Proposal for a running coupling JIMWLK equation

T. Lappi

University of Jyväskylä, Finland

Hard Probes 2013, Stellenbosch, November 2013

Outline

- ► CGC, Glasma, JIMWLK evolution
- JIMWLK equation in Langevin form
- Suggestion for a running coupling JIMWLK equaton

T.L., H. Mäntysaari EPJC 2013

JIMWLK ["gym-walk"]:
Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner

Small x: the hadron/nucleus wavefunction is characterized by saturation scale $Q_s \gg \Lambda_{OCD}$.

Small x: the hadron/nucleus wavefunction is characterized by saturation scale $Q_s \gg \Lambda_{QCD}$.

- ${f p}\sim Q_{
 m s}$: strong fields $A_{\mu}\sim 1/g$
 - occupation numbers $\sim 1/\alpha_s$
 - classical field approximation.
 - \triangleright small α_s , but nonperturbative

Small x: the hadron/nucleus wavefunction is characterized by saturation scale $Q_s \gg \Lambda_{QCD}$.

 ${f p}\sim Q_{
m s}$: strong fields $A_{\mu}\sim 1/g$

- occupation numbers $\sim 1/\alpha_s$
- classical field approximation.
- ightharpoonup small α_s , but nonperturbative

CGC: Effective theory for wavefunction of nucleus

- ▶ Large $x = \text{source } \rho$, **probability** distribution $W_y[\rho]$
- ▶ Small x = classical gluon field A_{μ} + quantum flucts.

Small x: the hadron/nucleus wavefunction is characterized by saturation scale $Q_s \gg \Lambda_{\rm QCD}$.

 $\mathbf{p} \sim Q_{\mathrm{s}}$: strong fields $A_{\mu} \sim 1/g$

- occupation numbers $\sim 1/\alpha_s$
- classical field approximation.
- \triangleright small α_s , but nonperturbative

CGC: Effective theory for wavefunction of nucleus

- ▶ Large x =source ρ , **probability** distribution $W_{\nu}[\rho]$
- ▶ Small x = classical gluon field A_{ii} + quantum flucts.

Glasma field configuration of two colliding sheets of CGC.

Wilson line

Classical color field described as Wilson line

$$U(\mathbf{x}) = P \exp \left\{ ig \int dx^- A_{\text{cov}}^+(\mathbf{x}, x^-) \right\} \in SU(3)$$

Relation to color charge

$$abla^2 A_{\text{cov}}^+(\mathbf{x}, x^-) = -g \rho(\mathbf{x}, x^-)$$

$$(x^{\pm} = \frac{1}{\sqrt{2}}(t \pm z)$$
; $A^{\pm} = \frac{1}{\sqrt{2}}(A^{0} \pm A^{z})$; **x** 2d transverse

Example of usage: forward pA

- ► Quark from *p* (large *x* pdf) , radiate gluon
- ightharpoonup Eikonal propagation \Longrightarrow Wilson lines $U(\mathbf{x})$

Need target expectation values of operators:

Tr
$$U(\mathbf{x})U^{\dagger}(\mathbf{y})$$
 Tr $U(\mathbf{x})U^{\dagger}(\mathbf{y})U(\mathbf{u})U^{\dagger}(\mathbf{v})$...

JIMWLK evolution

Classical color field described as Wilson line

$$U(\mathbf{x}) = P \exp \left\{ ig \int dx^- A^+(\mathbf{x}, x^-) \right\} \in SU(3)$$

- ► Energy dependent **probability** distribution $W_y[U]$ $(y \sim \ln \sqrt{s})$
- ► Energy/rapidity dependence of $W_y[U]$ from JIMWLK renormalization group equation

$$\partial_y W_y[U(\mathbf{x})] = \mathcal{H}W_y[U(\mathbf{x})]$$

JIMWLK Hamiltonian: (fixed coupling)

$$\mathcal{H} \equiv rac{1}{2} lpha_{
m s} \int\limits_{
m xyz} rac{\delta}{\delta A_c^+({f y})} {f e}^{ba}({f x},{f z}) \cdot {f e}^{ca}({f y},{f z}) rac{\delta}{\delta A_b^+({f x})}, \ {f e}^{ba}({f x},{f z}) = rac{1}{\sqrt{4\pi^3}} rac{{f x}-{f z}}{({f x}-{f z})^2} \left(1-U^\dagger({f x})U({f z})
ight)^{ba}$$

Fokker-Planck and Langevin

Textbook example: two descriptions of Brownian motion

► 1-d diffusion eq. (⊃ F.-P. eq.)

$$\partial_t P(x,t) = D\partial_x^2 P(x,t)$$

- ► P(x, t)=probability for particle to be at location x at time t.
- For particle starting at x = 0 at t = 0 solution is

$$P(x,t) = \frac{1}{\sqrt{4\pi Dt}} \exp\left\{-\frac{x^2}{4Dt}\right\}$$

Fokker-Planck and Langevin

Textbook example: two descriptions of Brownian motion

▶ 1-d diffusion eq. (⊃ F.-P. eq.)

$$\partial_t P(x,t) = D \partial_x^2 P(x,t)$$

- ► P(x, t)=probability for particle to be at location x at time t.
- For particle starting at x = 0 at t = 0 solution is

$$P(x,t) = \frac{1}{\sqrt{4\pi Dt}} \exp\left\{-\frac{x^2}{4Dt}\right\}$$

Langevin equation:

$$x(t) = \sqrt{2D}\eta(t)$$
$$\langle \eta(t)\eta(t')\rangle = \delta(t-t')$$
$$\langle x(t)\rangle = 0$$

$$\langle x^2(t)\rangle = 2Dt$$
 \implies same as F.-P.

► Also easy to calculate $t \neq t'$

$$\langle x(t)x(t')\rangle = 2D\min(t,t')$$

- Now $x \Longrightarrow U(\mathbf{x})$ and $t \Longrightarrow y$.
- ► $(N_c^2 1)N_{\perp}^2$ -dimensional nonlinear diffusion equation. $(N_{\parallel}^2 = \text{number of lattice points in transverse plane.})$

Langevin formulation

Fokker-Planck

Langevin in JIMWLK Blaizot, lancu, Weigert 2002

Original Langevin form: only right derivative ($\xi_{\bullet}^{b,i}$ is noise)

$$U_{\mathbf{x}}(y+\,\mathrm{d}y)=U_{\mathbf{x}}(y)\exp\bigg\{it^{a}\int_{\mathbf{z}}\varepsilon_{\mathbf{x},\mathbf{z}}^{ab,i}\xi_{\mathbf{z}}^{b,i}\sqrt{\,\mathrm{d}y}+\sigma_{\mathbf{x}}^{a}\,\mathrm{d}y\bigg\}.$$

New simpler, equivalent (for $dy \rightarrow 0$) form T.L., H.M.

$$U_{\mathbf{x}}(y + dy) = \exp\left\{-i\frac{\sqrt{\alpha_{\mathbf{S}}dy}}{\pi} \int_{\mathbf{z}} \mathbf{K}_{\mathbf{x}-\mathbf{z}} \cdot (U_{\mathbf{z}}\xi_{\mathbf{z}}U_{\mathbf{z}}^{\dagger})\right\} \times U_{\mathbf{x}}(y) \exp\left\{i\frac{\sqrt{\alpha_{\mathbf{S}}dy}}{\pi} \int_{\mathbf{z}} \mathbf{K}_{\mathbf{x}-\mathbf{z}} \cdot \xi_{\mathbf{z}}\right\},$$

$$K_{\mathbf{x}-\mathbf{z}}^{i} = \frac{(\mathbf{x} - \mathbf{z})^{i}}{(\mathbf{x} - \mathbf{z})^{2}} \qquad i = x, y$$

Fixed
$$\alpha_s$$
 noise: $\langle \xi_{\mathbf{x}}(y_m)_i^a \xi_{\mathbf{y}}(y_n)_j^b \rangle = \alpha_s \delta^{ab} \delta^{ij} \delta_{\mathbf{x}\mathbf{y}}^{(2)} \delta_{mn}, \quad \xi = \xi^a t^a$

Multiply from left and right ⇒ no deterministic term

Interpreting JIMWLK: derive BK

$$U_{\boldsymbol{x}}(\boldsymbol{y}+\,\mathrm{d}\boldsymbol{y})=e^{-i\frac{\sqrt{\alpha_{S}\,\mathrm{d}\boldsymbol{y}}}{\pi}\int_{\boldsymbol{z}}K_{\boldsymbol{x}-\boldsymbol{z}\cdot}(U_{\boldsymbol{z}}\xi_{\boldsymbol{z}}U_{\boldsymbol{z}}^{\dagger})}U_{\boldsymbol{x}}e^{i\frac{\sqrt{\alpha_{S}\,\mathrm{d}\boldsymbol{y}}}{\pi}\int_{\boldsymbol{z}}K_{\boldsymbol{x}-\boldsymbol{z}\cdot}\xi_{\boldsymbol{z}}},$$

- ▶ At dy \rightarrow 0 develop to $\mathcal{O}(\xi^2)$ and take expectation values.
- ▶ BK Balitsky-Kovchegov is equation for dipole $\hat{D}_{x,y} = \text{Tr } U^{\dagger}(x)U(y)/N_c$
- Contract ξ 's from timestep of $U^{\dagger}(\mathbf{x})$ with one from $U(\mathbf{y})$: real terms

▶ Contract two ξ 's from timestep of $U^{\dagger}(\mathbf{x})$ or $U(\mathbf{y})$: virtual terms

Result

$$\partial_{y}\hat{D}_{\mathbf{x},\mathbf{y}}(y) = \frac{\alpha_{s}N_{c}}{2\pi^{2}} \int_{\mathbf{z}} \left(\mathbf{K}_{\mathbf{x}-\mathbf{z}}^{2} + \mathbf{K}_{\mathbf{y}-\mathbf{z}}^{2} - 2\mathbf{K}_{\mathbf{x}-\mathbf{z}} \cdot \mathbf{K}_{\mathbf{y}-\mathbf{z}} \right) \left[\hat{D}_{\mathbf{x},\mathbf{z}}\hat{D}_{\mathbf{z},\mathbf{y}} - \hat{D}_{\mathbf{x},\mathbf{y}} \right].$$

Scale of running α_s in JIMWLK

BK for $\hat{D}_{\mathbf{x},\mathbf{y}}(y)$ describes dipole splitting $\mathbf{x} - \mathbf{y} \longrightarrow \mathbf{x} - \mathbf{z}$; $\mathbf{z} - \mathbf{y}$

- $\sim \alpha_s$ given by parent $\mathbf{x} \mathbf{y}$: easy in BK, but funny in JIMWLK: Langevin is only for one Wilson line
- ▶ Daughter (scale in **K**): easy to implement as $\sqrt{\alpha_s}$, but why?

$$\sqrt{\alpha_{\text{S}}}\mathbf{K}_{\mathbf{x}-\mathbf{z}}
ightarrow \sqrt{\alpha_{\text{S}}(\mathbf{x}-\mathbf{z})}\mathbf{K}_{\mathbf{x}-\mathbf{z}}$$

- Used in BK: combinations of these two.
- Suggestion T.L., H.Mäntysaari 2012: natural scale is momentum of radiated gluon.
- Implemented by modifying momentum space noise correlator

$$\begin{aligned} \langle \xi_{\mathbf{x}}(m)_{i}^{a} \xi_{\mathbf{y}}(n)_{j}^{b} \rangle &\sim \alpha_{\mathbf{s}} \delta_{\mathbf{x}\mathbf{y}}^{(2)} = \alpha_{\mathbf{s}} \int \frac{\mathsf{d}^{2} \mathbf{k}}{(2\pi)^{2}} e^{i\mathbf{k} \cdot (\mathbf{x} - \mathbf{y})} \\ \Longrightarrow & \int \frac{\mathsf{d}^{2} \mathbf{k}}{(2\pi)^{2}} e^{i\mathbf{k} \cdot (\mathbf{x} - \mathbf{y})} \alpha_{\mathbf{s}}(\mathbf{k}) \end{aligned}$$

Reinterpreting JIMWLK

$$\begin{split} U_{\mathbf{x}}(y+\,\mathrm{d}y) &= \exp\left\{-i\frac{\sqrt{\,\mathrm{d}y}}{\pi}\int_{\mathbf{z}}\mathbf{K}_{\mathbf{x}-\mathbf{z}}\cdot \left(U_{\mathbf{z}}\boldsymbol{\xi}_{\mathbf{z}}U_{\mathbf{z}}^{\dagger}\right)\right\} \\ &\quad \times U_{\mathbf{x}}(y)\,\exp\left\{i\frac{\sqrt{\,\mathrm{d}y}}{\pi}\int_{\mathbf{z}'}\mathbf{K}_{\mathbf{x}-\mathbf{z}'}\cdot\boldsymbol{\xi}_{\mathbf{z}'}\right\}, \end{split}$$

$$\langle \xi_{\mathbf{x}}(m)_{i}^{a}\xi_{\mathbf{y}}(n)_{j}^{b} \rangle \sim \int \frac{\mathsf{d}^{2}\mathbf{k}}{(2\pi)^{2}} e^{i\mathbf{k}\cdot(\mathbf{x}-\mathbf{y})} \alpha_{s}(\mathbf{k}) \equiv \widetilde{\alpha}_{\mathbf{x}-\mathbf{y}}$$

- Breaks time-reversal-symmetry: choose scale as momentum of gluon either before or after the target
- ► Two gluon coordinates instead of one

Recovering BK

Equation for dipole now involves higher point functions:

$$\begin{split} \partial_y \hat{D} &= \frac{\textit{N}_c}{2\pi^2} \int_{\textbf{u},\textbf{v}} \widetilde{\alpha}_{\textbf{u}-\textbf{v}} \bigg(\textbf{K}_{\textbf{x}-\textbf{u}} \cdot \textbf{K}_{\textbf{x}-\textbf{v}} + \textbf{K}_{\textbf{y}-\textbf{u}} \cdot \textbf{K}_{\textbf{y}-\textbf{v}} - 2 \textbf{K}_{\textbf{x}-\textbf{u}} \cdot \textbf{K}_{\textbf{y}-\textbf{v}} \bigg) \\ &\times \frac{1}{2} \left[\hat{D}_{\textbf{x},\textbf{u}} \hat{D}_{\textbf{u},\textbf{y}} + \hat{D}_{\textbf{x},\textbf{v}} \hat{D}_{\textbf{v},\textbf{y}} - \hat{D}_{\textbf{x},\textbf{y}} - \hat{D}_{\textbf{v},\textbf{u}} \hat{Q}_{\textbf{x},\textbf{v},\textbf{u},\textbf{y}} \right], \end{split}$$

▶ But recall that α_s is a slowly varying function of the scale:

$$\widetilde{lpha}_{\mathbf{x}-\mathbf{y}} \equiv \int rac{\mathsf{d}^2\mathbf{k}}{(2\pi)^2} \mathrm{e}^{i\mathbf{k}\cdot(\mathbf{x}-\mathbf{y})} lpha_{\mathsf{S}}(\mathbf{k}) \sim lpha_{\mathsf{S}} \delta^2(\mathbf{x}-\mathbf{y})$$

 \Longrightarrow **u** \approx **v** and structure simplifies to BK:

$$\frac{1}{2}\left[\hat{D}_{\textbf{x},\textbf{u}}\hat{D}_{\textbf{u},\textbf{y}}+\hat{D}_{\textbf{x},\textbf{v}}\hat{D}_{\textbf{v},\textbf{y}}-\hat{D}_{\textbf{x},\textbf{y}}-\hat{D}_{\textbf{v},\textbf{u}}\hat{Q}_{\textbf{x},\textbf{v},\textbf{u},\textbf{y}}\right]\approx\hat{D}_{\textbf{x},\textbf{u}}\hat{D}_{\textbf{u},\textbf{y}}-\hat{D}_{\textbf{x},\textbf{y}}$$

▶ Parametrically dominant length scale in coupling is "smallest dipole", just like in Balitsky prescription for BK.

Side note: scale in coordinate vs momentum space

If running coupling depends only on scale in **K** ($\sqrt{\alpha_s}$ -prescription), can use either coordinate or momentum space:

Numerically verified identification Kovchegov, Weigert for this kernel

$$\label{eq:local_local_local_local} \ln \frac{\textbf{k}^2}{\Lambda_{QCD}^2} \sim \ln \frac{\textbf{4} \textbf{e}^{-\textbf{2}\gamma_E}}{\textbf{r}^2\Lambda_{QCD}^2}$$

In numerical comparisons we assume this identification generally.

Comparison BK/JIMWLK

Evolution with our prescription is slower than with $\sqrt{\alpha_s}$. This is good, data favors slower evolution

But this is still faster than with Balitsky prescription in BK (Although parametrically dominant scales are the same.)

Note: rcBK fits to HERA data need to take $\Lambda_{QCD} \approx 50 MeV$ to make evolution slow enough.

Evolution speed

- ► At very small Q_s also dependence on how the Landau pole is regulated (different line shapes)
- At very large Q_s lattice UV cutoff slows down JIMWLK simulations

Conclusions

- JIMWLK equation is beginning to be actually applied
- Running coupling, going towards NLO ... necessary for phenomenology
- Provides initial state for AA collision in CYM