silicon strip detector: PXL: 2 layers of CMOS pixel detectors (2.5, 8 cm) IST: low mass silicon strip sensor (14 cm) SSD: double-sided silicon strip detector (22 cm) Constrain $B \to J/\psi$ feed-down

KRUGER2012, December 3-7, 2012 Christopher Powell *Kruger Gate, South Africa* 20/20