

Onia production in pA and Ap collisions at LHCb - A = Pb -

R. Jacobsson

on behalf of the LHCb Collaboration

Outline

- LHCb objectives and characteristics
- Detector performance
- pA physics motivation New comers!
- pA cross-section measurement
- Measurement of J/ψ in pA
- Conclusions with future prospects

LHCb @ LHC

910 Members, from 64 Institutes in 16 Countries

"Hard Probes", Cape Town, South Africa, November 4 - 8, 2013

LHCb Main Objective

- Focus on measuring *indirect* effects of New Physics in CP violation and Rare decays using FCNC processes mediated by loop (box and penguin) diagrams
 - Strongly suppressed processes allow distinguishing NP sources
 - Virtual effects allow probing energies much higher than the E_{cms} of the LHC
 - → Complementary to the direct searches by Atlas and CMS

Contribution from New Physics $\Phi_s^{NP} \propto \frac{|\delta|}{\Lambda_{NP}^2}$, $\Lambda_{NP} \sim$ mass of new particles

• While initial aim of LHCb was b-physics, has also demonstrated that it can do

- Charm physics (oscillations, CP violation)
- QCD physics (PDFs via Z/W production, Central Exclusive Production,...)
- In beyond design conditions, LHCb has earned the title of « General Purpose Forward Detector »

World Class Measurements

LHCb Detector

Covers ~4% of the solid angle, but captures ~40% of the heavy quark production cross-section in pp collisions

• Acceptance $2 < \eta(pp) < 5$ with entire detector

Strengths of LHCb

candidates / (0.1 ps)

400

200

- Collect high statistics of a large variety of B and D \odot final states in an environment with very large background
 - Fast and efficient trigger for both hadronic and leptonic final states
 - **Requires reconstruction** ٠
- **Resolve fast oscillations** \odot
 - Vertex resolution
- Background reduction and flavour tagging \odot
 - Very good impact parameter resolution ۲
 - Determination of track parameters
 - Charge determination and momentum resolution ۰
 - Mass resolution ۲
 - K/π separation in a wide momentum range ۲
 - γ / π^0 reconstruction, electron identification ۲
 - Muon identification ۲
- ... in the entire acceptance $2 < \eta < 5$ \odot

LHCb Detector Performance

Momentum resolution excellent

- From **0.4%** at 5 GeV to **0.6 %** at 100 GeV/c
- Important ingredient to study narrow states
- Momentum scale checked by comparing the mass of B mesons to the PDG values.
 - $B_S \rightarrow J/\Psi \Phi$: $\sigma \approx 8 \text{ MeV/c}^2$

 $J/\Psi \rightarrow \mu\mu$: $\sigma \approx 15 \text{ MeV/c}^2$

"Hard Probes", Cape Town, South Africa, November 4 - 8, 2013

pA Physics Motivation

Natural path to challenge the LHCb performance on ion collisions!

- LHCb can play an important role
 - → Unique rapidity coverage not accessible by other LHC experiments
- pA collision is interesting both in itself and in understanding heavy ion collisions
 - Heavy flavour and quarkonium important probes of the QGP energy loss mechanisms, medium transport properties, quark deconfinement, and temperature
 →pA data allows factorizing the QGP effects from Cold Nuclear Matter effects

Also:

- Study soft QCD, low-x physics
 - → energy-loss vs. gluon density saturation effects
- Study multi-parton interactions using charged-particle production
- Sensitive probes of properties of nuclear matter with heavy quarkonium production:
 - Nuclear attenuation factors
 - Nuclear parton distribution function (nPDF)
 - → Tests phenomenological models
- LHCb first results with nuclear attenuation factors using J/ψ ($\rightarrow \mu\mu$)

Rapidity Coverage and Species Configuration Forward (-backward) direction defined along the proton (lead) beam \odot Rapidity coverage in E_{cms}: у M4 M5 SPD/PS HCAL M3 ECAL 5m Magnet y = +0.47T3 RICH2 MI pA: 1.5 < y < 4.5 RICH1 Vertex Locator Lead Proton - 5m У M4 M5 PD/PS HCAL M3 ECAL 5m y = - 0.47 Magnet T3 RICH2 Ap: −5.5 < y < −2.5 T2 RICH1 Vertex Locator Proton Lead → Common range for measurements: - 5m 2.5 < |y| < 4

"Hard Probes", Cape Town, South Africa, November 4 - 8, 2013

R. Jacobsson

<u>12</u>

Proton-Lead Data Taking 2012-2013

• $E_p=4 \text{ TeV} / E_{Pb}=1.58 \text{ TeV} \rightarrow E_{cms}$ (nucleon-nucleon) = 5.02 TeV

• Pilot run Sept. 2012:

- → L_{int} ~ 1 μb⁻¹
 - Multiplicity
 - First look at strange particle production
 - Inelastic cross-section determination

• pA Run Jan 2013:

→ $\mathcal{I} = 5 * 10^{27} \text{ cm}^{-2} \text{s}^{-1}$

→ Four different configurations:

- pA : 1.1 nb-1
- Ap : 0.5 nb-1
- → After data quality
- ➔ Both LHCb spectrometer polarities

• The results shown here are based on these data sets

Event Properties

[LHCb-CONF-2012-034]

September 2012 pilot run:

- Luminosity determined by beam-gas imaging with the help of LHCb neon gas injection system (SMOG) and event counting together with beam-gas subtraction:
- Inelastic pA cross section $\sigma_{pA} = \frac{\rho_{pA}}{L*\epsilon}$
 - Event tag: At least one charged track with 2.5 < y < 4.5 with pT > 0.2 GeV/c
 - Trigger efficiency: ~99 ± 1%
 - Event count efficiency: 98 ± 2%

• Measured cross section: σ_{pA} = 2.09 ± 0.12 b

- Error dominated by statistics together with ~5% uncertainty on luminosity measurement
- Agree with expected result from geometric behaviour : $\sigma_{pp} \times A^{2/3} \sim 2.1$ b

Strange particle production

- The unique angular coverage of LHCb enables study strangeness, charm and also beauty production in regions not accessible to the other experiments.
- Preliminary study of V0 production ratios in p-Pb is promising
 - Pilot run data:

[[]LHCb-CONF-2012-034]

• First data analysis concentrated on Cold Nuclear Matter effects with J/ψ

"Hard Probes", Cape Town, South Africa, November 4 - 8, 2013

J/ψ Production in pA / Ap collisions

- Three main inclusive sources for J/ψ :
 - Direct production
 - Feed-down from heavier states $\psi(2S)$, χ_c
 - From b-hadron decays

prompt non-prompt

- Analysis strategy for J/ψ :
 - 1. Same method as for J/ψ measurements in previous LHCb pp studies
 - 2. Measurement of the production cross section both separately for prompt and nonprompt in bins of transverse momentum and rapidity
 - 3. Pseudo-proper time to separate prompt J/ψ and J/ψ from b
- Yields of prompt and non-prompt J/ψ extracted from simultaneous

fit of mass and pseudo-proper time: $t_z = (z_{J/\psi} - z_{PV}) \frac{M_{J/\psi}}{p_z}$

J/ψ Signal Extraction

Yields of prompt J/ψ and J/ψ from b extracted from simultaneous fit of mass and pseudo-proper time: $t_z = (z_{J/\psi} - z_{PV}) \frac{M_{J/\psi}}{m}$

Mass fits \odot

- Signal by Crystal Ball
- Background by exponential

- \odot
 - Prompt signal by δ -function
 - Non-prompt by exponential
 - Background by empirical function from side-bands

pA (forward):

"Hard Probes", Cape Town, South Africa, November 4 - 8, 2013

18

Ap (backward):

Differential J/ ψ Cross-sections

- $\varepsilon_{\text{tot}} = \varepsilon_{\text{acc}} * \varepsilon_{\text{rec}} * \varepsilon_{\text{trg}} (\sim 45\%)$
 - $\varepsilon_{acc} * \varepsilon_{rec}$ (including detecting, reconstruction and selection) estimated from simulation
 - ε_{trg} obtained directly from the minimum-bias sample collected in the data (~ 95%)
 - N.B.: For efficiency estimation no polarization of J/ψ production is assumed

pA collisions: forward hemisphere 1.5 < y < 4.0

Ap collisions: backward hemisphere -5.0 < y < -2.5

"Hard Probes", Cape Town, South Africa, November 4 - 8, 2013

J/ψ Transport in pA / Ap collisions

Cold Nuclear Matter effects

Production of heavy quarkonia at large rapidity strongly suppressed in pA collisions

- Nuclear Modification Factor
 - N_{coll} = A in pA collisions
- Forward-Back asymmetry
 - pp J/ψ cross-section cancels out

 $R_{pA}(y,\sqrt{s_{NN}}) = \frac{1}{N_{coll}} \frac{\frac{d\sigma_{pA}}{dy}(y,\sqrt{s_{NN}})}{\frac{d\sigma_{pp}}{dy}(y,\sqrt{s_{NN}})}$ $R_{FB}(y,\sqrt{s_{NN}}) = \frac{R_{pA}(+|y|,\sqrt{s_{NN}})}{R_{pA}(-|y|,\sqrt{s_{NN}})}$

"Hard Probes", Cape Town, South Africa, November 4 - 8, 2013

Reference J/ ψ proton-proton cross-section KRC

Input to determination of nuclear modification factor

- Proton-proton J/ ψ cross-section at same E_{cms} = 5.02 TeV and kinematic range
 - → Rapidity re-scaling to 2.5 < y < 4.0 at each energy: ~O(60%) from 2.0 < y < 4.5
 - → Energy interpolation from measurements at 2.76 TeV, 7 TeV, and 8 TeV

HCb Preliminary	E _{cms}		σ [µb] stat. sys.
LHCb	2.76	prompt	$3.23 \pm 0.10 \pm 0.30$
LHCb	7	prompt	$5.89 \pm 0.01 \pm 0.33$
LHCb	8	prompt	$6.79 \pm 0.01 \pm 0.54$
LHCb	2.76	J/ψ from b	$0.246 \pm 0.035 \pm 0.049$
LHCb	7	$J\!/\psi$ from b	$0.763 \pm 0.005 \pm 0.053$
LHCb	8	$J\!/\psi$ from b	$0.796 \pm 0.002 \pm 0.068$

arXiv:1212.1045 J/ψ @ 2.76 TeV arXiv:1307.6379 J/ψ @ 7 TeV arXiv:1304.6977 J/ψ @ 8 TeV → LHCb-CONF-2013- (To appear)

 $\sigma(\sqrt{s}) =$

Energy interpolation : linear / power law / exponential function
Functions checked against theoretical predictions by LO-CEM and FONL

R. Jacobsson

Reference J/ ψ proton-proton cross-section $\frac{440}{440}$

• Proton-proton reference cross-section at 5 TeV from power-law interpolation

- Preliminary errors: Correlations neglected and error from interpolation model from difference between the fit functions
- $\Rightarrow \sigma_{\text{prompt J/\psi}}$ (5 TeV, 2.5 < y < 4.0) = 4.78 ± 0.23_{exp} ± 0.15_{model} µb
- $rac{1}{2}$ σ_{non-prompt J/ψ}(5 TeV, 2.5 < y < 4.0) = 0.50 ± 0.05_{exp} ± 0.01_{model} μb

Nuclear Modification Factor

(Inner error bars: statistical, outer error bars: statistical and systematic added in quadrature)

- Nuclear Modification Factor depends strongly on rapidity
- $\odot~$ B-mesons less affected than prompt J/ ψ
 - → B hadrons less affected by cold nuclear effects → mass dependence
 - → Measure for upsilon

 Phenomenological models agree with data but not enough significance to distinguish

• Clear difference between suppression of prompt J/ ψ and J/ ψ from b

(Inner error bars: statistical, outer error bars: statistical and systematic added in quadrature)

"Hard Probes", Cape Town, South Africa, November 4 - 8, 2013

<u>24</u>

Systematic Uncertainties

• Source of systematics

• No uncertainty assigned to the effect of J/ψ polarisation but effect measured to be small

Correlated between bins	Forward (%) / Backward(%)	
Mass fit from checking dimuon mass with double Crystal Ball	2.3	3.4
Radiative tail with dimuon mass below signal region (data/MC)	1.0	1.0
Muon identification from "tag and probe"	1.3	1.3
• Track reconstruction efficiency from pp / pA multiplicity difference	1.5	1.5
Luminosity calibration	3.0	3.0
• $\mathcal{B}(J/\psi \to \mu^+ \mu^-)$ from PDG	1.0	1.0
Uncorrelated between bins		
• y – p _T binning	0.1 – 8.7	0.1 – 6.1
Reweighting of track multiplicity in simulation cmp to no reweightir	ng 0.1 – 3.0	0.2 – 4.3
• t_z fit on non-prompt J/ψ by extraction with <i>sPlot</i>	0.2 – 12.0	0.2 – 13.0

Conclusions

LHCb recorded ~2nb⁻¹ of pPb/Pbp data

- Nuclear modification factors and forward-backward ratio determined in pPb collisions at 2.5<|y|<4.0
- → Prompt and non-prompt J/ψ suppression pPb show clear evidence of Cold Nuclear Matter effects
 - Phenomenological models agree well with data
 - Not enough significance to distinguish models yet
 - → Important to take into account to interpret signatures of QGP effects in heavy ion collisions

• Systematics dominated by luminosity, fit model and data-MC discrepancy

- Improve by proper J/ ψ cross-section measurement at equivalent energy
- Further analysis planned with the pA data sample
 - Nuclear modification factor with $\psi(2S)$ and $\Upsilon(nS)$ production
 - Charged particle production
 - Central exclusive production

Future

- Potential interest to look into
 - Jet production
 - Open charm production
 - Drell-Yan processes
 - Particle correlations
 - Low-x physics
- Proton-nucleus collisions provide opportunity to study γp interactions (J.Nystrand)
 - Unlike in pp or AA collisions, the photon emitter (nucleus) and photon target (proton) can be separated
 - Exclusive J/ ψ photo-production (p+ $\gamma \rightarrow J/\psi + p$) at rapidity of 5 : E_{cms}=1900 GeV

LHC Run 2

- LHCb requesting at least 10x the integrated luminosity collected in 2013.
- Assuming four weeks pA run
 - Instantaneous luminosity of 5x10²⁸ cm⁻²s⁻¹ (2013: ~5x10²⁷ cm⁻²s⁻¹)

Thank you!

"Hard Probes", Cape Town, South Africa, November 4 - 8, 2013

<u>28</u>

EXTRA SLIDES

"Hard Probes", Cape Town, South Africa, November 4 - 8, 2013

FR

<u>29</u>

Check of interpolation function against theory Kack

• Cross-section predictions from theory

ERN

Model/PDF	factorization scale	$\sigma(2.76 \mathrm{TeV})$	$\sigma(5.02{\rm TeV})$	$\sigma(7{\rm TeV})$
LO-CEM/CTEQ6L	m_c	0.249	0.309	0.339
LO-CEM/CTEQ6L	$2m_c$	1.292	2.025	2.529
LO-CEM/MRST98L	$m_c/2$	0.064	0.079	0.087
LO-CEM/MRST98L	m_c	0.153	0.209	0.244
LO-CEM/MRST98L	$2m_c$	0.743	1.217	1.566
LO-CEM/CTEQ5L	$m_c/2$	0.221	0.301	0.351
LO-CEM/CTEQ5L	m_c	0.495	0.728	0.886
LO-CEM/CTEQ5L	$2m_c$	1.569	2.650	3.464
LO-CEM/MRST01L	$m_c/2$	0.032	0.037	0.039
LO-CEM/MRST01L	m_c	0.116	0.153	0.177
LO-CEM/MRST01L	$2m_c$	0.547	0.855	1.076
LO-CEM/GRV98L	$m_c/2$	0.113	0.162	0.196
LO-CEM/GRV98L	m_c	0.389	0.615	0.785
LO-CEM/GRV98L	$2m_c$	1.058	1.851	2.488
FONLL	(nominal)	3.000	4.773	6.007
FONLL	(\min)	1.310	1.793	2.078
FONLL	(\max)	7.399	11.49	14.28

$$\sigma(\sqrt{s}) = \begin{cases} p_0 + \sqrt{s}p_1 \\ (\sqrt{s}/p_0)^{p_1} \\ p_0[1 - e^{-(\sqrt{s}/p_1)}] \end{cases}$$

"Hard Probes", Cape Town, South Africa, November 4 - 8, 2013

<u>30</u>