Hard Probes 2013

The 6th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions

November 4 - 8, 2013 Cape Town, South Africa

Open Heavy Flavour, Quarkonia, Thermal and Electroweak Physics

Torsten Dahms –
 Excellence Cluster Universe - TU München

Technische Universität München

Wrapping up:

- 1. ALICE: R_{AA} and v₂ of muons from HF decays (Gines Martinez Garcia, SUBATECH)
- 2. STAR: open heavy flavour (Zhenyu Ye, UIC)
- 3. ALICE: D mesons (Andrea Rossi, CERN)
- 4. PHENIX: charmonia (Tony Frawley, FSU)
- 5. ALICE: Υ (Francesco Bossu, iThemba Labs)
- 6. CMS: $\Upsilon + J/\psi v_2$ (Dongho Moon, UIC)
- 7. PHENIX: low p_T direct photons (Benjamin Bannier, SBU)
- 8. ALICE: low mass dimuons (Antonio Uras, Lyon)
- 9. PHENIX: dielectrons in d+Au (Deepali Sharma, SBU)
- 10. ALICE: electrons from HF decays (Elienos Pereira de Oliveira Filho, Sao Paulo)
- 11. ALICE: HF (Davide Caffarri, Padova)
- 12. STAR: low mass dielectrons (Joey Butterworth, Rice)
- 13. CMS: quarkonia in pp (Valentin Knünz, HEPHY)
- 14. Quarkonium production and polarization (Carlos Lourenço, CERN)
- 15. ATLAS: EWK bosons in PbPb (Thomas Balestri, SBU)
- 16. CMS: EWK bosons in PbPb (Alice Florent, LLR)
- 17. PHENIX: Quarkonia (Darren McGlinchey, Colorado)
- 18. STAR: Quarkonia (Jaroslav Bielcik, FNSPE)
- 19. LHCb: Quarkonia (R. Jacobsson, CERN)
- 20. ALICE: Quarkonia (Cynthia Hadjidakis, IPNO)
- 21. CMS: Quarkonia (Lamia Benhabib, CERN)

plenary w/o dedicated plenary parallel

1 minute per talk

Electroweak bosons

ATLAS: T. Balestri (Thu, 16h20) CMS: A. Florent (Thu, 16h40)

- Confirm binary scaling
- No strong nuclear PDF effects, more sensitivity with pPb data?

Direct photons at low pt

- Direct photons at high p_T:
 - ▶ prompt QCD photons → scale like N_{coll}
- Direct photons at low p_T:
 - a window for thermal radiation
 - virtual photon "extrapolation" confirmed with measurement of real photons via conversions

Low mass dileptons

BES shows low mass enhancement at all √s_{NN}

STAR: J. Butterworth (Wed, 11h00)

- p melting sensitive to total baryon density not net baryon density
- model describing data include chirally symmetric phase

no news on central Au+Au from PHENIX

High-mass dileptons

- Dileptons provide a way to measure charm and bottom cross sections
 - and their correlations

PHENIX: D. Sharma (Tue, 14h50)

- pp equivalent HF cross section
 - $\sigma_{cc}^{NN} = 704 \pm 47 \text{ (stat)} \pm 183 \text{ (syst)} \pm 40 \text{ (model)} \ \mu \text{b}$
 - \bullet $\sigma_{bb}^{NN} = 4.29 \pm 0.39 \text{ (stat)} \pm 1.08 \text{ (syst)} \pm 0.11 \text{ (model)} \ \mu \text{b}$

Open HF in pp

ALICE: A. Rossi (Tue, 14h50) and D. Caffarri (Wed, 9h00)

Total charm cross section and pt spectrum well described by FONLL

JHEP 1201 (2012) 128 Phys. Rev. D 86, 112007 (2012) Phys. Lett. B 718 (2012) 279 for D_s⁺

Phys. Lett. B 708 (2012) 265

Quarkonia in pp: Polarization

arxiv:1311.1621

STAR: J. Bielcik (Fri, 9h30)

CMS: V. Knünz (Thu, 15h40) and C. Lourenço (Thu, 16h00)

Do we really understand pp?

Open HF in AA

STAR: Z. Ye (Mon, 14h30) ALICE: A. Rossi (Tue, 14h50) and D. Caffarri (Wed, 9h00)

- At RHIC: total charm cross section scales with N_{coll}
- At the LHC: need low-p_T D mesons
- Midrapidity at RHIC: anti-shadowing
- Midrapidity at LHC: shadowing

Open HF in pA

ALICE: A. Rossi (Tue, 14h50) and D. Caffarri (Wed, 9h00)

- difference between D and e from beauty?
 - or just not enough yield in the hadronic cocktail

• Speaking of beauty:

LHCb: R. Jacobsson (Fri, 11h00)

Open HF in AA: RAA vs v2

Open HF: charm vs beauty

 mass dependent radiative energy loss can explain quantitatively the observed difference ALICE: A. Rossi (Tue, 14h50) and D. Caffarri (Wed, 9h00) CMS data from CMS PAS HIN-12-014

Open HF: one N to rule them all?

PHENIX: M. Durham (Mon, 15h10)

arxiv:1310.8286

Closed HF a.k.a the Thermometer

Closed HF a.k.a the Thermometer

Forward: similar behavior -Short time in nucleus

p_ (GeV/c)

-Low comover density

Mid- and backwards rapidity: DIFFERENT behavior enhanced open HF versus suppressed J/ψ

Open vs Closed HF in AA

- Sequential melting a la Satz:
 - less closed than open HF
 - not: less closed HF in AA than in pp
- At RHIC: open charm scales with $N_{coll} \rightarrow R_{AA}(J/\psi) = J/\psi / D$ in PbPb
 - ignoring the large uncertainties on open charm

Open vs. Closed HF in AA

- But how to compare open and closed HF with p_T cuts?
 - ▶ not trivial to select kinematic region of interest: same quark p_T, same hadron p_T,...?
- Similar suppression for "high p_T" D and J/ψ

Quarkonia in AA

PHENIX: A. Frawley (Mon, 16h00) and D. McGlinchey (Fri, 9h00)

- Midrapidity R_{AA} doesn't change with √s_{NN}
 - ▶ would have expected recombination to contribute less at lower √s_{NN}
 - ▶ compensated by lower √s_{NN} moving midrapidity into antishadowing?
- Or: no recombination and difference between forward and midrapidity just shadowing?
 - ▶ (at forward rapidity lower √s_{NN} means moving out of the shadowing region)

Quarkonia in AA

STAR: J. Bielcik (Fri, 9h30) ALICE: C. Hadjidakis (Fri, 11h30)

- LHC: less suppression at low p_T than at high p_T
 - consistent with screening + recombination
- RHIC: more suppression at low p_T than at high p_T
 - screening w/o significant recombination contribution

Quarkonia in AA vs. pA

- Attempt to compare R_{AA} with R_{pA}^2
 - ▶ assume 2→1 kinematics, comparable x_g, and factorization of shadowing...
 - ▶ suppression at high p_T unaffected by CNM
 - ▶ CNM correction at low p_T enhances R_{AA}

ALICE: M. Winn (Thu, 16h20) and C. Hadjidakis (Fri, 11h30)

Quarkonia v₂

STAR found v₂ consistent with 0

STAR: J. Bielcik (Fri, 9h30)

ALICE: C. Hadjidakis (Fri, 11h30)

CMS: D. Moon (Mon, 16h40) and L. Benhabib (Fri, 12h00)

Quarkonia v₂

- STAR found v₂ consistent with 0
- ALICE found "hint of v₂"
 - as expected for recombination

STAR: J. Bielcik (Fri, 9h30)

ALICE: C. Hadjidakis (Fri, 11h30)

CMS: D. Moon (Mon, 16h40) and L. Benhabib (Fri, 12h00)

Quarkonia v₂

- STAR found v₂ consistent with 0
- ALICE found "hint of v₂"
 - as expected for recombination
- CMS measured significant v₂
 - though only above 6.5 GeV/c
 - ▶ measurement also for 3<p⊤<6.5 GeV/c</p>
 - ▶ high- p_T v_2 → path-length dependent suppression
- Taking all results together
 - → J/ψ has non-zero v₂

STAR: J. Bielcik (Fri, 9h30)

ALICE: C. Hadjidakis (Fri, 11h30)

CMS: D. Moon (Mon, 16h40) and L. Benhabib (Fri, 12h00)

Quarkonia vs. D v₂

- STAR found v₂ consistent with 0
- ALICE found "hint of v₂"
 - as expected for recombination
- CMS measured significant v₂
 - though only above 6.5 GeV/c
 - ▶ measurement also for 3T<6.5 GeV/c</p>
 - ► high- $p_T v_2 \rightarrow path$ -length dependent suppression
- Taking all results together
 - ▶ J/psi has non-zero v₂
- Comparison to light hadrons and D

Quarkonia vs. D v₂ scaling?

- STAR found v₂ consistent with 0
- ALICE found "hint of v₂"
 - as expected for recombination
- CMS measured significant v₂
 - though only above 6.5 GeV/c
 - ▶ measurement also for 3<6.5 GeV/c</p>
 - ► high- $p_T v_2 \rightarrow path$ -length dependent suppression
- Taking all results together
 - J/psi has non-zero v₂
- Comparison to light hadrons and D
- What about the n_q scaling?
 - approximate scaling for D (charm quark flows as much as the light quark?)
 - no such scaling for J/ψ
 - ▶ I am again ignoring uncertainties ☺

thanks to C. Mironov for making the plot in the middle of the night

Bottomonia

- ALICE extends CMS Y measurement towards forward rapidity
 - no significant change in suppression with rapidity

STAR: J. Bielcik (Fri, 9h30)
ALICE: F. Bossu (Mon, 16h20)
and C. Hadjidakis (Fri, 11h30)
CMS: D. Moon (Mon, 16h40)
and L. Benhabib (Fri, 12h00)

Excited quarkonia states in pA

- In pA excited states suppressed relative to ground state
 - cold effects differ for excited and ground states
- Consequences for AA results?

- PHENIX: A. Frawley (Mon, 16h00) and D. McGlinchey (Fri, 9h00) ALICE: M. Winn (Thu, 16h20) and C. Hadjidakis (Fri, 11h30) CMS: D. Moon (Mon, 16h40) and L. Benhabib (Fri, 12h00)
- ▶ needs modelling, naive squaring for Y would still leave room for extra hot effects
- but then there is the multiplicity dependence...

Summary

- A wealth of new results from all heavy-ion experiments at RHIC and the LHC
- Electroweak probes confirm the binary collision scaling
 - pPb data may give tighter constrains on nuclear PDFs
- Enhancement of low direct photons via virtual photons confirmed by real photon measurement
 - thermal photons, but rates and v2 still challenge to theory
- Open HF with intermediate pT at RHIC show enhancement in d+Au, while no strong modification is observed at the LHC
 - constrain CNM at low x
- Open HF suppression at RHIC and LHC go beyond CNM effects
 - heavy quark energy loss in the QGP
 - c quarks lose more energy than b quarks
- Closed HF at RHIC
 - detailed studies in a variety of collision systems that still need to be understood
- Closed HF at low pT the LHC: more and more indications for recombination
 - ▶ if it walks like a duck, ...
- Closed HF at intermediate pT at the LHC:
 - ▶ it flows, but less than open HF (high pt just like light hadrons: path length dependent suppression)
- But what about pp and pA vs. multiplicity…?
- Many apologies to everybody that I could not include