Hard Probes 2013: p+Pb Jets, correlations summary

Brian. A Cole

A big thank you to organizers for a great Hard Probes conference

Charged particle R_{pPb}

- Good agreement on (almost) minimumbias charged particle RpPb
 - ⇒Beware differences in event selection

CMS: dijet balance, acoplanarity

- Dijet Δφ, p_{T2}/p_{T1}
 in different
 forward E_T bins
 - ⇒No indication of jet quenching or broadening

ALICE: Dijet acoplanarity

- Study dijet
 acoplanarity
 Using k_T
- •Compare p+p to high multiplicity p+Pb
 - ⇒Observe no broadening in p+Pb
 - ⇒Where are the effects of multiple scattering?

ALICE: (charged) jet RpPb

- •p+Pb inclusive R = 0.4 charged particle jets compared to scaled 7 TeV p-p (|η| < 0.5)
- $-RpPb \approx 1$
 - ⇒ Since p_T ≥ p_T^{ch}, implies R_{pPb} ≈ 1 to larger p_T
 - ⇒ No modification of jet yield out to/beyond 100 GeV in inclusive p+Pb

CMS: dijet pair η

- Use dijet pair kinematics to probe nPDF
 - Sensitive to shape of the distribution, not absolute yields
 - ⇒See backward (Pb direction) shift of dijet η distribution, consistent with EPS09
- (Minor) comment: why not y*dijet?

CMS dijet, HF ET dependence

- •For higher HF E_T (|η|>4), dijet pair η distribution shifts backwards, narrows
 - ⇒Too rapidly to be consistent with nPDF

CMS dijet, HF ET dependence

•Strong variation of dijet pair η distribution with increasing HF E_T

ATLAS single jets

"Inclusive" RpPb

- PYTHIA used as baseline
- Mid-rapidity and forward (proton direction)
- High p_T where UE has no impact
 - ⇒R_{pPb} > 1 at midrapidity
 - ⇒Consistent with 1 more forward (larger errors)

ATLAS p+Pb jet Rcp, RpPb

•Enhancement (suppression) of forward/ high p_T jets in peripheral (central)!?

hard-soft correlations, E conservation

- Beware: we know that there are hard-soft correlations in p-p collisions
 - − e.g. between jets and forward E_T
 - ⇒Anti-correlation for jets close in η to the E_T measurement (see below).
- •Physical origin?
 - Energy conservation likely important
 - ⇒Where "centrality" is measured important.

ATLAS jet Rcp, E-scaling

 The mechanism that is responsible for the centrality dependence of (forward) jet production depends on the jet energy

CMS dijet, forward/backward HF ET

From Doga's talk

- Vary both forward and backward HF ET
 - Stronger backward shift with Pb side HF E_T for larger p side HF E_T
 - ⇒ Dynamics or kinematics?

CMS charged particle RpPb

- •Unexpected behavior also observed in inclusive charged particle R_{pPb} (|η_{cm}| < 1)
 - ⇒Not consistent with nPDF @ y = 0
 - ⇒η_{cm} symmetric out to η_{cm} ~ 1.8

Two-particle (ridge) correlations

Paradigm shift

- Much can happen in one year ...
- •Still too soon to make definitive statement regarding CGC vs final-state collectivity.
 - But, recent results suggestive of final-state collective effects.
- Focus on new results:

PHENIX: long-range 2-particle correlations

- •PHENIX sees near-side ridge for $\Delta \eta > 6.2$
- -but wide dijet peak (or p conservation?) makes peripheral subtraction difficult
 - ⇒use scalar product, event plane methods

PHENIX: long-range 2-particle correlations

 Event plane method yields smaller v₂ than the published mid-rapidity results.

PID dependence

- •ALICE previously reported mass dependence to v₂
 - ⇒Strongly suggestive of collective final state origin
- PHENIX now sees mass ordering, but much weaker
 - ⇒Consistent with weaker radial flow, larger initial eccentricity?

ATLAS R_{pPb} vs centrality

- From Peter S.'s talk on Monday
 - Suppose "Cronin effect" is due to collectivity
 - ⇒Strongly rapidity dependent
 - ⇒ Then, likely v₂ and v₃ will be as well (PHENIX)

Conclusions: jets

Jet story is not as simple as we might have thought:

From Aaron's talk

- 2 2
- \triangleright Strong correlation between hard (q > (100 GeV)) and soft (UE) particle production
 - In collinear factorized QCD these processes should factorize
 - Correlation not obviously describable by known mechanism
- Case 1: Suppression is the result of a correlation between hard and soft processes affects centrality variable
 - Is correlation due to kinematic constraints?
 - Suppression scales with jet energy
 - Effect significant well away from kinematic limit
 - Is correlation a feature of proton wave function?
 - Likely selecting valence quarks in the proton
 - Know that in pp collisions, hard scattering processes are accompanied by larger underlying event
 - Goes in opposite direction as p+Pb effect
 - To what extend are these related?
- Case 2: CNM effects cause suppression in central collisions and enhancement in peripheral collisions
 - Correlation enters through centrality dependence of CNM effects

Conclusions: correlations

- Steady progress on p+Pb correlations
- New at this meeting:
- results from PHENIX and STAR
 - ⇒Reduction in PHENIX v₂ using rapidity separation, event plane method
 - ⇒As argued by STAR?
- But, we still do not have consistent story between PHENIX and STAR
 - **⇒Needs resolution**
- Need analysis of η dependence.
- •Role of "fluctuations" (Glauber-Gribov, Muller-Qiu, ...) needs to be understood.