Photon Signals from Quarkyonic Matter

Sascha Vogel, Giorgio Torrieri Hard Probes 2013

based on arXiv:1302.1119, PRL 111 (2013) 012301

The next 20 (highly speculative) minutes...

Quarkyonic Matter - why care and how deal with it?

Photons from Quarkyonic Matter - a signal at FAIR?

Hard Probes?

0

Why lower energies?

Plenty of exciting physics still not understood at lower energies!

Revisiting experiments at $\mu_B > \Lambda_{QCD}$ and T < T_c with up to date detectors, luminosity and analysis techniques!

Additionally, more theoretical understanding...

FAIR

Phases of nuclear matter

Critical Point(s)

Various critical point predictions around! Is there one at all (de Forcrand, Philipsen)?

Problems at high μ_B

QCD at $\mu_B > \Lambda_{QCD}$ and T < T_c is very poorly understood.

- **EFT:** not fully working/understood
- **Lattice:** sign problem (works for $\mu_B \ll T$ though)

AdS/CFT: needs $N_c \rightarrow \infty$, apart from many other unrealistic assumptions

Problems at high μ_B

Put provocatively:

Any high density calculation of QCD is an educated guess! Surprises possible!

The FAIR program requires a what if phenomenology. "If we expect effect X, we should see observable Y."

Quarkyonic Matter

Name first introduced by McLerran and Pisarki, NPA796 (2007) 83-100

definitions in the literature include (among others...)

- Coexistence between confinement and pQCD - McLerran, Pisarski (2007)
- Confinement + chiral symmetry restoration - Fukushima, McLerran (2008)
- Deconfinement + chirally broken
 - Satz, Csernai...
- Chiral spiral inhomogeneities
 - Kojo, Pisarski, Tsvelik (2009)
- Generic chirally inhomogeneous regions
- Condensation of "baryons" in 2 color QCD
 - Hands, Skullerud, Giudice

Quarkyonic phase diagram

Quarkyonic phase diagram

Dynamical vs. background

The only hierarchy that seems to be roughly correct is the large N_c limit

 $N_c \gg 1$ $N_c^{-1} \ll 1$

Looks strange, but gives a strict hierarchy in terms of

"fast" quarks (quantum d.o.f.) slow" baryons (immobile heavy classical background)

Astrophysical implications

Quarkyonic phase changes the EoS → impact on supernova explosions?

The big elephant in the room...*

1) baryon distribution from microscopic calculation

2) use it as input to calculate quark wave function

calculate γ Bremsstrahlung spectrum for qq → qqγ

3)

The tool - UrQMD

 10^{3}

 10^{2}

10

103

10²

- Ultra Relativistic Quantum Molecular Dynamics
- Non equilibrium transport model
- All hadrons and resonances up to 2.2 GeV included
- Particle production via string excitation and -fragmentation
- Cross sections are fitted to available experimental data or calculated via detailed balance or the additive quark model
- Does account for canonical suppression

No explicit implementation of in-medium modifications!

Phys.Rev.C69:054907,2004 Phys.Rev.C74:034902,2006

Quarkyonic Matter

Use the baryon positions as gaussian sources → calculate the wave-function from that

Description by form factor

"Quarkyonic vacuum" is a classical dense baryon state
→ description as a mean field will give a k-dependent form factor!

NB: Baryon movement is a N_c^{-1} correction to quarks (see later - boosted quarkyonic)

Wave function

$$\Psi(k) \sim \exp\sum_{i} \left[ikx_{0i}\right] F(k) \sim \exp\left[ikx_{0i} - \frac{k^2}{\Lambda_{QCD}}\right]$$

Wave function

 $\Psi(k) \sim \exp\sum_{i} \left[ikx_{0i} | F(k) \sim \exp\left|ikx_{0i} - \frac{k^2}{\Lambda_{OCD}}\right|\right]$

quark function inside the "classical" proton potential well (Gaussian)

Wave function

$$\Psi(k) \sim \exp\sum_{i} \left[ikx_{0i}F(k) \sim \exp\left[ikx_{0i} - \frac{k^2}{\Lambda_{QCD}}\right]\right]$$

quark locations (from UrQMD)

quark function inside the "classical" proton potential well (Gaussian)

Quarkyonic Matter

$$\frac{dN_{\gamma}}{d^3p} = \int \frac{d^4k_1}{k_1^0} \frac{d^4k_2}{k_2^0} \frac{d^4k_3}{k_3^0} \frac{d^4k_4}{k_4^0} \left(\mathcal{M}\left(k_1, k_2 \to k_3, k_4, p\right) \Psi(k_1) \Psi(k_2)\right)^2$$

γp_T spectrum from quarkyonic matter

Y v₂ from quarkyonic matter

Y v₂ from quarkyonic matter

Strong fluctuations

Strong v_2 fluctuations, both event by event and within the same event in p_T

collapse of v_2 might be a signal we can look for!

Take home messages

First steps towards a phenomenology of quarkyonic matter done

"background" crucial - experimental sensitivity? what about model sensitivity?

Take home messages

First steps towards a phenomenology of quarkyonic matter done

"background" crucial - experimental sensitivity? what about model sensitivity?

Thanks!

Backup

Rapidity distribution

Photon production

$$\frac{dN_{\gamma}}{d^3p} = \int \frac{d^4k_1}{k_1^0} \frac{d^4k_2}{k_2^0} \frac{d^4k_3}{k_3^0} \frac{d^4k_4}{k_4^0} \left(\mathcal{M}\left(k_1, k_2 \to k_3, k_4, p\right) \Psi(k_1)\Psi(k_2)\right)^2$$
$$\mathcal{M}^2 = L^2(k_1, k_2 \to k_3, k_4, p) + L^2(k_1 \leftrightarrow k_2, k_3 \leftrightarrow k_4)$$
$$L^2 = -\frac{1}{4}e^2\lambda^2 N_c^{-2}(k_2 - k_4)^{-4}Tr\left[k_4\gamma^\sigma k_2\gamma_\rho\right]Tr\left[k_3Z_{\sigma}^{\mu}k_1Z_{\mu}^{\rho}\right]$$

$$Z_{\alpha}^{\beta} = \gamma_{\alpha}(k_1 - p)^{-1}\gamma^{\beta} + \gamma^{\beta}(k_3 + p)^{-1}\gamma_{\alpha}$$

atione

The need for dynamical simulations Initial state QGP Hadronic interactions OP Hadronic interactions Pre-equilibrium Hadronisation

Lattice gaugetheory (IQCD):

Experiments:

Transport models & phenomenology:

- ab initio calculation of QCD quantities
- usually in thermodynamic limit
- Observes the final state and penetrating probes
- Relies on theoretical predictions for the interpretation of the data
- Provides explicit time and space dependence
- Direct view into the hot and dense matter
- Connects between fundamental calculations and observation

mulations

The need for dynamical simulations

Lattice gaugetheory (IQCD):

Experiments:

Transport models & phenomenology:

- ab initio calculation of QCD quantities
- usually in thermodynamic limit
- Observes the final state and penetrating probes
- Relies on theoretical predictions for the interpretation of the data
- Provides explicit time and space dependence
- Direct view into the hot and dense matter
- Connects between fundamental calculations and observation