Measurements of direct photons in Au + Au collisions with PHENIX

Hard Probes 2013

Benjamin Bannier for the PHENIX collaboration

Stony Brook University

November 5, 2013

Outline

Low momentum direct photons: $0.4\,\mathrm{GeV}/c < p_T < 5.0\,\mathrm{GeV}/c$

How are low momentum real photons measured in PHENIX?

Spectra and centrality dependence of the low momentum real photons from RHIC

Low momentum direct photons

- long mean free path, escape heavy ion collision with almost no final state interaction
- produced at all stages of the collision in scatterings of constituents of each other or the medium
- probe complete temperature and flow evolution of the collision
- experimentally characterized by momentum-dependent yields and angular correlations with event planes

Low momentum direct photons (experiment)

Low p_T photons via external conversions in PHENIX

$$R_{\gamma} = rac{Y_{ ext{incl.}}^{\gamma}}{Y_{ ext{hadron}}^{\gamma}} = rac{\langle arepsilon f
angle rac{N_{ ext{incl.}}^{\gamma}}{N_{\pi^0}^{\gamma}}}{rac{Y_{ ext{hadron}}^{\gamma}}{\gamma_{\pi^0}^{\gamma}}}$$

Requirements:

- clean photon sample
- high π^0 -tagging efficiency $\langle \varepsilon f \rangle$

Photon sample

- measurement of low momentum photons in electromagnetic calorimeters is difficult due to e.g. MIPs
- ▶ PHENIX has good electron reconstruction capability down to $p_T = 200 \,\text{MeV/c}$
- reconstruct real photons down to 400 MeV/c from e^+e^- pairs \rightarrow no hadron contamination

- momentum can be reconstructed assuming production at the nominal event vertex or a defined radius
- conversion pairs can be selected through their invariant mass under hypotheses for production radius

$$N_{\text{incl.}}^{\gamma} = Y_{\text{incl.}}^{\gamma} p_{\text{conv}} a_{e^+e^-} \varepsilon_{e^+e^-}$$

- momentum can be reconstructed assuming production at the nominal event vertex or a defined radius
- conversion pairs can be selected through their invariant mass under hypotheses for production radius

$$N_{\text{incl.}}^{\gamma} = Y_{\text{incl.}}^{\gamma} p_{\text{conv}} a_{e^+e^-} \varepsilon_{e^+e^-}$$

π^0 -decay photon tagging

- a second photon measured with very loose cuts in the calorimeter is paired with converted photons
- the combinatorial background is modelled with a mixed-event sample of uncorrelated converted and calorimeter photons

$$N_{\pi^0}^{\gamma} = Y_{\pi^0}^{\gamma} p_{\text{conv}} a_{e^+e^-} \varepsilon_{e^+e^-} \times \langle \varepsilon f \rangle$$

(b)
$$p_{T,\gamma} = 2.0 - 2.5 \,\text{GeV/c}$$

Tagging efficiency correction $\langle \varepsilon f \rangle$

▶ 2nd photon in acceptance $\rightarrow \varepsilon$

▶ 2nd photon lost $\rightarrow f$

The tagging efficiency $\langle \varepsilon f \rangle$ is calculated in a Monte Carlo simulation.

• f can be calculated accurately, $\varepsilon \approx 90\%$

$$\frac{\textit{N}_{\mathsf{incl.}}^{\gamma}}{\textit{N}_{\pi^0}^{\gamma}} = \frac{\textit{Y}_{\mathsf{incl.}}^{\gamma} p_{\mathsf{conv}} \textit{a}_{e^+e^-} \varepsilon_{e^+e^-}}{\textit{Y}_{\pi^0}^{\gamma} p_{\mathsf{conv}} \textit{a}_{e^+e^-} \varepsilon_{e^+e^-} \times \langle \varepsilon \textit{f} \rangle} = \frac{\textit{Y}_{\mathsf{incl.}}^{\gamma}}{\textit{Y}_{\pi^0}^{\gamma} \langle \varepsilon \textit{f} \rangle}$$

R_{γ} in Au + Au at $\sqrt{s_{\rm NN}} = 200 \, {\rm GeV}$

Figure: R_{γ} from **virtual** and real photons (red, blue) in 0-20%, 20-40%, 40-60% and 60-92% more central collisions.

Direct photon p_T spectrum

Figure: Direct photon p_T spectra $Y_{\gamma}=(R_{\gamma}-1)Y_{\gamma}^{\rm hadron}$ in 0-20%, 20-40%, 40-60% and 60-92% more central collisions. A $N_{\rm coll}$ -scaled fit a $\left(1+p_T^2/b\right)^{-c}$ to RHIC pp data is shown in green.

Excess photon p_T spectrum

Figure: Excess photon p_T spectra after subtraction of hard-scattering component in 0-20%, 20-40%, 40-60% and 60-92% more central collisions. Red lines are fits of $Ae^{-p_T/T_{\rm eff}}$ in $p_T=0.6-2.0\,{\rm GeV/c}$.

Centrality dependence of excess photon yield

Figure: Left: Integrated excess photon yield as a function of Glauber N_{part} . Residuals of fits to power laws AN_{part}^x with $x = 1.48 \pm 0.08(\text{stat}) \pm 0.04(\text{sys})$.

$$\frac{\mathrm{d}N}{\mathrm{d}y}\left(p_{T}\right) = \sum_{p_{T}^{(i)} = p_{T}}^{5\,\mathrm{GeV}/c} 2\pi p_{T}^{(i)} \Delta p_{T}^{(i)} \left(\frac{1}{2\pi p_{T}} \frac{\mathrm{d}^{2}N}{\mathrm{d}p_{T}\mathrm{d}y}\right) \bigg|_{p_{T}^{(i)}}$$

Summary

We have measured R_{γ} and p_T spectra for real photons.

Real and virtual photons show similar R_{γ} .

An excess yield of photons is seen across all centralities.

No change in the shape of the photon p_T spectra is seen between centralities outside uncertainties.

The excess photon yield grows stronger than $N_{\rm part}$ in the p_T window $0.6-2.0{\rm GeV}/c$ and is described by a power law with $x=1.48\pm0.08{\rm (stat)}\pm0.04{\rm (sys)}$.

Backup

Characterization of excess photon p_T spectra

Excess photon spectra are roughly exponential in low p_T range.

The shape of the spectra doesn't change outside uncertainties across centralities.

0-20%	20-40%	40-60%	60-92%	$[\mathcal{T}_{eff}]$
$237 \pm 25 \pm 29$	$260\pm33\pm31$	$228\pm28\pm27$	$254 \pm 53 \pm 25$	MeV/c

Integrated yields

To quantify the centrality-dependence of the yield we can calculate

$$\frac{\mathrm{d}N}{\mathrm{d}y}(p_T) = \sum_{p_T^{(i)} = p_T}^{5\,\mathrm{GeV}/c} 2\pi p_T^{(i)} \Delta p_T^{(i)} \left(\frac{1}{2\pi p_T} \frac{\mathrm{d}^2 N}{\mathrm{d}p_T \mathrm{d}y} \right) \Big|_{p_T^{(i)}}$$

Figure: Normalized fit residuals for fits of the excess photon spectra to an exponential in $p_T = 0.6...2.0 \text{ GeV/c}$ (*left*) and zoomed (*right*).

Hadron decay photon simulation

To calculate R_{γ} the efficiency-corrected ratio needs to be scaled by the expected ratio of photons yields from hadron and π^0 decays $Y_{\rm hadron}^{\gamma}/Y_{\pi^0}^{\gamma}$.

We implement a cocktail including

- $\rightarrow \pi^0 \rightarrow \gamma \gamma$
- $\rightarrow \eta' \rightarrow \gamma \gamma, \ \pi^+ \pi^- \gamma, \ \omega \gamma$
- $\sim \omega \to \pi^0 \gamma$

using experimental π p_T spectra and m_T scaling for other mesons with experimental meson/ π^0 ratios.

Figure: R_{γ} from **virtual** and real photons in 0-20%, 20-40%, 40-60% and 60-92% more central collisions.