

Hard Probes 2013

6th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions

Cape Town, South Africa

4-8 November 2013

Low Mass Dilepton Measurements in ALICE

Antonio Uras

IPN Lyon

on behalf of the ALICE Collaboration

- The ALICE detector
- Results from the Pb-Pb runs

- Highlight from the p-Pb run: R_{pPb} for the φ meson
- Summary & Outlook

Low mass dilepton production in heavy-ion \rightarrow key information on the hot and dense state of strongly interacting matter produced in high-energy nucleus-nucleus collisions

Measurements in pp and p-A collisions \rightarrow Soft particle production in Cold Nuclear Matter, needed reference for correctly interpreting heavy-ion observations

Measuring Dileptons in ALICE

- Dimuons → 2.5 < η < 4
 Muon Arm: Tracking Chambers +
 Muon Trigger
- Dielectrons → |η|< 0.9
 Central Barrel: Inner Tracking System + Time Projection Chamber + Time Of Flight
- ★ pp collisions at 2.76 TeV and 7 TeV [→ PLB 710 (2012) 557]
- Pb-Pb collisions at 2.76 TeV per nucleon pair
- p-Pb and Pb-p collisions at5.02 TeV per nucleon pair

Low Mass Dimuons in Pb-Pb at $\sqrt{s_{\rm NN}}$ = 2.76 TeV (I)

• ρ/ω and ϕ signals can be extracted w.r.t. continuum (open charm/beauty and Dalitz decays). The large statistical uncertainties do not allow a precision study of the underlying continuum. Acceptance from $p_T(\mu\mu) \sim 2$ GeV/c

5/15

Low Mass Dimuons in Pb-Pb at $\sqrt{s_{\rm NN}}$ = 2.76 TeV (II)

- φ/(ρ+ω) increases with respect to pp collisions: ratio tends to saturate from semiperipheral to central collisions
- R_{AA} measured for the φ meson vs centrality. Dimuon measurement at forward rapidity and in KK at mid rapidity in agreement within the errors: no indication for strong absorption/rescattering effects in the KK channel

Low Mass Dielectrons in Pb-Pb at $\sqrt{s_{\rm NN}}$ = 2.76 TeV

- Challenging electron identification: Time
 Projection Chamber and Time Of Flight
- S/B ratio of few ‰ in the lowest p_T bin: accurate combinatorial background evaluation needed
- Analysis ongoing

0.4

 m_{ee} (GeV/c²)

0.45

Low Mass Dilepton Measurements in ALICE

Low Mass Dimuons in p-Pb at $\sqrt{s_{NN}}$ = 5.02 TeV

- LHC p-Pb run in 2013: nearly 11 nb⁻¹ integrated luminosity for dimuon triggers
- LHC provides different energies for p (4 TeV) and Pb (1.58 × A TeV) beams \rightarrow c.m. moves with rapidity +0.46 in the laboratory
- Asymmetric system → interest in looking both forward and backward hemispheres with the Muon Arm (2.5 < y_{lab} < 4.0): switch from p-Pb to Pb-p (much easier than flipping the Muon Arm!)
- Direct forward/backward comparisons only available in 2.96 < |y_{cm}| < 3.53</p>

Hadronic Cocktail Fits

Favorable dimuon trigger scheme: acceptance down to dimuon p_τ = 1 GeV/c
 Fair agreement between data and hadronic cocktail + open heavy flavors
 Focus on φ meson: systematics on signal extraction within ~7%

φ Meson p_r-differential Yield

After correction by Acc \times Eff: corrected yields in the c.m. rapidity regions covered by the Muon Arm in p-Pb and Pb-p. Yield larger when the Pb beam is directed towards the Muon Arm

Low Mass Dimuons in p-Pb at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

- R_{pPb} vs p_T for the φ meson at forward (p-going) and backward (Pb-going) **rapidities:** peak at $p_T = 3-4$ GeV/c
- R_{pPb} is larger for backward rapidities, similar trends vs p_T

ALI-PREL-61841

Forward vs Backward

 φ yield larger at backward rapidities (Pb hemisphere) than at forward rapidities (proton's hemisphere): expected from soft particle production measurements

ALICE Coll. Phys. Rev. Lett. 110, 032301 (2013)

PHOBOS Coll. Phys. Rev. Lett. 93, 082301 (2004)

Forward/Backward Ratio

- A good way to compare forward and backward production is to compare the yields in the common c.m. rapidity range: 2.96 < |y_{CM}| < 3.54
- Trend vs p_T: flat within fluctuations. Differences in the observed yields at forward and backward rapidities → related to the known asymmetries in soft particle production

Comparison with Previous Results at RHIC

- Comparison with observations at forward (pseudo)rapidities: charged particles from BRAHMS and PHOBOS at RHIC
- Results from RHIC available at positive (= deuteron's) pseudorapidities only \rightarrow comparison with ALICE R_{pPb} at forward y
- Results are consistent with $R_{pA} < 1$ for $\eta > 1$

Low-mass dileptons are measured in ALICE in the dimuon and the dielectron channels

• pp at 2.76 and 7 TeV [not shown here]:

- dimuon measurements published at 7 TeV, analysis finalized at 2.76 TeV ightarrow baseline for Pb-Pb and p-Pb
- dielectron measurement: good agreement between signal and hadronic cocktail + open charm
- Pb-Pb at 2.76 TeV: R_{AA} dimuon measurement available for the φ meson, agreement with mid-rapidity measurement in the KK channel. Dielectron analysis is ongoing
- New result from the recent p-Pb run at 5.02 TeV: measurement of the nuclear modification factor R_{pPb} for the φ meson, peaked at p_T = 3-4 GeV/c.
 Forward/backward asymmetry observed, essentially flat vs p_T → coherent with the asymmetry measured in soft particle production at RHIC and LHC

• In the future:

- Extension of the dimuon p-Pb analysis to lighter mesons η and ω. Finalization of the ongoing analyses in the dielectron channel
- ◆ Preparation of the LHC Run2: new measurements in pp and Pb-Pb at higher energies → larger statistics and more precise studies

Backup Slides

Low Mass Dimuon Results in pp at 2.76 and 7 TeV

- Low Mass Dimuon Spectrum: good agreement between signal and MC sources
- p_{τ} differential cross sections measured for ω and ϕ mesons \rightarrow reference for the interpolation at ~5 TeV energies
- φ meson → PYTHIA tunes Perugia0 and Perugia11 underestimate the data by about a factor of 2 both at 2.76 and 7 TeV

Low Mass Dielectron Results in pp at 7 TeV

- Low Mass Dielectron Spectrum: good agreement between signal and MC sources
- Transverse momentum distributions of π⁰ as baseline
- Other particle contributions are scaled correspondingly by model or measurements
- Open charm contribution based on PYTHIA kinematics (with measured cross section by ALICE)

ALI-PREL-43484

- Reference yield in pp collisions is needed to evaluate the nuclear modification factor. However, no pp measurement is available at 5.02 TeV
- Starting from the measured p_T-differential cross sections measured in pp at 2.76 TeV and at 7 TeV, we interpolate at 5.02 TeV. Various hypotheses for the interpolating function → systematic uncertainty
- Resulting interpolated distribution is parameterized \rightarrow get rid of bin-to-bin fluctuations and extend to the full p_{τ} range accessible in p-Pb
- Obtained in this way, the reference is relative to the nominal Muon Arm acceptance (2.5 < y_{lab} < 4.0) → MC models allow a translation to the two rapidity regions covered in the analysis

- We observe a larger φ yield in backward than in forward rapidity, even if this asymmetry should be partially masked by the C.M. rapidity shift:
 - The rapidity of the C.M. is not zero, so that when measuring forward rapidities the Muon Arm acceptance is 2.04 < y_{CM} < 3.54, while when measuring backward rapidities we have -4.46 < y_{CM} < -2.96 \rightarrow the Muon Arm is more at mid-rapidity in first case
- Evaluating the R_{pPb} factors we already correct for this effect, since the pp reference is evaluated in the appropriate rapidity region
- However, a better way to compare forward and backward production is to evaluate the yields in the common c.m. rapidity range: 2.96 < |y_{CM}| < 3.54 and take the ratio

