

Institut für Theoretische Physik I

Dynamics of strongly interacting parton-hadron matter

Wolfgang Cassing

Stellenbosch, 07.11.2013

The menue

- Short reminder about PHSD
- Transport coefficients versus lattice QCD in equilibrium (in a finite box)
- Photons from Au+Au @RHIC
- Summary

From hadrons to partons

In order to study the phase transition from hadronic to partonic matter – Quark-Gluon-Plasma – we need a consistent non-equilibrium (transport) model with > explicit parton-parton interactions (i.e. between quarks and gluons) beyond strings!

explicit phase transition from hadronic to partonic degrees of freedom
 IQCD EoS for partonic phase

Transport theory: off-shell Kadanoff-Baym equations for the Green-functions $S_h^{<}(x,p)$ in phase-space representation for the partonic and hadronic phase

Parton-Hadron-String-Dynamics (PHSD)

W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; W. Cassing, EPJ ST 168 (2009) 3

Dynamical QuasiParticle Model (DQPM)

QGP phase described by

A. Peshier, W. Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

Transport coefficients from PHSD in a box

•Kubo:
$$\eta = \frac{1}{T} \int d^3r \int_0^\infty dt \langle \pi^{xy}(\mathbf{0}, 0) \pi^{xy}(\mathbf{r}, t) \rangle_{\text{equil}}$$

•V. Ozvenchuk et al., PRC 87 (2013) 024901

Transport coefficients

Shear viscosity shows a minimum close to Tc !

•V. Ozvenchuk et al., PRC 87 (2013) 064903

bulk/shear versus temperature T

Properties of parton-hadron matter – electric conductivity

 The response of the strongly-interacting system in equilibrium to an external electric field eE_z defines the electric conductivity σ₀:

$$\frac{\sigma_0}{T} = \frac{j_{eq}}{E_z T}, \quad j_z(t) = \frac{1}{V} \sum_j eq_j \frac{p_z^j(t)}{M_j(t)}.$$

the QCD matter even at T~ T_c is a much better electric conductor than Cu or Ag (at room temperature) by a factor of 500 !

W. Cassing et al., PRL 110 (2013) 182301

Thermal dilepton rates in lattice QCD

O. Linnyk et al., PRC 87 (2013) 014905

Initial state fluctuations in energy density

e.g. Au + Au @ RHIC for b=9 fm

Transverse plane

Longitudinal plane

Flow coefficients versus centrality at RHIC

Photons from the hot and dense medium **Photon sources:** from the **QGP** via partonic interactions: q-qbar annihilation **Compton scattering** $q(\bar{q}) + q \rightarrow q(\bar{q}) + \gamma \qquad q + \bar{q} \rightarrow q + \gamma$ from hadronic sources: $\pi \to \gamma + \gamma, \ \eta \to \gamma + \gamma, \ \omega \to \pi + \gamma$ •decays of mesons: $\eta' \to \rho + \gamma, \ \phi \to \eta + \gamma, \ a_1 \to \pi + \gamma$ •secondary meson interactions: $\pi + \pi \rightarrow \rho + \gamma, \ \rho + \pi \rightarrow \pi + \gamma$

using the off-shell extension of Kapusta et al. in PRD44 (1991) 2774

• meson-meson bremsstrahlung: $m+m \rightarrow m+m+\gamma$, $m=\pi,\eta,\rho,\omega,K,K^*,...$

using the soft-photon approximation

Photon elliptic flow from QGP radiation

0.06

LB.

γ^{QGP}

• QGP radiation occurs at early times when the flow is not yet developed!

Olena Linnyk et al., PRC 88 (2013) 034904; arXiv:1304.7030

Photon spectra at RHIC

Inclusive photon spectrum

• π^0 and η subtracted photon spectrum

• π^0 and η decays dominate the low p_T spectra

• QGP sources mandatory to explain the spectrum (~50%), but hadronic sources are considerable, too !

• The 'effective temperature' T_{eff}:

The slope parameter T_{eff} (in MeV)					
PHSD			PHENIX		
QGP	hadrons	Total	[38]		
260 ± 20	200 ± 20	220 ± 20	$233 \pm 14 \pm 19$		

Time evolution of the photon production rate vs. T

•The photon production rate versus time and the local 'temperature' at the production point in 4π and mid-rapidity Au+Au collisions:

■ Broad distribution of 'temperatures' → no universal 'temperature' can be assigned to the whole volume of the QGP - even in the mid-rapidity region !

Inclusive photon elliptic flow

- Pion elliptic flow is reproduced in PHSD and underestimated in HSD (i.e. without partonic interactions)
- \rightarrow large inclusive photon v₂ comparable to that of hadrons is reproduced in PHSD, too, because the inclusive photons are dominated by the photons from pion decay

Elliptic flow from direct photons: method I

• ,Weighted' method (theor. way):

direct photon v_2 (in PHSD) = sum of v_2 of the individual channels, using their contributions to the spectrum as the relative p_T -dependent weights $w_i(p_T)$:

$$v_{2}(\gamma^{dir}) = \sum_{i} v_{2}(\gamma^{i})w_{i}(p_{T}) = \frac{\sum_{i} v_{2}(\gamma^{i})N_{i}(p_{T})}{\sum_{i}N_{i}(p_{T})} \overset{0.4}{\underset{p_{T}}{}^{(q)}} v_{2}(\gamma \text{ from various channels})$$

$$i = (q\bar{q} \rightarrow g\gamma, qg \rightarrow q\gamma, \pi\pi/\rho \rightarrow \rho/\pi\gamma, mm \rightarrow mm\gamma, pQCD)$$

$$QGP$$

$$u_{4} \qquad u_{4}u_{4}u_{5}v_{5}^{1/2} = 200 \text{ GeV}, MB, |y| < 0.35$$

$$v_{2}^{dir} = v_{2}^{BC} + R_{5}(v_{2}^{imcl} - v_{2}^{BC})/(R_{7}^{-1}), \text{ with } R_{7}^{imcl} \text{ from}$$

$$v_{2}^{dir} = \sum_{i} v_{2}^{1/2} N_{i}(\gamma)/N_{es}(\gamma)$$

$$v_{3}^{dir} = \sum_{i} v_{2}^{i} N_{i}(\gamma)/N_{es}(\gamma)$$

$$v_{3}^{d$$

Background' subtraction method (exp. way):

$$v_2(\gamma^{dir}) = \frac{R_{\gamma}v_2(\gamma^{incl}) - v_2(\gamma^{BG})}{R_{\gamma} - 1} = v_2(\gamma^{BG}) + \frac{R_{\gamma}}{R_{\gamma} - 1}(v_2(\gamma^{incl}) - v_2(\gamma^{BG}))$$

 $R_{\gamma} = N^{incl} / N^{BG}$

N^{incl} - number of inclusive photons N^{BG} – number of photons attributed to hadron decays

Problem: $v_2(\gamma^{BG})$ and $R_{\gamma} - ?$

Background' subtraction method (exp. way):

$$v_{2}(\gamma^{dir}) = \frac{R_{\gamma}v_{2}(\gamma^{incl}) - v_{2}(\gamma^{BG})}{R_{\gamma} - 1} = v_{2}(\gamma^{BG}) + \frac{R_{\gamma}}{R_{\gamma} - 1}(v_{2}(\gamma^{incl}) - v_{2}(\gamma^{BG}))$$

$$R_{\gamma} = N^{incl}/N^{BG}$$
N^{incl} - number of inclusive photons
N^{BG} - number of photons attributed to hadron decays

•2) $R_{\gamma}(p_T)$ for $p_T < 4$ GeV/c from dilepton spectra at M=0.15-0.3 GeV \rightarrow

Elliptic flow from direct photons: method II

Centrality dependent direct photon spectra I

Background' subtraction method (pion and eta decays removed):

15

O. Linnyk et al., arXiv:1311.0279 20

Background' subtraction method (pion and eta decays removed):

Effective slopes: a) 1-3 GeV/c b) 0.4-3 GeV/c

The slope parameter T_{eff} (in MeV)					
Centrality	N_{part}	T^a_{eff}	T^b_{eff}		
min bias	101	250 ± 20	230 ± 20		
0-20%	269	290 ± 20	250 ± 20		
20-40%	127	280 ± 20	240 ± 20		
40-60%	52	290 ± 20	250 ± 20		
60-92%	11	260 ± 20	230 ± 20		

O. Linnyk et al., arXiv:1311.0279

equilibrium

in-

•**PHSD** provides a consistent description of off-shell parton dynamics in line with the lattice QCD equation of state

 \Box minimum of η /s close to T_c

→ QGP in PHSD behaves almost as a strongly-interacting liquid

 $\hfill\square$ minimum of σ_0/T close to T_C

→ the QCD matter is a good electric conductor

•**PHSD** for **HIC**:

 \Box Direct photons: the photons produced in the QGP contribute about 50% to the observed spectrum but have small v₂

□ The large measured 'direct photon v_2 ' – comparable to that of hadrons – is attributed to intermediate hadronic scattering channels and hadronic resonance decays not subtracted from the data; the value of v_2 is sensitive to the hadronic 'background' subtraction method!

□ The QGP phase causes the strong elliptic flow of photons indirectly by enhancing the v₂ of final hadrons due to the partonic interactions in terms of explicit parton collisions and the mean-field potentials!

PHSD group

Wolfgang Cassing (Giessen Univ.) Volodya Konchakovski (Giessen Univ.) Olena Linnyk (Giessen Univ.) Thorsten Steinert (Giessen Univ.) Elena Bratkovskaya (FIAS & ITP Frankfurt Univ.) Andreas Illner (HGS-HIRe, FIAS & ITP Frankfurt Univ.) Rudy Marty (FIAS, Frankfurt Univ.) Hamza Berrehrah (FIAS, Frankfurt Univ.) Daniel Cabrera (ITP&FIAS, Frankfurt Univ.)

External Collaborations:

SUBATECH, Nantes Univ. : Jörg Aichelin Christoph Hartnack Pol-Bernard Gossiaux Texas A&M Univ.: Che-Ming Ko JINR, Dubna: Vadim Voronyuk Viatcheslav Toneev Kiev Univ.: Mark Gorenstein

