

INTERNATIONAL WORKSHOP ON DISCOVERY PHYSICS AT THE LHC KRUGER 2012 DECEMBER 3 - 7, 2012 PROTEA HOTEL, KRUGER GATE SOUTH AFRICA

Testing the SM with Rare decays (a) the LHCb

Eugeni Graugés

on behalf of the LHCb collaboration

OUTLINE

- Introduction
 - LHC & LHCb experiment
 - LHCb physics program, dataset & performance
- Rare Decays
 - Rare B decays

- $B \rightarrow K^* \gamma / B \rightarrow \Phi \gamma$ [PRD 85, 112013 (2012),;NPB 867 (2013) 1-18; LHCb-CONF-2012-004]
- $B \rightarrow K^{(*)}\mu\mu$ [LHCb-CONF-2012-008; arXiv:1210.4492; arXiv:1209.4284; JHEP 07(2012)133]
- $B_s \rightarrow \phi \ \mu\mu \ / B_s \rightarrow \phi \ J/\Psi$ [LHCb-CONF-2012-003]
- $B \rightarrow \pi \mu \mu$ [arXiv:1210.2645]
- $B_s(B_d) \rightarrow \mu \mu$ (& $K_s \rightarrow \mu \mu$) [arXiv:1211.2674; arXiv:1209.4029]
- Rare D decays
 - $D \rightarrow \mu \mu$

[LHCb-CONF-2012-005]

- Search for LFV & LNV
 - $\tau \rightarrow \mu\mu\mu$ [LHCb-CONF-2012-015]; $\tau \rightarrow p \ \mu\mu$ [LHCb-CONF-2012-027]
 - Search for Majorana neutrinos [Phys. Rev. D 85 (2012) 112004]
- Summary & Conclusions

 \rightarrow for CP violation measurements @ LHCb, see Olaf Steinkamp talk (Thursday)

LHC performance

matched by ...

- excellent performance of LHCb detectors:
 - ~99% of operational RO channels,
 - ~95% data taking efficiency
- Dataset: 1/fb in 2011

 and already ...
 ~2/fb in 2012

Beauty production at L

σ_{bb} = 284±53μb (√s=7TeV), In LHCb acceptance $\sigma_{hh} \sim 75 \mu b$

> PLB 694 (2010) 209 All b-hadron species produced at LHC B^0 , B^+ , B_s , B_c , Λ_b , ... (40% 40% 10% 10%)

Charm: ~ beauty x 20

CONF-2010-013

Operated since the end of 2011 at $4 \cdot 10^{32}$ /cm² s (2x design lumi)

~ 30KHz (@7TeV) of bb pairs (10⁴ x B factories)

The LHCb physics program

• New Physics (NP) evidence may appear both in measurements of CP violation and rare decays, mediated by new particles (via their contributions in loop diagrams); e.g.: Comparing CKM quantities determined in tree & loop process

 \Leftrightarrow

protor

proton

- Complementary to ATLAS & CMS direct searches
 If NP is discovered, its structure must be determined
 - New particles would distort the SM (CKM) picture
 - of B decays by modifying:
 - Phases
 - Amplitudes

CP violation Branching ratios Angular distributions

Lorentz Structure

۲

Beauty physics requirements @ LHC

- High Statistics: Need an efficient trigger to select hadronic and leptonic B meson decays, specially taking into account $\sigma_{bb}/\sigma_{inel} \sim o(10^{-3})$
- Excellent vertex resolution, to resolve a displaced seconday vertex
- Background reduction:
 - Very good mass resolution
 - Very efficient particle identification (K/π)

LHCb detector

- VELO: 21 (R+φ) Si station
- RICH 1& 2: C_4F_{10} + Aerogel / CF_4 π/K separation 2<p<100 GeV
- TRACKING: Si+Straw tubes + 4 Tm δp/p = 0.4 – 0.6%

- CALO: SPD/PS, ECAL, HCAL (Lead,Iron,Lead-Scintillator)
- MUON: MWPC + GEM
 π/μ separation

The LHCb trigger

- L0 hardware trigger
 - Search for high p_T μ,γ , e and hadron candidates:
 - CALO $p_T > 3.6 \text{ GeV}$
 - Muon $p_T > 1.5 \text{ GeV}$
- High Level Trigger software farm
 - HLT1 adds impact parameter cuts
 - HLT2 does global event reconstruction

9

Rare B decays

Radiative decays

CP asymmetries in $B^0 \rightarrow K^* \mu^+ \mu^-$ (1/fb)

- SM predicts O(10⁻³)

[JHEP 01 (2009) 019] [JHEP 11 (2011) 122]

- NP could enhance it up to ±0.15

[A, Alok, arXiv:1103.5344]

LHCb measurement:

- Self tagging: $B^0 \rightarrow K^* \mu^+ \mu^-$ with $K^* \rightarrow K^+ \pi^-$

$$\mathcal{A}_{CP}(B^0 \to K^{*0} \mu^+ \mu^-) = \mathcal{A}_{RAW} - \mathcal{A}_{D} - \kappa \mathcal{A}_{P} \approx \mathcal{A}_{RAW} - \mathcal{A}_{RAW}^{K^{*0} J_{P}}$$

 $\mathcal{A}_{CP}\left(B^0 \to K^{*0}\mu^+\mu^-\right) = -0.072 \pm 0.040 \text{ (stat.)} \pm 0.005 \text{ (syst.)}.$

it is assumed $A_{RAW}(B^0 \rightarrow K^* J/\psi)=0$

World's best measurement for A_{cp} in $B^0 \rightarrow K^* \mu^+ \mu^-$

 $\mathcal{A}_{CP} = \frac{\Gamma(B^0 \to \overline{K^{*0}}\mu^+\mu^-) - \Gamma(B^0 \to K^{*0}\mu^+\mu^-)}{\Gamma(\overline{B}{}^0 \to \overline{K^{*0}}\mu^+\mu^-) + \Gamma(B^0 \to K^{*0}\mu^+\mu^-)}$

Consistent with SM $\,$ at 1.8σ

$B^0 \rightarrow K^* \mu^+ \mu^-$

- BR < 10⁻⁶, many observables sensitive to new operators from NP
 - Example: $A_{FB}(q^2 = m_{\mu^+\mu^-}^2) = \frac{N_F N_B}{N_F + N_B}$

(1/fb)

In the SM, A_{FB}(q²) flips sign at a well predicted value of q², measured to be
 4.9^{+1.1}_{-1.3} GeV² at LHCb, consistent with SM prediction: 4-4.3 GeV²

۲

Angular analysis of $B^+ \rightarrow K^+ \mu^+ \mu^-$ (1/fb)

$$\frac{1}{\Gamma} \frac{\mathrm{d}\Gamma[B^+ \to K^+ \mu^+ \mu^-]}{\mathrm{d}\cos\theta_l} = \frac{3}{4} (1 - F_\mathrm{H})(1 - \cos^2\theta_l) + \frac{1}{2}F_\mathrm{H} + A_\mathrm{FB}\cos\theta_l$$

- The decay rate gives access to angular observables: A_{FB} and F_H predicted to be 0 in the SM
- LHCb analysis:
 - − Differential BR, using $B^+ \rightarrow J/\psi K^+$ as normalization channel
 - BR at low q² measured below SM
 - A_{FB} and F_{H} measured in simultaneous fit to mass and cos $θ_{I}$
 - ightarrow Results consistent with SM

Theory from [JHEP 1107 (2011)067][JHEP 1201 (2012) 107]

Isospin asymmetry in $B^{(+)} \rightarrow K^{(*)(+)} \mu^+ \mu^-$ (1/fb)

• Isospin asymmetry A_{I} , between $B^{0} \rightarrow K^{0}(K^{*0})\mu^{+}\mu^{-}$ and $B^{+} \rightarrow K^{+}(K^{*+})\mu^{+}\mu^{-}$, defined as

$$\mathsf{A}_{\mathsf{I}_{-}} = \frac{\mathcal{B}(B^{0} \to K^{(*)0} \mu^{+} \mu^{-}) - \frac{\tau_{0}}{\tau_{+}} \mathcal{B}(B^{+} \to K^{(*)+} \mu^{+} \mu^{-})}{\mathcal{B}(B^{0} \to K^{(*)0} \mu^{+} \mu^{-}) + \frac{\tau_{0}}{\tau_{+}} \mathcal{B}(B^{+} \to K^{(*)+} \mu^{+} \mu^{-})}$$

SM : $A_1 \rightarrow -0.01$ for $K^* \mu^+ \mu^-$ SM: $A_1 \rightarrow 0$ for $K \mu^+ \mu^-$

LHCb Measurements:

- Integrating over q^2 : 4.6 σ from 0 seen for B \rightarrow Kµ⁺µ⁻ decays, **not yet explained**
- Consistent with hints from CDF, BaBar, Belle

$B_s \rightarrow \phi \mu \mu / B_s \rightarrow \phi J/\Psi$

- $B_s \rightarrow \phi \mu \mu$ is a FCNC
- SM: BR = $\sim 1.6 \times 10^{-6}$
- Measurement of BR(B_s $\rightarrow \phi \mu \mu$)/BR(B_s $\rightarrow \phi J/\Psi$) versus the $\mu \mu$ inv. mass
- The BR(B_s $\rightarrow \phi \mu \mu$) definition excludes the J/ Ψ and Ψ ' resonances (for $\mu \mu$)

$$\mathcal{B}(B_s^0 \to \phi \mu \mu) =$$

$$(0.78 \pm 0.10(\text{stat}) \pm 0.06(\text{syst}) \pm 0.28(\mathcal{B})) \times 10^{-6}$$
Data sample of 1/fb collected by the

Data sample of 1/fb collected by the LHCb detector at 7TeV (2011 run)

$B^+ \rightarrow \pi^+ \mu^+ \mu^-$

• The rarest B decay ever observed (until 11/12).

SM prediction:

 $BR(B^+ \rightarrow \pi^+ \mu^+ \mu^-) = (1.96 \pm 0.21) \cdot 10^{-8}$

• Gives access to V_{td}/V_{ts} when compared with $B^+ \rightarrow K^+ \mu^+ \mu^-$

- $B^+ \rightarrow \pi^+ \mu^+ \mu^-$ signal (green)
- Partially reco'ed decays (red dotted)
- Misidentified $K^+\mu^+\mu^-$ (black dashed)
- Total (blue solid line)
- Candidates with μ⁺μ⁻ pair consistent with a J/ψ or ψ(2S) decay are excluded

BR(B⁺ $\rightarrow \pi^{+}\mu^{+}\mu^{-}) =$ [2.4 ±0.6 (stat) ± 0.2 (syst)] · 10⁻⁸

$B^0/B_s \rightarrow \mu^+\mu^-$, 2fb⁻¹

- Double suppression: FCNC & helicity
- Precise SM prediction:

BR $(B_s \rightarrow \mu^+ \mu^-)^{t=0} = (3.23 \pm 0.27) \times 10^{-9}$ BR $(B^0 \rightarrow \mu^+ \mu^-)^{t=0} = (0.107 \pm 0.01) \times 10^{-9}$ Buras, Isidori: arXiv:1208.0934

• A time integrated BR is needed to compare with the experiment

BR($B_s \rightarrow \mu^+ \mu^-$)^{<t>} = (3.54±0.30)×10⁻⁹

De Bruyn et al., PRL 109, 041801 (2012) using LHCb-CONF-2012-002

- Sensitive to NP in scalar/pseudo-scalar sector: MSSM, large tanβ approximation
 BR(B_{s,d}→μ⁺μ⁻) ∝ tan⁶β/M⁴_A
- **Analysis:** soft selection + Boosted Decision Tree combining geometrical and kinematic information

− Use the copious $B_{(s)} \rightarrow h^+h^-$ as calibration

$B^0/B_s \rightarrow \mu^+\mu^-$, 2fb⁻¹

- BR extracted from a simultaneous fit to different BDT bins
- For illustration, take those with high signal likelihood (BDT>0.7)::

• BR(Bs $\rightarrow \mu^+\mu^-$) = (3.2 ^{+1.5} -1.2) · 10⁻⁹

Probability of background-only fluctuation: 5 x $10^{-4} \rightarrow 3.5\sigma$ significance.

• BR(B⁰ \rightarrow $\mu^+\mu^-$) < 9.4 x 10⁻¹⁰ @ 95%C.L

Probability of background-only fluctuation: $11\% \rightarrow 1.2\sigma$.

LHCb-PAPER-2012-043 arXiv:1211.2674, submitted to PRL

$K^0_{S} \rightarrow \mu^+ \mu^-$

• In the 70's:

BR($K_{L}^{0} \rightarrow \mu^{+} \mu^{-}$) measured to be (6.84±0.11)·10⁻⁹, while it had been predicted to be ~ 10⁻⁴ \rightarrow

GIM mechanism, c quark proposed

- SM prediction for BR($K_{S}^{0} \rightarrow \mu^{+}\mu^{-}$): (5.0±1.5)·10⁻¹²
- The peaking background from $K^0 \rightarrow \pi^+ \pi^-$ shifted due to $m_{\pi}-m_{\mu}$

LHCb measurement:

BR($K_{S}^{0} \rightarrow \mu^{+}\mu^{-}$) < 11 (9) x10⁻⁹ at 95% (90%) CL

Approaching predictions of NP models

Factor 30
 improvement
 vs previous
 result (1973!)

Rare D decays

$D^0 \rightarrow \mu^+ \mu^-$

- FCNC, GIM suppressed
- SM BR prediction dominated by long distance contributions BR(D⁰→μ⁺μ⁻)< ~6 x 10⁻¹¹
- LHCb measurement: No excess observed wrt predicted bkg
 → Consistent with the SM prediction → Upper limit set at

BR(D⁰→ $\mu^+\mu^-$) < 1.3 × 10⁻⁸ at 95% C.L.

- − An order of magnitude improvement from previous best limit → BR($D^0 \rightarrow \mu^+\mu^-$)< 1.4 x 10⁻⁷ by Belle [PRD 81 (2010) 091102]
- → The D⁰ mesons are usually obtained from the decay $D^{*+} \rightarrow D^0 \pi^+$
- → Invariant mass resolutions is gained plotting

 $\Delta m = m_{D^*} - m_D = m(\pi \pi \mu) - m(\mu \mu)$

Full fit function (continuous black line), $D^{*+} \rightarrow D^{0}(\pi\pi)\pi^{+}$ (dashed dark grey line), combinatorial background (dashed light grey line), $D^{*+} \rightarrow D^{0}(k\pi)\pi^{+}$ (dotted line) Signal $D^{*+} \rightarrow D^{0}(\mu\mu)\pi^{+}$ (continuous light grey line).

Search for Lepton Flavor Violation R Lepton/Baryon **Number Violation**

Search for $\tau^- \rightarrow \mu^- \mu^+ \mu^-$

- LFV is allowed in the SM when accommodating the v-oscillation observation
- The BR for the LFV decay τ⁻ → μ⁻μ⁺μ⁻: SM prediction is beyond the experimental scope (~10⁻⁵⁴), but not for beyond the SM predictions:
 SUSY variant (~10⁻¹⁰), non universal Z' (~10⁻⁸)

- Current experimental UL on τ^- LFV:
 - − BaBar, 468/fb: BR($\tau^{-} \rightarrow \mu^{-}\mu^{+}\mu^{-}$) < 3.3 · 10⁻⁸ @90% CL
 - − Belle, 782/fb: BR($\tau^- \rightarrow \mu^- \mu^+ \mu^-$) < 2.1 · 10⁻⁸ @90% CL
- Large τ^{-} production rate at LHC $\sigma(\tau) \sim 22\mu b$ within LHCb acceptance $\rightarrow \sim 10^{11} \tau$ /fb @ 7 TeV (mostly from D⁺, decays)
- Observed limit (using 1/fb of data @ 7TeV) using CLs (Preliminary)

BR(τ⁻ → μ⁻μ⁺μ⁻)<6.3 (7.8)·10⁻⁸ @ 90(95)% CL

already close to the B-factories sensitivity, closer with the addition of 2012 dataset

24

Search for $\tau^- \rightarrow p\mu^+\mu^-$ and $\tau^- \rightarrow p$ -bar $\mu^+\mu^-$

- An explanation for matter/anti-matter univers asymmetry would require:
 - CP violation
 - Baryon number violation
- ¿Are there any extra sources of CPV... or BNV?
- So far unsuccessful searches
- Existing BR limits (from B-fact.) on

 $\tau \rightarrow \Lambda h \text{ and } B \rightarrow \Lambda \ell;$

in the 10⁻⁷-10⁻⁸ range

- Searches in LHCb (using 1/fb of data @ 7TeV) for BNV in (adapting τ⁻ → μ⁻μ⁺μ⁻ analysis):
 - τ⁻ → p-bar μ⁺μ⁻
 - τ⁻ → pμ⁺μ⁻
 - LHCb puts first limits
 - BR(τ⁻→ \overline{p} μ⁺μ⁻) < 4.5 x 10⁻⁷
 - BR(τ⁻→ p μ⁻μ⁻) < 6.0 x 10⁻⁷

Search for Mayorana neutrinos in B⁻ decays

 X^+

Phys. Rev. D 85 (2012) 112004

- Decays $B^+ \rightarrow h^- \mu^+ \mu^+$ are (DL=2) strictly forbidden in SM
- They can happen through sterile Majorana v of mass O(1GeV)

• LHCb search for a wide range of such decay modes :

 $D^{-}\mu^{+}\mu^{+}$, $D^{*-}\mu^{+}\mu^{+}$, $\pi^{-}\mu^{+}\mu^{+}$, $D_{s}^{-}\mu^{+}\mu^{+}$, $D^{0}\pi^{-}\mu^{+}\mu^{+}$

• No signals found \rightarrow UL are set on Majorana v production on B decay BR

Summary & Conclusions

Summary

- Rare B, D and K decays
 - Radiative Decays:

Most precise: CP asymmetry measurement on $B \rightarrow K^* \gamma$ and

Branching Ratio of $B \rightarrow \phi \gamma$

- A_{fb} in $B \rightarrow K^* \mu \mu$ decays consistent with SM
- Isospin asymmetry in B \rightarrow Kµµ decays >4 σ away from zero
- Measured BR($B_s \rightarrow \phi \mu\mu$) in agreement within 3σ with CDF and SM
- First b \rightarrow dµµ transition observed in the B $\rightarrow \pi$ µµ decay
- Strong constrains on $\Delta F=1$ Higgs penguins
 - BR(B_s $\rightarrow \mu\mu$) = 3.2^{+1.5}_{-1.2} x 10⁻⁹, evidence with 3.5 σ significance
 - BR(B_d $\rightarrow \mu\mu$) < 9.4 x 10⁻¹⁰
 - BR(K_s $\rightarrow \mu\mu$) < 1.1 x 10⁻⁸
 - BR(D $\rightarrow \mu\mu$) < 1.3 x 10⁻⁸

@95% CL

- No evidence for LFV & LNV in $\tau \rightarrow \mu\mu\mu$, $\tau \rightarrow p \ \mu\mu$ and $B^+ \rightarrow h^-\mu^+\mu^+$ decays

Conclusions

- Excellent performance of LHC has allowed LHCb to gather 1/fb @ 7 TeV during 2011, and already 2/fb @ 8 TeV during 2012
- Plenty of results with 1/fb already public, in most cases very competitive measurement if not world's best. A large list of other analysis already under study, given the reach that the data gathered so far already provides.
- LHCb is revealing itself a fantastic experiment to look at rare B, D, K and lepton decays that are very sensitive to NP beyond the SM.
- So far, SM shows itself robust when put under stringent tests by rare decay measurements. No NP has been found (yet) in key channels, but still looking for NP remaining areas.
- After the LS1 (2013-2014), more data will be accumulated (@~13TeV). It is foreseen an LHCb upgrade during LS2 (~2018), to improve the exploitation of the LHC data and increase the opportunities of NP discovery (see Olaf's talk on Thursday)

$B^0 \rightarrow K^* \mu^+ \mu^-$

- Flavour changing neutral current → loop
- Allows to test Lorentz-structure:

$$H_{eff} = -\frac{4G_{F}}{\sqrt{2}} V_{tb} V_{ts}^{*} \sum_{i} \left[\underbrace{C_{i}(\mu)O_{i}(\mu)}_{\text{left-handed part}} + \underbrace{C_{i}'(\mu)O_{i}'(\mu)}_{\text{right-handed part}} \right] \stackrel{i=1,2}{\underset{i=3}{\overset{i=3-6,8}{\underset{i=3}{\overset{i=3-6,8}{\underset{i=3}{\overset{i=3-6,8}{\underset{i=3}{\overset{i=3-6,8}{\underset{i=3}{\atop_{i=3}{\atop_{i=3}{\atop_{i=3}{\atop_{i=3}{\underset{i=3}{\underset{i=3}{\underset{i=3}{\underset{i=3}{\underset{i=3}{\underset{i=3}{\underset{i=3}{\atop_{i=3}{\atop_{i=3}{\underset{i=3}{\atop_{i=3}{\atop_{i=3}{\underset{i=3}{\atop_{i=3}{\atop_{i=3}{\atop_{i=3}{\atop_{i=3}{\atop_{i=3}{\atop_{i=3}{\atop_{i=3}{\atop_{i=3}{\atop_{i=3}{\atop$$

- Angular analysis of $B^0 {\rightarrow} K^* \ \mu^+ \mu^-$
 - − $K^* \rightarrow K\pi$ self tagging → allows to probe helicity structure
 - Highly sensitive to $C_7^{(1)}$, $C_9^{(1)}$, $C_{10}^{(2)}$
- Can measure a variety of angular observables which have small hadronic uncertainties
 - A_{FB}, the forward-backward asymmetry and its zero crossing point
 - F_L, the fraction of K^{*0} longitudinal polarization
 - $S_3 \sim A_T^2 (1-F_L)$, the asymmetry in K^{*0} transverse polarization

Selection

 Soft selection to reduce size of dataset, similar to control channels unchanged to previous analyses

Normalization

- Convert number of observed events in branching fraction by normalizing to $B^{\pm} \rightarrow J/\psi K^{\pm}$ and $B \rightarrow K^{+}\pi^{2-}$

Slightly lower than in 2011 measurement due to higher ${\cal L}$ and x-section

b fragmentation functions

- LHCb has measured the fraction of $b \rightarrow B_s$ in two ways:
 - − Ratio of $B_s \rightarrow D_s \mu X$ to $B \rightarrow D^+ \mu X$
 - − Ratio of $B_s \rightarrow D_s \pi^+$ to $B \rightarrow D^+K$ and $B^0 \rightarrow D^+\pi^+$

[PRD85 (2012) 032008] (newly updated: 1fb⁻¹ @ 7 TeV

• Combined result $\frac{f_s}{f_d} = 0.256 \pm 0.020$

[LHCb-Paper-2012-037] to appear shortly

- Found to be dependent of p_T
 - For the p_T values involved: effect smaller than 0.02
 → negligible
- Stability 7 vs 8 TeV checked
 - B^+ →J/ψK⁺/B_s→J/ψφ ratio stable

Constraints on SUSY

Based on Straub, DM, arXiv:1107.0266

Upgrade schedule

2012	LHCb data taking (8 TeV)
2013-14	Long Shutd. 1 / LHCb maintenance, first infrastructures for upgrade
2015-17	LHCb data taking (13-14 TeV), double s _{bb} , s _{cc}
2018-19	Long Shutd. 2 / LHCb upgrade installation [Atlas/Cms upgrades phase 1]
2019-21	LHCb data taking (14 TeV) @ 2·10 ³³
≥ 2022	HL-LHC [Atlas/Cms upgrades phase 2]
Preparation:	
2012-13	R&D, technological choices, preparation of subsystems TDRs
2014	Requests for approval/Funding/Procurements
2015-19	Construction & installation

Observation of excited Λ^0_b baryons

- First observation of excited baryons containing a b quark
- $\Lambda_{b}^{*0} \rightarrow \pi^{+}\pi^{-}\Lambda_{b}(\rightarrow \pi^{-}\Lambda_{c}^{+}(\rightarrow pK^{-}\pi^{+})).$

4.9σ, 10.1σ

Beauty physics requirements @ LHC

Tracking: Primary Vertex (PV), impact parameter (IP) and invariant mass resolutions

Particle ID performance

PID calibration, efficiency & purity determination based on data samples of clean final states: PID performance close to MC expectations

Beauty production at L

X-section prediction (PYTHIA8) ۲

√s = 14, 10, 7 TeV $\sigma_{\text{inelastic}} \sim 80 \text{ mb} \text{ x} (1, 0.95, 0.89)$ $\sigma_{\rm bb} \simeq 500 \,\mu b \, x (1, 0.67, 0.44)$ ~ 250µb

σ_{bb} = 284±53μb (√s=7TeV),

In LHCb acceptance σ_{bb} ~ **75μb** PLB 694 (2010) 209

All b-hadron species produced at LHC

 B^{0} , B^{+} , B_{s} , B_{c} , Λ_{b} , ...

(40% 40% 10% 10%)

- ~ 30KHz (@7TeV) of bb pairs (10⁴ x B factories)
- Charm: ~ beauty x 20

CONF-2010-013

ATLAS/CMS acceptance: |n|<2.5

Operated since the end of 2011 at

 $4 \cdot 10^{32}$ /cm² s (2x design lumi)

Pileup @ 50ns BX: <µ>=1.7

η

Flavour tagging

FLAVOR TAGGING: (EPJ C 72 (2012) 2022)

Algorithms implemented in NNs:

- Opposite side: Exploits of associated b-hadron
- Same Side: Uses remnants of signal hadronization

