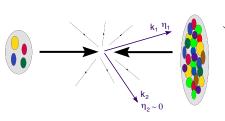
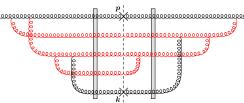
JIMWLK evolution for multi-particle production in Langevin form

Edmond Iancu

IPhT Saclay & CNRS

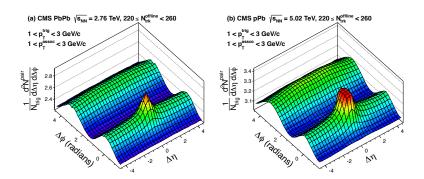
collab. with D.N. Triantafyllopoulos, arXiv: 1307.1559 (JHEP)





Motivation: The ridge in pp and pA collisions

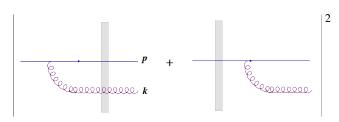
- ullet Di-hadron correlations long-ranged in $\Delta\eta$ & narrow in $\Delta\phi$
- Well known and supposedly understood in AA, but ...
 also seen in p+p and p+A events with high multiplicity



• Final-state interactions might play a role, but to properly answer this one needs to first understand the correlations from the initial state

Quark-gluon production at forward rapidities (1)

• A quark from the proton emits a gluon while scattering off the nucleus



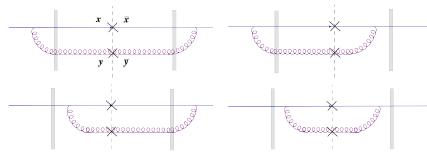
- ullet The quark and the gluon have similar rapidities: $lpha_s \Delta Y \ll 1$
- The prototype for the CGC calculations of di-hadron production and azimuthal correlations in p+Pb, or d+Au

(Albacete and Marquet, '10; Dominguez, Marquet, Xiao, Yuan, '11; Stasto, Xiao, Yuan, '11; Lappi and Mäntysaari, '12, E.I. and Laidet, '13)

The 'tree-level' for the high-energy evolution I shall later discuss

Quark-gluon production at forward rapidities (2)

Cross-section: direct amplitude × complex conjugate amplitude



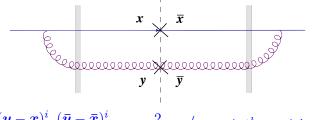
- \triangleright emissions in the DA (at x, y), absorptions in the CCA (at \bar{x}, \bar{y})
- ho Fourier transforms: $m{y} ar{m{y}}
 ightarrow m{k}$ & $m{x} ar{m{x}}
 ightarrow m{p}$
- Each parton that crosses the shockwave acquires a Wilson line

$$U^{\dagger}(\boldsymbol{x}) = \operatorname{T} \exp \left\{ ig \int dx^{+} A_{a}^{-}(x^{+}, \boldsymbol{x}) T^{a} \right\}$$

• $A_a^- \propto \delta(x^+)$: the (random) color field in the target

Quark-gluon production at forward rapidities (3)

Most complicated piece: initial-state emissions in both DA & CCA



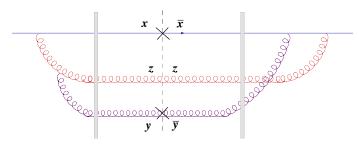
$$\alpha_s C_F \frac{(\boldsymbol{y} - \boldsymbol{x})^i}{(\boldsymbol{y} - \boldsymbol{x})^2} \frac{(\bar{\boldsymbol{y}} - \bar{\boldsymbol{x}})^i}{(\bar{\boldsymbol{y}} - \bar{\boldsymbol{x}})^2} \times \frac{2}{N_c^2 - 1} \left\langle \left(U_{\bar{\boldsymbol{y}}} U_{\boldsymbol{y}}^{\dagger} \right)^{ab} \operatorname{Tr} \left[V_{\boldsymbol{x}}^{\dagger} t^b t^a V_{\bar{\boldsymbol{x}}} \right] \right\rangle_Y$$

- \triangleright emission amplitude for a soft gluon at ${m y}$ by a source at ${m x}$ $(i=1,\,2)$
- > Wilson line correlator averaged over the target field
- ullet The most complicated step: the target average at rapidity Y (CGC)

 - \triangleright at large N_c : S-matrices for color dipoles and quadrupoles

Forward–central production (1)

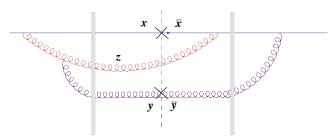
ullet Quark–gluon rapidity difference $lpha_s \Delta Y \gtrsim 1 \Longrightarrow {\sf high\ energy\ evolution}$



- The evolution gluon at z is not measured \Longrightarrow its interactions with the target cancel between DA and CCA (by unitarity) : $U_zU_z^\dagger=1$
- 'Initial state evolution' (emission prior to collision) in both DA & CCA
 no conceptual difficulties by itself

Forward–central production (2)

• 'Final state evolution' : emission of a 'red' gluon after the collision \triangleright the interaction of the 'red' gluon counts for the final result: $U_{m z}^\dagger$



- BFKL evolution in a strong background field
 - \vartriangleright both the measured partons & the evolution ones 'know' about the target
- No factorization of the evolution between 'projectile' and 'target'

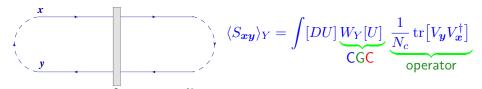
Forward–central production (2)

• 'Final state evolution' : emission of a 'red' gluon after the collision \triangleright the interaction of the 'red' gluon counts for the final result: $U_{m z}^\dagger$

- BFKL evolution in a strong background field
 both the measured partons & the evolution ones 'know' about the target
- No factorization of the evolution between 'projectile' and 'target'
- k_T -factorization recovered if the quark is not measured $(x = \bar{x})$ \Rightarrow the effects of 'final state evolution' cancel out between DA and CCA \Rightarrow BFKL evolution of the gluon distribution in the quark projectile

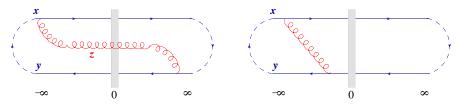
The Balitsky-JIMWLK evolution

- BFKL evolution in a strong background field: scattering amplitudes
- Example : the dipole S-matrix $\langle S_{xy} \rangle_Y$



The Balitsky-JIMWLK evolution

- BFKL evolution in a strong background field: scattering amplitudes
- Example : the dipole S-matrix $\langle S_{xy} \rangle_Y$



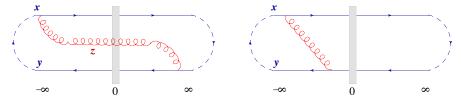
- both initial−state and final−state emissions
- b the evolution ('red') gluons can interact as well
- This evolution is described by the JIMWLK Hamiltonian

$$\frac{\partial}{\partial Y} S_{m{x}m{y}} = H_{ ext{JIMWLK}} S_{m{x}m{y}}$$

> the change in the scattering operator (projectile) for a fixed target field

The Balitsky-JIMWLK evolution

- BFKL evolution in a strong background field: scattering amplitudes
- ullet Example : the dipole S-matrix $\langle S_{m{x}m{y}}
 angle_Y$

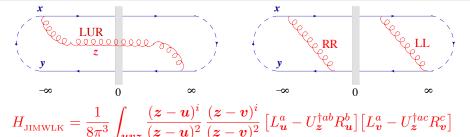


- both initial−state and final−state emissions
- > the evolution ('red') gluons can interact as well
- This evolution is described by the JIMWLK Hamiltonian

$$\frac{\partial}{\partial Y} \langle S_{\boldsymbol{x}\boldsymbol{y}} \rangle_Y = \langle H_{\text{JIMWLK}} S_{\boldsymbol{x}\boldsymbol{y}} \rangle_Y$$

After averaging over the target ⇒ Balitsky–JIMWLK equations

The JIMWLK Hamiltonian



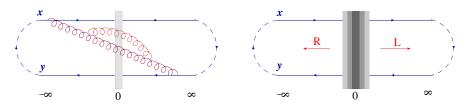
• 'Right'/'Left' Lie derivatives: gluon emissions before/after scattering

$$R_{\boldsymbol{u}}^a U_{\boldsymbol{x}}^\dagger = \mathrm{i} g \delta_{\boldsymbol{u} \boldsymbol{x}} U_{\boldsymbol{x}}^\dagger T^a, \qquad L_{\boldsymbol{u}}^a U_{\boldsymbol{x}}^\dagger = \mathrm{i} g \delta_{\boldsymbol{u} \boldsymbol{x}} T^a U_{\boldsymbol{x}}^\dagger$$

ightharpoonup the color charge density operators $(L_{m{u}}^a = U_{m{u}}^{\dagger ab} R_{m{u}}^b)$

- ullet When acting on the dipole & for large $N_c \Rightarrow$ Balitsky-Kovchegov eqn
 - ightharpoonup finite N_c : infinite hierarchy of coupled equations
 - \triangleright even at large N_c , the quadrupole equation is extremely complicated

JIMWLK evolution in Langevin form (1)



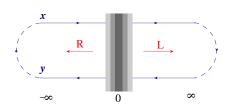
The 'red' gluons can also be viewed as a result of target evolution

$$\frac{\partial W_Y[U]}{\partial Y} = H_{\text{JIMWLK}} W_Y[U] \qquad \text{(original JIMWLK)}$$

- ullet R/L derivatives add new layers of target field at larger values of $|x^+|$
- The new fields are random (quantum flucts) ⇒ stochastic process
 Langevin equation (Blaizot, E.I., Weigert, 2003)
- Well suited for numerics (Weigert & Rummukainen; Lappi; Schenke et al)
 > see the next talk by Tuomas Lappi!

JIMWLK evolution in Langevin form (2)

 A random walk in the space of Wilson lines \triangleright discretize the rapidity interval between projectile and target $Y=N\epsilon$



$$\langle S_{\boldsymbol{x}\boldsymbol{y}}\rangle_Y \,=\, \frac{1}{N_c}\, \left\langle \mathrm{tr}\big[U_{N,\boldsymbol{y}}U_{N,\boldsymbol{x}}^\dagger\big]\right\rangle_{\nu}$$

$$U_{n,\boldsymbol{x}}^{\dagger} \,=\, \mathrm{e}^{\mathrm{i}\varepsilon g\alpha_{L,\boldsymbol{x}}^{n}}\,U_{n-1,\boldsymbol{x}}^{\dagger}\,\mathrm{e}^{-\mathrm{i}\varepsilon g\alpha_{R,\boldsymbol{x}}^{n}}$$

$$\alpha_{L,\boldsymbol{x}}^n = \int_{\boldsymbol{z}} \frac{x^i - z^i}{(\boldsymbol{x} - \boldsymbol{z})^2} \, \nu_{n,\boldsymbol{z}}^{ia} T^a \,,$$

$$\alpha_{L, \mathbf{x}}^{n} = \int_{\mathbf{z}} \frac{x^{i} - z^{i}}{(\mathbf{x} - \mathbf{z})^{2}} \, \nu_{n, \mathbf{z}}^{ia} T^{a} \,, \qquad \alpha_{R, \mathbf{x}}^{n} = \int_{\mathbf{z}} \frac{x^{i} - z^{i}}{(\mathbf{x} - \mathbf{z})^{2}} \, U_{n-1, \mathbf{z}}^{ab} \, \nu_{n, \mathbf{z}}^{ib} T^{a}$$

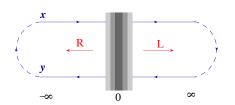
• 'White' noise $\nu_{n,z}^{ia}$: color charge of the evolution gluon

$$\left\langle
u_{m,\boldsymbol{x}}^{ia} \,
u_{n,\boldsymbol{y}}^{jb} \right\rangle = rac{1}{arepsilon} \, \delta_{mn} \delta^{ij} \delta^{ab} \delta_{\boldsymbol{x} \boldsymbol{y}}$$

 \bullet Multiplicative noise $U_{n-1,z}^{ab} \nu_{n,z}^{ib} \Longrightarrow \mathsf{BFKL}$ cascade

JIMWLK evolution in Langevin form (2)

 A random walk in the space of Wilson lines \triangleright discretize the rapidity interval between projectile and target $Y=N\epsilon$



$$\langle S_{\boldsymbol{x}\boldsymbol{y}}\rangle_Y \;=\; \frac{1}{N_c} \; \left\langle \mathrm{tr} \big[U_{N,\boldsymbol{y}} U_{N,\boldsymbol{x}}^\dagger \big] \right\rangle_{\nu}$$

$$U_{n,\boldsymbol{x}}^{\dagger} \,=\, \mathrm{e}^{\mathrm{i}\varepsilon g\alpha_{L,\boldsymbol{x}}^{n}}\,U_{n-1,\boldsymbol{x}}^{\dagger}\,\mathrm{e}^{-\mathrm{i}\varepsilon g\alpha_{R,\boldsymbol{x}}^{n}}$$

$$\alpha_{L,\boldsymbol{x}}^n = \int_{\boldsymbol{z}} \frac{x^i - z^i}{(\boldsymbol{x} - \boldsymbol{z})^2} \, \nu_{n,\boldsymbol{z}}^{ia} T^a \,,$$

$$\alpha_{L,x}^n = \int_{z} \frac{x^i - z^i}{(x - z)^2} \nu_{n,z}^{ia} T^a, \qquad \alpha_{R,x}^n = \int_{z} \frac{x^i - z^i}{(x - z)^2} U_{n-1,z}^{ab} \nu_{n,z}^{ib} T^a$$

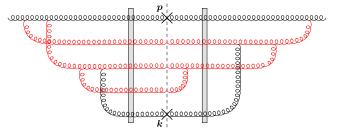
ullet 'White' noise $u_{n,z}^{ia}$: color charge of the evolution gluon

$$\left\langle \nu_{m,\boldsymbol{x}}^{ia}\,\nu_{n,\boldsymbol{y}}^{jb}\right
angle =rac{1}{arepsilon}\,\delta_{mn}\delta^{ij}\delta^{ab}\delta_{\boldsymbol{x}\boldsymbol{y}}$$

 \bullet Initial condition $U_{0.x}^{\dagger}$ randomly selected according to the MV model

Generalization to particle production in p+A

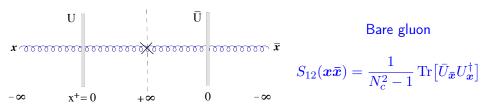
- ullet 2 gluon production with large rapidity separation $\Delta Y\gtrsim 1/lpha_s$
- How to systematically generate all such graphs?



- \triangleright build the wavefunction of the 'fast' gluon via evolution over ΔY and in the presence of the target background field (Wilson line U)
- \rhd emit the 'slow' gluon from any of the gluons in the wavefunction
- ightharpoonup average over the target field with the weight function $W_{Y_A}[U]$, where $Y_A=Y-\Delta Y$

Wavefunction squared

- Generating functional for soft gluon emissions (resolved or not)
- Gluon emission \iff (R/L) Lie derivative w.r.t. U
- ullet One needs to distinguish between the DA and the CCA : $oldsymbol{U}$, $ar{oldsymbol{U}}$

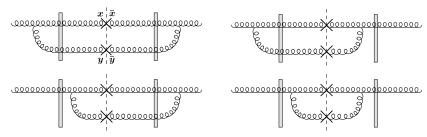


- ullet A physical gluon \longleftrightarrow a mathematical dipole
- ullet A physical dipole \longleftrightarrow a mathematical quadrupole, etc
- U, \bar{U} : arguments of the generating functional \triangleright one sets $U=\bar{U}=$ physical Wilson line after computing observables

Two gluon production: similar rapidites

$$\frac{\mathrm{d}\sigma_{2g}}{\mathrm{d}Y_p\mathrm{d}^2\boldsymbol{p}\,\mathrm{d}Y_k\mathrm{d}^2\boldsymbol{k}} = \frac{1}{(2\pi)^4} \int_{\boldsymbol{x}\bar{\boldsymbol{x}}} \mathrm{e}^{-\mathrm{i}\boldsymbol{p}\cdot(\boldsymbol{x}-\bar{\boldsymbol{x}})} \langle \boldsymbol{H}_{\mathrm{prod}}(\boldsymbol{k}) S_{12}(\boldsymbol{x}\bar{\boldsymbol{x}}) \big|_{\bar{U}=U} \rangle_Y$$

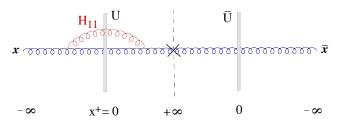
ullet $H_{
m prod}$ generates gluons which 'cross the cut' (measured in final state)



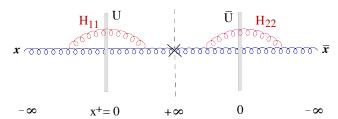
$$H_{\text{prod}}(\boldsymbol{k}) = \int_{\boldsymbol{u},\boldsymbol{v}=\bar{\boldsymbol{u}}} e^{-\mathrm{i}\boldsymbol{k}\cdot(\boldsymbol{y}-\bar{\boldsymbol{y}})} \frac{(\boldsymbol{y}-\boldsymbol{u})^i}{(\boldsymbol{y}-\boldsymbol{u})^2} \frac{(\bar{\boldsymbol{y}}-\boldsymbol{v})^i}{(\bar{\boldsymbol{y}}-\boldsymbol{v})^2} \left[L_{\boldsymbol{u}}^a - U_{\boldsymbol{y}}^{\dagger ab} R_{\boldsymbol{u}}^b \right] \left[\bar{L}_{\boldsymbol{v}}^a - \bar{U}_{\bar{\boldsymbol{y}}}^{\dagger ac} \bar{R}_{\boldsymbol{v}}^c \right]$$

• Very similar to JIMWLK Hamiltonian (except that $y \neq \bar{y}$)

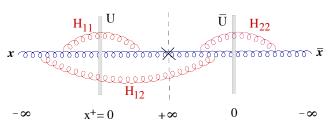
ullet One step of quantum evolution : ${\sf DA} \Rightarrow H_{11} = H_{{
m JIMWLK}}[U]$



ullet One step of quantum evolution : DA, CCA $\Rightarrow H_{22} = H_{
m JIMWLK}[ar{U}]$



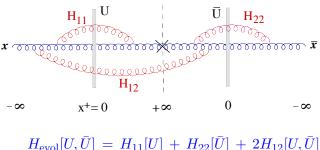
One step of quantum evolution : DA, CCA, and mixed



$$H_{\text{evol}}[U, \bar{U}] = H_{11}[U] + H_{22}[\bar{U}] + 2H_{12}[U, \bar{U}]$$

- Extension of JIMWLK Hamiltonian to the Keldysh time contour (Hentschinski, Weigert, Schafer, 05 — study of DIS diffraction)
- Generalized B–JIMWLK equations for the generating functionals (or directly for the n-particle cross-sections)
 - ightharpoonup large N_c : Jalilian-Marian, Kovchegov, 04; Kovner, Lublinsky, Weigert, 06
 - \triangleright finite N_c : E. I., Triantafyllopoulos, 13

One step of quantum evolution : DA, CCA, and mixed



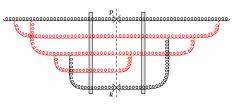
$$H_{\text{evol}}[U, U] = H_{11}[U] + H_{22}[U] + 2H_{12}[U, U]$$

- Extension of JIMWLK Hamiltonian to the Keldysh time contour (Hentschinski, Weigert, Schafer, 05 — study of DIS diffraction)
- These equations are extremely complicated, even for large N_c $\stackrel{\textstyle \bigcirc}{\odot}$ > similar degree of complexity as the equation for the quadrupole amplitude

Langevin reformulation (E. I., Triantafyllopoulos, 13)

 \bullet Evolution of the gluon wavefunction squared over rapidity interval ΔY

ho target evolution from Y_A up to $Y=Y_A+\Delta Y$, starting with $U_A^\dagger, \bar{U}_A^\dagger$



$$U_{n,\boldsymbol{x}}^{\dagger} = e^{\mathrm{i}\varepsilon g\alpha_{L,\boldsymbol{x}}^{n}} U_{n-1,\boldsymbol{x}}^{\dagger} e^{-\mathrm{i}\varepsilon g\alpha_{R,\boldsymbol{x}}^{n}}$$

$$\bar{U}_{n,\boldsymbol{x}}^{\dagger} = e^{\mathrm{i}\varepsilon g \bar{\alpha}_{L,\boldsymbol{x}}^{n}} \, \bar{U}_{n-1,\boldsymbol{x}}^{\dagger} \, e^{-\mathrm{i}\varepsilon g \bar{\alpha}_{R,\boldsymbol{x}}^{n}}$$

ullet Two correlated Langevin processes: DA $(U_{n,oldsymbol{x}}^\dagger)$ and CCA $(ar{U}_{n,oldsymbol{x}}^\dagger)$

 \rhd different initial conditions: $U_0^\dagger = U_A^\dagger$ and resp. $\bar{U}_0^\dagger = \bar{U}_A^\dagger$

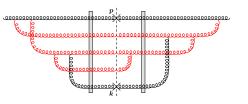
hinspace ... but the same noise term : $u_n = ar{
u}_n$

• The evolved generating functional :

$$\left\langle S_{12}(\boldsymbol{x}\bar{\boldsymbol{x}})\right\rangle_{\Delta Y}[U_A,\bar{U}_A] = \frac{1}{N_c^2 - 1} \left\langle \text{Tr}\left[\bar{U}_{N,\bar{\boldsymbol{x}}}U_{N,\boldsymbol{x}}^{\dagger}\right]\right\rangle_{\nu} \quad (\Delta Y = N\epsilon)$$

Langevin reformulation (E. I., Triantafyllopoulos, 13)

- \bullet Evolution of the gluon wavefunction squared over rapidity interval ΔY
 - hinspace target evolution from Y_A up to $Y=Y_A+\Delta Y$, starting with $U_A^\dagger, \bar U_A^\dagger$



$$U_{n,\boldsymbol{x}}^{\dagger} = e^{\mathrm{i}\varepsilon g\alpha_{L,\boldsymbol{x}}^{n}} U_{n-1,\boldsymbol{x}}^{\dagger} e^{-\mathrm{i}\varepsilon g\alpha_{R,\boldsymbol{x}}^{n}}$$

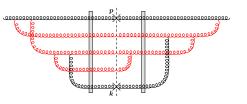
$$\bar{U}_{n,\boldsymbol{x}}^{\dagger} \,=\, \mathrm{e}^{\mathrm{i}\varepsilon g \bar{\alpha}_{L,\boldsymbol{x}}^{n}} \, \bar{U}_{n-1,\boldsymbol{x}}^{\dagger} \, \mathrm{e}^{-\mathrm{i}\varepsilon g \bar{\alpha}_{R,\boldsymbol{x}}^{n}}$$

- ullet Two correlated Langevin processes: DA $(U_{n,x}^\dagger)$ and CCA $(ar{U}_{n,x}^\dagger)$
 - \rhd different initial conditions: $U_0^\dagger = U_A^\dagger$ and resp. $\bar{U}_0^\dagger = \bar{U}_A^\dagger$
 - hinspace ...but the same noise term : $u_n = ar{
 u}_n$
- ullet The emission of the second gluon (at rapidity Y_A)

$$H_{\mathrm{prod}}(\boldsymbol{k})[U_A,\bar{U}_A]\langle S_{12}(\boldsymbol{x}\bar{\boldsymbol{x}})\rangle_{\Delta Y}\big|_{\bar{U}_A=U_A}$$

Langevin reformulation (E. I., Triantafyllopoulos, 13)

- \bullet Evolution of the gluon wavefunction squared over rapidity interval ΔY
 - hinspace target evolution from Y_A up to $Y=Y_A+\Delta Y$, starting with $U_A^\dagger, \bar U_A^\dagger$



$$U_{n,\boldsymbol{x}}^{\dagger} = e^{\mathrm{i}\varepsilon g\alpha_{L,\boldsymbol{x}}^{n}} U_{n-1,\boldsymbol{x}}^{\dagger} e^{-\mathrm{i}\varepsilon g\alpha_{R,\boldsymbol{x}}^{n}}$$

$$\bar{U}_{n,\boldsymbol{x}}^{\dagger} \,=\, \mathrm{e}^{\mathrm{i}\varepsilon g \bar{\alpha}_{L,\boldsymbol{x}}^{n}} \, \bar{U}_{n-1,\boldsymbol{x}}^{\dagger} \, \mathrm{e}^{-\mathrm{i}\varepsilon g \bar{\alpha}_{R,\boldsymbol{x}}^{n}}$$

- ullet Two correlated Langevin processes: DA $(U_{n,x}^\dagger)$ and CCA $(ar{U}_{n,x}^\dagger)$
 - \rhd different initial conditions: $U_0^\dagger = U_A^\dagger$ and resp. $\bar{U}_0^\dagger = \bar{U}_A^\dagger$
 - $hinspace \ldots$ but the same noise term : $u_n = ar{
 u}_n$
- ullet Average over the target with the CGC weight function at Y_A

$$\int [DU_A] W_{Y_A}[U_A] H_{\text{prod}}(\boldsymbol{k})[U_A, \bar{U}_A] \langle S_{12}(\boldsymbol{x}\bar{\boldsymbol{x}}) \rangle_{\Delta Y} \big|_{\bar{U}_A = U_A}$$

Langevin reformulation (2)

• Functional initial conditions are not well suited for numerics ②

hickspace first build U_N^\dagger as a functional of U_A , then act with R_A ; e.g.

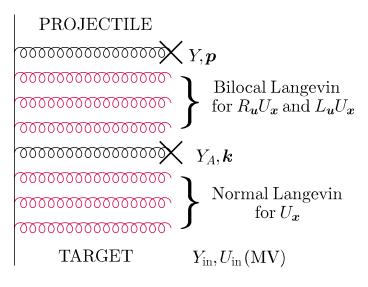
$$R_{A,\boldsymbol{u}}^{a}\,\bar{R}_{A,\boldsymbol{v}}^{b}\,\big\langle S_{12}(\boldsymbol{x}\bar{\boldsymbol{x}})\big\rangle_{\Delta Y}\big|_{\bar{U}_{A}=U_{A}}=\frac{1}{N_{g}}\,\big\langle\mathrm{Tr}\big[\big(R_{A,\boldsymbol{v}}^{b}U_{N,\boldsymbol{\bar{x}}}\big)\big(R_{A,\boldsymbol{u}}^{a}U_{N,\boldsymbol{x}}^{\dagger}\big)\big]\big\rangle_{\nu}$$

- buthe difference between DA and CCA disappears after differentiation
- Alternatively: a recurrence formula for the action of the Lie derivatives

$$\begin{split} \mathcal{R}^{a}_{n,\boldsymbol{u}\boldsymbol{x}} &= \mathrm{e}^{\mathrm{i}\varepsilon g\alpha^{n}_{R,\boldsymbol{x}}}\,\mathcal{R}^{a}_{n-1,\boldsymbol{u}\boldsymbol{x}}\,\mathrm{e}^{-\mathrm{i}\varepsilon g\alpha^{n}_{R,\boldsymbol{x}}}\\ &-\frac{\mathrm{i}\varepsilon g}{\sqrt{4\pi^{3}}}\,\mathrm{e}^{\mathrm{i}\varepsilon g\alpha^{n}_{R,\boldsymbol{x}}}\int_{\boldsymbol{z}}\frac{x^{i}-z^{i}}{(\boldsymbol{x}-\boldsymbol{z})^{2}}\,U^{bc}_{n-1,\boldsymbol{z}}\,\nu^{ic}_{n,\boldsymbol{z}}\big[T^{b},\,\mathcal{R}^{a}_{n-1,\boldsymbol{u}\boldsymbol{z}}\big] \end{split}$$

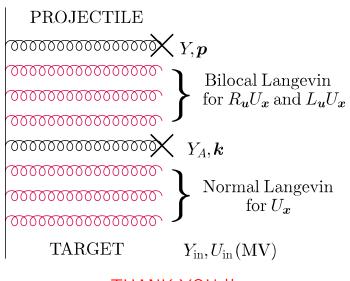
- ullet Langevin process for the bi–local quantity ${\cal R}^a_{n,m um x}\equiv U_{n,m x}\,R^a_{A,m u}\,U^\dagger_{n,m x}$
- No functional initial condition anymore : $\mathcal{R}^a_{0,ux} = \mathrm{i} g \delta_{ux} T^a$

Summary



Feasible ? I think so ... but better ask Tuomas !

Summary



THANK YOU!!