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Outline

I CGC, Glasma, JIMWLK evolution
I JIMWLK equation in Langevin form
I Suggestion for a running coupling JIMWLK equaton

T.L., H. Mäntysaari EPJC 2013

JIMWLK [ “gym-walk” ]:
Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner
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Gluon saturation, Glass and Glasma

Small x : the hadron/nucleus
wavefunction is characterized by
saturation scale Qs � ΛQCD.

⇓
p ∼ Qs: strong fields Aµ ∼ 1/g

I occupation numbers ∼ 1/αs

I classical field approximation.
I small αs, but nonperturbative 10-5
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CGC: Effective theory for wavefunction of nucleus
I Large x = source ρ, probability distribution Wy [ρ]

I Small x = classical gluon field Aµ + quantum flucts.

Glasma field configuration of two colliding sheets of CGC.
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Wilson line

Classical color field described as Wilson line

U(x) = P exp
{

ig
∫

dx−A+
cov(x, x−)

}
∈ SU(3)

Relation to color charge

∇2A+
cov(x, x−) = −gρ(x, x−)

( x± = 1√
2
(t ± z) ; A± = 1√

2
(A0 ± Az) ; x 2d transverse )

Example of usage: forward pA

I Quark from p (large x pdf) , radiate gluon
I Eikonal propagation =⇒ Wilson lines U(x)

Need target expectation values of operators:

Tr U(x)U†(y) Tr U(x)U†(y)U(u)U†(v) . . .

p

A
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JIMWLK evolution

Classical color field described as Wilson line

U(x) = P exp
{

ig
∫

dx−A+(x, x−)

}
∈ SU(3)

I Energy dependent probability distribution Wy [U] (y ∼ ln
√

s)

I Energy/rapidity dependence of Wy [U] from JIMWLK
renormalization group equation

∂y Wy [U(x)] = HWy [U(x)]

JIMWLK Hamiltonian: (fixed coupling)

H ≡ 1
2
αs

∫
xyz

δ

δA+
c (y)

eba(x, z) · eca(y, z)
δ

δA+
b (x)

,

eba(x, z) =
1√
4π3

x− z
(x− z)2

(
1− U†(x)U(z)

)ba
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Fokker-Planck and Langevin

Textbook example: two descriptions of Brownian motion
I 1-d diffusion eq. (⊃ F.-P. eq.)

∂tP(x , t) = D∂2
x P(x , t)

I P(x , t)=probability for particle
to be at location x at time t .

I For particle starting at x = 0
at t = 0 solution is

P(x , t) =
1√

4πDt
exp

{
− x2

4Dt

}

I Langevin equation:
x(t) =

√
2Dη(t)

〈η(t)η(t ′)〉 = δ(t − t ′)
I 〈x(t)〉 = 0
〈x2(t)〉 = 2Dt

=⇒ same as F.-P.
I Also easy to calculate t 6= t ′

〈x(t)x(t ′)〉 = 2Dmin(t , t ′)

I Now x =⇒ U(x) and t =⇒ y .
I (Nc

2 − 1)N2
⊥-dimensional nonlinear diffusion equation.

(N2
⊥= number of lattice points in transverse plane.)
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Langevin formulation
Fokker-Planck =⇒ Langevin in JIMWLK Blaizot, Iancu, Weigert 2002

Original Langevin form: only right derivative (ξb,i
z is noise)

Ux(y + dy) = Ux(y) exp
{

ita
∫

z
εab,i

x,z ξ
b,i
z
√

dy + σa
x dy

}
.

New simpler, equivalent (for dy → 0) form T.L., H.M.

Ux(y + dy) = exp

{
−i

√
αs dy
π

∫
z

Kx−z · (UzξzU†z )

}

× Ux(y) exp

{
i

√
αs dy
π

∫
z

Kx−z · ξz

}
,

K i
x−z =

(x− z)i

(x− z)2 i = x , y

Fixed αs noise: 〈ξx(ym)a
i ξy(yn)b

j 〉 = αsδ
abδijδ

(2)
xy δmn, ξ = ξata

Multiply from left and right =⇒ no deterministic term
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Interpreting JIMWLK: derive BK

Ux(y + dy) = e−i
√

αs dy
π

R
z Kx−z·(UzξzU†z )Uxei

√
αs dy
π

R
z Kx−z·ξz ,

I At dy → 0 develop to O(ξ2) and take expectation values.
I BK Balitsky-Kovchegov is equation for dipole D̂x,y = Tr U†(x)U(y)/Nc

I Contract ξ’s from timestep of U†(x) with one from U(y): real terms
x

z
y

x

z
y

x

z
y

I Contract two ξ’s from timestep of U†(x) or U(y): virtual terms
x

z

x

z

x

z

I Result

∂y D̂x,y(y) =
αsNc

2π2

∫
z

(
K2

x−z + K2
y−z−2Kx−z · Ky−z

)[
D̂x,zD̂z,y − D̂x,y

]
.
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Scale of running αs in JIMWLK

BK for D̂x,y(y) describes dipole splitting x− y −→ x− z ; z− y

I αs given by parent x− y: easy in BK, but funny in JIMWLK:
Langevin is only for one Wilson line

I Daughter (scale in K): easy to implement as
√
αs, but why?

√
αsKx−z →

√
αs(x− z)Kx−z

I Used in BK: combinations of these two.
I Suggestion T.L., H.Mäntysaari 2012 : natural scale is momentum of

radiated gluon.
I Implemented by modifying momentum space noise correlator

〈ξx(m)a
i ξy(n)b

j 〉 ∼ αsδ
(2)
xy = αs

∫
d2k

(2π)2 eik·(x−y)

=⇒
∫

d2k
(2π)2 eik·(x−y)αs(k)
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Reinterpreting JIMWLK

Ux(y + dy) = exp

{
−i

√
dy
π

∫
z

Kx−z · (UzξzU†z )

}

× Ux(y) exp

{
i

√
dy
π

∫
z′

Kx−z′ · ξz′

}
,

〈ξx(m)a
i ξy(n)b

j 〉 ∼
∫

d2k
(2π)2 eik·(x−y)αs(k) ≡ α̃x−y

x

z
y

z′
k

x
z′

y
z

k
x
z′

y
z

k

x

z
z′

k

x

z
z′ k

x

z
z′ k

I Breaks time-reversal-symmetry: choose scale as momentum of
gluon either before or after the target

I Two gluon coordinates instead of one
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Recovering BK

I Equation for dipole now involves higher point functions:

∂y D̂ =
Nc

2π2

∫
u,v
α̃u−v

(
Kx−u ·Kx−v +Ky−u ·Ky−v−2Kx−u ·Ky−v

)
× 1

2

[
D̂x,uD̂u,y + D̂x,vD̂v,y − D̂x,y − D̂v,uQ̂x,v,u,y

]
,

I But recall that αs is a slowly varying function of the scale:

α̃x−y ≡
∫

d2k
(2π)2 eik·(x−y)αs(k) ∼ αsδ

2(x− y)

=⇒ u ≈ v and structure simplifies to BK:

1
2

[
D̂x,uD̂u,y + D̂x,vD̂v,y − D̂x,y − D̂v,uQ̂x,v,u,y

]
≈ D̂x,uD̂u,y − D̂x,y

I Parametrically dominant length scale in coupling is “smallest
dipole”, just like in Balitsky prescription for BK.
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Side note: scale in coordinate vs momentum space

If running coupling depends only on scale in K (
√
αs-prescription),

can use either coordinate or momentum space:

√
αs(r)

r
r2

vs.√
αs(k)

k
k2

0.01 0.1 1
rΛ

QCD

0

0.2

0.4

0.6

0.8

1

N

k √ α
s

r √ α
s

Numerically verified identification Kovchegov, Weigert for this kernel

ln
k2

Λ2
QCD

∼ ln
4e−2γE

r2Λ2
QCD

In numerical comparisons we assume this identification generally.
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Comparison BK/JIMWLK
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Evolution with our prescription is
slower than with

√
αs.

This is good, data favors slower
evolution
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But this is still faster than with
Balitsky prescription in BK
(Although parametricallly dominant scales
are the same.)

Note: rcBK fits to HERA data need to take ΛQCD ≈ 50MeV to make
evolution slow enough.
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Evolution speed

λ ≡ d ln Q2
s

dy

4 8 16 32 64
Q

s
 / Λ

QCD
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0.4

0.5

0.6

λ

Noise α
s
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√ α

s

I At very small Qs also dependence on how the Landau pole is
regulated (different line shapes)

I At very large Qs lattice UV cutoff slows down JIMWLK
simulations
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Conclusions

I JIMWLK equation is beginning to be actually applied
I Running coupling, going towards NLO . . . necessary for

phenomenology
I Provides initial state for AA collision in CYM
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