Hard Probes 2013

1

The 6th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions

Cape Town, South Africa

p(d)A Wrap-up

Particle Production and Nuclear Modification Factors

Andreas Morsch CERN

Stellenbosch Institute for Advanced Studies South Africa November 8, 2013

Andreas Morsch, HP2013

Study of p(d)-A Collisions ...

- Field developed from
 - necessary but somewhat boring control-experiment to study cold nuclear effects and to establish a baseline for A-A
 - to surprises at RHIC
 - ex. suppression of away-side correlations
 - onset of saturation ?
 - to discoveries
 - double ridge, elliptic flow
- New challenges

- Is medium in p-A A-A like or has A-A properties of cold nuclear matter ?
- Some unexpected correlations of hard probes with event activity (seen also in pp)
- Centrality problematic at the LHC

Nuclear modification factor

$$R_{pA}^{X}(p_{T}) = \frac{d N_{X}^{pA}/d p_{T}}{N_{coll} d N_{X}^{pp}/d p_{T}}$$
(equivalently for dA)

 $\frac{\mathrm{d}\,\sigma^{p_A \to x}}{\mathrm{d}\,p_{\mathrm{T}}} \propto f_i^p(x_{1,Q}^2) \circ f_j^A(x_{2,Q}^2) \circ \sigma^{ij \to k}(x_{1,x_{2,P_{\mathrm{T}}}}/z,Q^2) \circ D_{k \to X}(z,Q^2) \circ FS \, effects$

- In absence of strong final state effects, R_{pA} provides information about nuclear modifications of *the parton density function*.
- In addition to the hard process studied ..

At LHC, expect > N_{coll} semi-hard scatterings per p-Pb collisions (in pp $\sigma_{hard} > \sigma_{tot}$) ! Bulk of particle production and hard process might be correlated.

$$f_i^p(x_{1,Q}^2; x_{1,1}, Q_1^2, x_{1,2}Q_2^2,)$$

Mappa Mundi in Umbram

Possibility to approach saturation scale in perturbative region. Most of measurement performed in shadowing region.

J/ψ p-Pb at LHC (5020 GeV)

- Indications that final state effects play a role
- Under-predict $R_{_{\rm DPb}}$ at low $p_{_{\rm T}}$
- No feed-down suppression (Ψ' and χ_{c}) included

Andreas Morsch, Hi 2013

J/ψ d+Au RHIC (200 GeV) central rapidity

E.Eskola, H.Paukkunenea and C.Salgo, Nucl. Phys. A 830, 599 (2009) R.Vogt, Phys. Rev. C 81, 044903 (2010)

RHIC results in better agreement with models when J/ψ nuclear absorption included. (EPS09 nuclear modification of pdf + EPS09)

Absorption increases if expanding meson stays long time in the medium => backward direction.

Andreas Morsch, HP2013

6

J/ψ and Heavy Flavor Leptons at RHIC d+Au forward vs backward rapidity

J/ψ yield in backward direction smaller than underlying charm yield.
 Consistent with break-up of color-neutral charm pair expending in the medium.
 Different physics in forward rapidity, short time in medium (energy loss of colored dipole).
 Can ψ' tell more ?

Andreas Morsch, HP2013

Short τ , should behave like J/ ψ

ψ' at RHIC Strong indication for final state effects

- Stronger suppression of ψ ' wrt J/ ψ at high N_{coll}

- No break-up of colorless expanding meson (does not distinguish between the two states, time in medium too short)
- -Suppression energy dependent but scales with multiplicity: Hot medium effects ?
- Fwd/Bkwd measurement essential: ALICE can ... Andreas Morsch, HP2013

8

ψ' Suppression at LHC p-Pb: Forward compared to backward rapidity

20% difference between forward and backward suppression Qualitatively consistent with break-up by co-moving medium. But also strong suppression in forward direction.

Also quantitatively ?

9

Andreas Morsch, HP2013

$Q^{2}(J/\psi) \ge 10$: The Y-Family

Y(1S) Y(2S) Y(3S)

Expect more anti-shadowing and less shadowing. Some tension wrt to EPS09 expectation, however, large uncertainties.

$Q^{2}(J/\psi) \ge 10$: The Y-Family

0.5 r(3S)/r(1S) r(2S)/r(1S) Strong additional suppression of CMS Preliminary pp 2.76 TeV pp 2.76 TeV 0 |y_{cu}|< 1.93 $\Upsilon(2S), \Upsilon(3S)$ wrt $\Upsilon(1S)$ pPb 5.02 TeV oPb 5.02 TeV 争 PbPb 2.76 TeV |y___|<2.4 despite similar Q² 0.35 0.3 Final state effects ? 0.25 $pPb\sqrt{s_{NN}} = 5.02 \text{ TeV}$ **CMS** Preliminary 0.2 μ^μ_{CM} l < 1.93 $p_{-}^{\mu} > 4 \text{ GeV/c}$ 0.15 $PbPb\sqrt{s_{NN}} = 2.76 \text{ TeV}$ 0.1 $|\eta_{CM}^{\mu}| < 2.4$ 0.05 95% upper limit <u>0</u>는 10^{3} 10^{2} 10 $N_{tracks}^{|\eta| < 2.4}$ **Multiplicity Scaling !** Nothing new in Pb-Pb? Y(2S) Y(3S) High multiplicity pp collisions are strongly 0.2 biased. Optimistic view: something new to learn about Y(2S)/Y(1S) Y(3S)/Y(1S) Y(1S)/Y(2S)/Y(3S) production mechanisms.

> Study Y-h angular correlations ! Andreas Morsch, HP2013

Mappa Mundi en Umbram: extra dimensions

Stronger than expected anti-shadowing ?

x = 0.02-02 $Q^2 \sim 10^4 - 10^5 \text{ GeV}^2$

- Completely unexpected
- Confirmation by other experiments needed
- So far, not seen in jet $R_{_{\rm DPb}}$

Forward / Backward Asymmetry

Asymmetry located in the low- p_{T} part. Increases with rapidity gap.

Andreas Morsch, HP2013

Inclusive charged hadron R_{pPb}

|*y*_{CMS}| < 2.5

 $|y_{\rm CMS}| < 0.3$

p_T [GeV] ch, HP2013

Multiplicity dependent studies

Indication collective flow in high multiplicity p-Pb or Color reconnections = coherent effects between strings = some form of collectivity Andreas Morsch, HP2013

Scaling of Hard Processes at LHC

$$R_{\rm pA}^{\rm MB}(p_{\rm T}) = \frac{{\rm d} N^{\rm pA}/{\rm d} p_{\rm T}}{\langle T_{\rm pA} \rangle {\rm d} \sigma^{\rm pp}/{\rm d} p_{\rm T}} = \frac{{\rm d} N^{\rm pA}/{\rm d} p_{\rm T}}{\langle N_{\rm coll} \rangle {\rm d} N^{\rm pp}/{\rm d} p_{\rm T}}$$

 $\langle T_{pPb} \rangle = \langle N_{coll} \rangle / \sigma_{pN} = 208/2100 \, mb^{-1} = 0.098 \, mb^{-1}$

How to perform centrality dependent binary scaling ?

$$R_{pA}^{cent}(p_{T}) = \frac{d N^{pA}/d p_{T}}{\langle T_{pA}^{cent} \rangle d \sigma^{pp}/d p_{T}} = \frac{d N^{pA}/d p_{T}}{\langle N_{coll}^{cent} \rangle d N^{pp}/d p_{T}}$$

- N_{coll} determination using forward multiplicity or energy.
- Challenges

 $\langle N_{\rm coll} \rangle = 208 \sigma_{\rm pN} / \sigma_{\rm pA} = 6.9$ with

- How to determine N_{coll} (Glauber MC + which particle production model)?
- Range of N_{coll} small wrt fluctuations within centrality classes
 - Fluctuations means always possible bias
- Particle production at LHC dominated by multiple semi-hard scatterings.
 - Used to measure centrality = autocorrelation = possible biases

N_{coll} Fluctuations

Two apparently diametrical strategies

- ALICE: Multiplicity fluctuations are consequence of convolution of N_{coll} and number of parton scatterings (MPI) in each p-N collision
 - Poissonian fluctuations of number of PI event-to-event
 - Multiplicity slicing leads to bias on number of hard scatterings
 - Bias small at lower \sqrt{s} and large rapidity gap between centrality estimator and measurement
- ATLAS: True N_{coll} distribution obtained from Glauber with fluctuating proton size (Glauber-Gribov)
 - Gaussian fluctuations of cross-section event to event
 - Effects for high centrality sensitive to unknown Glauber Gribov parameter.
 - Small \sqrt{s} -dependence

C-Estimator – p_-Measurement rapidity gap

Andreas Morsch, HP2013

Fluctuations from σ to Ω

X.N. Wang and M. Gyulassy, nucl-th/9502021

X.N. Wang and M. Gyulassy, nucl-th/9502021

$$T_{N}(b) = 2 \frac{\chi_{0}(b,s)}{\sigma_{soft}}$$

$$d \sigma_{inelastic} = \pi db^{2} [1 - \exp(-2\chi(b,s))] = \pi db^{2} [1 - \exp(-(\sigma_{soft} + \sigma_{hard})T_{N}(b,s))]$$

$$\langle n_{hard} \rangle (b_{NN}) = \sigma_{hard} T_{N}(b_{NN})$$

 $p_i(b_{\rm NN}) = \frac{\langle n_{\rm hard} \rangle^i}{i l} \exp(-\langle n_{\rm hard} \rangle)$

Counts fluctuate !

0.7 F 0.6 0.5F 0.4 F 0.3 0.2 0.1 1.5 ξ = b/b

(similar approach used in PYTHIA) Geometrical fluctuations described by overlap function (eikonal) $T_{_{\rm N}}$. Cross-section itself does not fluctuate (since = flux (db²) x probability).

Only a question of terminology?

At LHC $\sigma_{hard} >> \sigma_{tot}$

$$\Omega \leftrightarrow \sigma_{_{hard}}$$
 ??

Glauber Gribov x-section eikonal

Andreas Morsch, HP2013

Andreas Morsch, HP2013

No summary Just a few thoughts ...

- Strong final state (medium-) effects seen for $\Psi'/J/\psi,\,Y(2S),\,Y(3S)\,\,/\,\,Y(1S)$
 - Time in nucleus/medium expected to be very short, before meson has formed
 - What mechanism can do this ?
- Scaling with multiplicity seen,
 - also in pp !
- Unexpected large enhancement at high Q² and x for inclusive charged particles measured by CMS
- Need for better understanding of multiplicity dependent particle production in pp and p-Pb
- Study interplay between soft and hard processes
- Centrality determination in p-Pb is still an unresolved issue
 - Continue open discussions between experiments and with theorists

