

Studies of production in the forward region at LHCb

Mikhail Zavertyaev Max-Planck-Institut for Kernphysik (Heidelberg, Germany) Lebedev Physical Institut (Moscow, Russia) on behalf of the LHCb collaboration International Workshop on Forward Physics at the LHC November 4-8 Cape Town, South Africa

Outline

The LHCb experiment.
Forward energy flow.
Charge particle multiplicity.
Hadron production ratios.
Charm, double-charm production.
Summary.

LHCb Experiment.

LHCD FÜR KERNPHYSIK HEIDELBERG

JINST 3 (2008) S08005

Tracking, RICH, Calorimeters, Muon System covering the full acceptance of the spectrometer.

Hard Probes, Cape Town, South Africa, November 4-8, 2013 Studies of production in the forward region@LHCb by M.Zavertayev 3

Forward Energy Flow.

• Energy Flow (EF) :

LHCD FÜR KERNPHYSIK HEIDELBERG

Eur. Phys. J. C (2013) 2421

--- average energy created in a particular η interval per inelastic pp interaction

Measurement is done for different event classes :

- --- inclusive MB: at least 1 track in $1.9 < \eta < 4.9$ with p > 2 GeV
- --- hard scattering: at least 1 track in 1.9<η<4.9 with pT > 3 GeV
- --- diffractive enriched: inclusive MB with no backward tracks in -3.5<η<-1.5

--- non-diffractive enriched: inclusive MB with at least 1 backward track in -3.5<η<-1.5

Result & Comparison (I).

• EF increases with the momentum transfer in an underlying pp process:

 $EF_{hard} > EF_{non-diffr} > EF_{incl} > EF_{diff}$

- PYTHIA6-based models
 - underestimate EF at large η

> overestimate it at low η

in case of all event classes

 PYTHIA8 with default parameters gives excellent description of the measurements at large η except for hard scattering events

J. of Phys. : Conf. Ser. 331 (2011) 032023. Phys. Rev. D82 (2010) 074018, arXiv:1005.3457 Comput. Phys. Commun. 178 (2008) 852, arXiv:0710.3820

MAX-PLANCK-INSTITU

HEIDELBERG

Result & Comparison (II).

- EPOS 1.99, SIBYLL 2.1, QGSJET 01, QGSJET II cosmic-ray interaction models
 - --- soft processes via Pomeron exchanges (Gribov's Reggeon Field Theory)
 - --- hard processes: pQCD or exchanges of semihard Pomerons
 - --- models are not tuned to LHC data
- SIBYLL 2.1 gives the best description of the inclusive and non-diffractive EF
- None of the models are able to describe the EF measurements for all event classes:
 - --- <u>valuable input for MC tuning and</u> <u>MPI/UE models</u>

IHCh

HEIDELBERG

Charged Particle Mutiplicities.

VELO based measurement: momentum of the track is unknown.

- No magnetic field
 - ➢Only measurement of direction
 - \succ Tracks as a function of η
- Events with ≥ 1 tracks in forward acceptance
 - Inclusive minimum bias interactions

≻Hard interactions with ≥ 1 track with $p_T > 1 \text{ GeV}/c$

Eur. Phys. J. C 72 (2012) 1947

Charge particle density per event vs $\boldsymbol{\eta}$

Multiplicity distributions for 2<η<4.5

Inclusive Minimum Bias

Hard Interactions

HEIDELBERG

None of the model studied is fully able to describe the multiplicities
 Models underestimate multiplicity in the forward region
 Agreement better for hard interactions

Particle production ratios as a function of y and p_T

□ Antiparticle/particle ratios and ratios of different particle species

$$\frac{\pi^-}{\pi^+}, \frac{\mathrm{K}^-}{\mathrm{K}^+}, \frac{\mathrm{p}}{\mathrm{p}}$$
 and $\frac{p+\mathrm{p}}{\pi^++\pi^-}, \frac{\mathrm{K}^++\mathrm{K}^-}{\pi^++\pi^-}$

□ Many systematic uncertainties cancel

□ Valuable information about the hadronisation process:

- Baryon number transport from antiproton/proton
- Baryon suppression from baryon/meson ratios
- Strangeness suppression from kaon/pion ratios

Experimental detailes:

- > Result based on 0.3 nb^{-1} at $\sqrt{s} = 0.9 \text{ TeV}$ and 1.8 nb^{-1} at $\sqrt{s} = 7 \text{ TeV}$
- > PID efficiencies from $K_s^0 \to \pi^+\pi^-$, $\Lambda \to p\pi^-$, $\overline{\Lambda} \to \overline{p}$ and $\phi \to K^+K^-$
- > Dominant uncertainties from PID due to limited size of calibration sample

Baryon Number Transport.

LHCD FÜR KERNPHYSIK HEIDELBERG

Scaling behavior as a function of rapidity loss
 Fit to LHCb&ALICE data based in *Regge-model* of baryon transport

Antiparticle / Particle Ratios.

- Charge ratio drops towards lager rapidity (proton beam)
- Effect more pronounced at higher p_T
- General behavior reproduced by PYTHIA tunes

Antiparticle / particle ratios.

Strangeness suppression very similar to baryon suppression

- \blacktriangleright Less suppression at higher p_T
- Data best described by LHCb-tune of PYTHIA

Nucl. Phys. B 871 (2013)

Prompt charm.

Differential production cross sections are measured for prompt charm hadrons: D^0 , D^+ , D^{*+} , D^+_s and Λ^+_c in fiducial region 2< η <4.5; 0< p_T <8GeV.

Differential cross-sections compared to theoretical predictions, which reproduce Tevatron & ALICE measurements in central rapidity region.

- Fixed order with next to leading-log resumption (FONLL) using CTEQ 6.6
- NLO calculation in the Generalized Mass Variable Flavour Number Scheme (GMVNS) using CTEQ 6.5 and CTEQ 6.5c2 (intrinsic charm)
 - Good agreement with our measurement
 - Effect of intrinsic charm is predicted to be small in this phase space region.

Double Charm Production – Signals.

Max-Planck-Institut

HEIDELBERG

LHCh

HEIDELBERG

Multi-parton interaction in pp collisions.

Signals observed:

- Double J/ ψ production
- J/ψ + open charm
- Open charm
- "CC" production from double parton interactions
- ✤ "CC" production from single- and double parton interactions

Production cross section for double parton interaction:

$$\sigma_{\text{DPS}}(C_1 C_2) = \frac{\sigma(C_1) \times \sigma(C_2)}{k \times \sigma_{\text{eff}}}$$

Where:

k=2 for $C_1 = C_2$ k=1 for $C_1 \neq C_2$

From CDF double-parton-scattering $\sigma_{eff} \sim 15 mb$

Double charm cross-section.

Theoretical predictions underestimate *J/ψC* cross-section
 CDF-DPS cross section fit only to *J/ψC* cross-section

PLB707(2012) 52

JHEP06(2012) 141

MAX-PLANCK-INSTITUT

HEIDELBERG

LHCh

General event properties.

- Forward energy flow not well described by PYTHIA6.
- Charge particle multiplicities not well described by PYTHIA6.
- PYTHIA8 is more close to the experiment.
- Cosmic ray models appear to do better.
- Production ratios of identified particles.
 - ✤ Antiparticle/particle ratios well described.
 - Scaling of baryon number transport with rapidity difference.
- Double charm production.
 - Double J/ ψ production consistent with no multi-parton-interactions.
 - Double charm involving open charm theoretically not understood.

I.

✤Light quarks in pp collisions

EPJC72(2012) 1947	Measurement of charged particle multiplicities at $\sqrt{s} = 7$ TeV
EPJC73(2013) 2124	Measurement of the forward energy flow at $\sqrt{s} = 7 \text{ TeV}$
PLB693(2010) 69	Prompt K ⁰ production in pp collisions at $\sqrt{s} = 0.9$ TeV
PLB703(2011) 267	Measurement of the inclusive ϕ cross-section at $\sqrt{s} = 7$ TeV
JHEP08(2011) 034	Measurement of V ⁰ production ratios at $\sqrt{s} = 0.9$ and 7 TeV
EPJC72(2012) 2168	Prompt hadron production ratios at $\sqrt{s} = 0.9$ and 7 TeV

Charm and double charm in pp collisions

NPB871(2013) 1	Prompt charm production in pp collisions at $\sqrt{s} = 7$ TeV
EPJC71(2011) 1645	J/ ψ production in pp collisions at $\sqrt{s} = 7$ TeV
JHEP02(2013) 041	J/ ψ production in pp collisions at $\sqrt{s} = 2.76 \text{ TeV}$
JHEP06(2013) 064	Production of J/ψ and mesons in at $\sqrt{s} = 8 \text{ TeV}$
PLB707(2012) 52	J/ ψ pair production in pp collisions at $\sqrt{s} = 7$ TeV
JHEP06(2012) 141	Double charm production with open charm in pp at $\sqrt{s} = 7$ TeV
PLB707(2012) 52 JHEP06(2012) 141	J/ ψ pair production in pp collisions at $\sqrt{s} = 7$ TeV Double charm production with open charm in pp at $\sqrt{s} = 7$ TeV

Non default PYTHIA parameters in the LHCb simulation software

Parameter	Value	Parameter	Value
$\operatorname{CKIN}(41)$	3.0	PARP(86)	0.66
MSTP(2)	2	PARP(89)	14000
MSTP(33)	3	PARP(90)	0.238
MSTP(81)	21	PARP(91)	1.0
MSTP(82)	3	PARP(149)	0.02
MSTP(52)	2	PARP(150)	0.085
MSTP(51)	10042	PARJ(11)	0.5
MSTP(142)	2	PARJ(12)	0.4
PARP(67)	1	PARJ(13)	0.79
PARP(82)	4.28	PARJ(14)	0.0
PARP(85)	0.33	PARJ(15)	0.018
MSTJ(26)	0	PARJ(16)	0.054
PARJ(33)	0.4	PARJ(17)	0.131

Peruvial	corresponding	PVTHIA	narameters
I crugiao	corresponding	I I IIIIA	parameters

Parameter	Value	Parameter	Value
CKIN(41)	12.	PARP(86)	0.95
MSTP(2)	1	PARP(89)	1800
MSTP(33)	0	PARP(90)	0.25
MSTP(81)	11	PARP(91)	2.0
MSTP(82)	4	PARP(149)	0.48
MSTP(52)	1	PARP(150)	0.09
MSTP(51)	7	PARJ(11)	0.5
MSTP(142)	0	PARJ(12)	0.56
PARP(67)	4	PARJ(13)	0.75
PARP(82)	2.0	PARJ(14)	0.0
PARP(85)	0.9	PARJ(15)	0.0
MSTJ(26)	2	PARJ(16)	0.0
PARJ(33)	0.8	PARJ(17)	0.0

PARP(82): UE IR cutoff at reference ecm, Pythia 0: 3.4 Pythia NOCR: 3.19 PARP(89): Reference ecm PARp(90): UE IR cutoff ecm scaling power

LHCb - Physics.

Excellent particle-ID and mass resolution for complex decays

B-mass resolution: $\sigma(m_B) = 8 \text{ MeV}/c^2$ for Bs $\rightarrow J/\psi X$ with J/ ψ mass constraint

Excellent particle-ID, vertex- and proper-time resolution

proper time resolution:

$$\sigma_t \sim 45 \, \mathrm{fs}$$

for B_s - mixing

Pair production of strange particles.

Pair production of strange particles K_s^0 , Λ , $\overline{\Lambda}$ with Σ^- , π^- and neutron beams in WA-89.

In general the experimental results can not be described by PYTYIA or quark-gluon string model (QGSM).

Eur. Phys. J C52(2007) 857-874

AX-PLANCK-INSTITUT

HEIDELBERG

LHCb THCD

V0 is a generic name for long living particles - K_s^0 , Λ , $\overline{\Lambda}$ with a strange quark.

Measurement was done at Vs = 0.9, 7 TeV

What measurement tell us:

▶ Quark content of baryons : p = (ud)u, $\Lambda = (ud)s$, $\overline{\Lambda} = (\overline{ud})\overline{s}$

- * Λ : common quarks with initial state baryon number transport
- $\overline{\Lambda}$: no common quarks particle production in fragmentation
- \succ $\overline{\Lambda}/K_s^0$: measure baryon suppression in fragmentation
- \blacktriangleright $\overline{\Lambda}/\Lambda$: probe baryon number transport.

Baryon suppression in fragmentation.

reduced baryon suppression at large p_T
 models fail to describe the data

JHEP08(2011)034

MAX-PLANCK-INSTITUT

HEIDELBERG

Baryon number transport.

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK HEIDELBERG

IHC

drop towards large rapidities, stable with p_T
 models fail to describe the data

JHEP08(2011)034

HCD HCD HCD HCD

 V^0 particle ratios integrated over p_T

Scaling behavior for baryon number transport and baryon suppression

- Independent of center-of-mass energy within experimental error
- \blacktriangleright Weak dependence of fragmentation $\overline{\Lambda}/K_s^0$ as a function of rapidity loss
- \blacktriangleright Drop in $\overline{\Lambda}/\Lambda$ for $\Delta y \rightarrow 0$ dominated by baryon number transport

JHEP08(2011)034

The average charge multiplicities in e^+e^- , $e^\pm p^-$, $p p p^$ and pp interactions. The data points are taken from PDG 2012. The blue line is the result of the fit of data in $p p^-$ and pp interactions with the power fixed to 1/5, the green and red lines are the offset of fit by ± 1 unit. The magenta dot indicates the expected average charge multiplicities at 7TeV. The conventional opinion:

LHCh

$$n_{ch} \sim \log(\sqrt{s})$$

HEIDELBERG

The universal power law for the average multiplicity of charge particles in the event at enegy above 11GeV :

$$m_{ch} = N_0 \times \left(\frac{s}{m_p^2}\right)^{1/5}$$

 m_p - proton mass, $N_0(pp, p\overline{p}) = 2.32$ $N_0(ep) = 1.32$ $N_0(e^+e^-) = 3.32$

arXiv:1206.0875