Jet suppression in Pb+Pb collisions with the ATLAS detector

Martin Rybář, for the ATLAS collaboration

Hard Probes 2013, November 4, 2013

IPNP Charles University

Jets in Heavy Ion Collisions

- Jets provide a powerful tool to probe the hot and dense medium created in HI collisions.
- RHIC's measurements of single high p_{T} particles: the first evidence for jet quenching.
- Need to do the full jet reconstruction to understand the quenching in more details.

p+p

A+A

- The first ATLAS Pb+Pb paper: significant increase of the number of collisions with a large di-jet asymmetry with increasing collision centrality: arXiv:1011.6182, Phys. Rev. Let. 105, 252303
- How do partons loose energy in QGP?
- Better understanding of QCD in the limit of high densities and temperatures.
- How does the medium modify the parton showers?

3

Jets in Heavy Ion Collisions

- Jets provide a powerful tool to probe the hot and dense medium created in HI collisions.
- RHIC's measurements of single high p_{τ} particles: the first evidence for jet quenching.
- Need to do the full jet reconstruction to understand the quenching in more details.

The ATLAS Detector

- ATLAS, a general-purpose p-p experiment, is also an excellent detector for heavy ion physics!
- Large pseudorapidity coverage and full azimuthal acceptance.
- Fine granularity and longitudinal segmentation.
- Precise inner detector in a 2T solenoid field.
- Extensive system of muon chambers placed inside a 1T toroid field.

Centrality

- Characterize centrality by percentile of total cross-section using total E₁.
- Measured in Forward Calorimeter (3.2<|η|<4.9).
- Centrality \rightarrow number of participants
 N_{part} and binary collisions N_{coll}.

Jet Reconstruction at ATLAS

- Reconstruction algorithm: anti-k, with R=0.2, 0.3 and 0.4.
- Input: calorimeter towers 0.1 x 0.1 ($\Delta \eta \times \Delta \phi$).
- Event-by-event background subtraction:

 $E_{T_j}^{sub} = E_{T_j} - A_j \ \rho_i(\eta_j) \left(1 + 2v_{2i} \cos\left[2\left(\phi_j - \Psi_2\right)\right]\right)$

- \implies Anti-k, reconstruction prior to a background subtraction.
- \rightarrow Underlying event estimated for each longitudinal layer and η slice separately.
- We exclude jet candidates with $D = E_{T tower}^{max} / \langle E_{T tower} \rangle > 4$ to avoid biasing subtraction from jets but no jet rejection based on *D*.
- Additional iteration step to remove residual effect of the jets on the background estimation.
- Jets corrected for flow contribution.

7

Performance of the Jet Reconstruction

 Performance is evaluated using pp hard scattering events from Pythia overlying on top of HIJING MB events without quenching.

- JER is well described by $\sigma(\Delta E_T)/E_T = 1/E_T(a.\sqrt{E_T}+b+c.E_T)$ where parameter *b* is consistent with the result from the fluctuation analysis.
- The performance have been also verified using data overlay with similar results.

Data and MC

- Three data sets were used:
- Pb+Pb data recorded in 2011 with integrated luminosity of 0.14 nb⁻¹.
- Pb+Pb data recorded in 2010 with integrated luminosity of 7 μ b⁻¹.
- High level jet triggers (HLT) seeded by L1 minimum bias (MB) triggers were used to select events in 2011 and only MB triggers for 2010 data.

- Jet trigger algorithm required a R=0.2 jet with $E_{T} > 20$ GeV.
- All events were required to satisfy MB events selection: good timing and vertex.
- MC Pythia di-jet events embedded into MC HIJING and data overlay were used for performance evaluation.

Inclusive jet production

- The jet suppression was quantified by to different variables:
- $R_{CP} = \frac{1/N_{coll}^{cent}}{1/N_{coll}^{periph}} \frac{1/N_{evnt}^{cent} dN/dE_{T}}{1/N_{evnt}^{periph} dN/dE_{T}}$
- We measured the R_{CP} for different jet radii to study the role of radiative energy loss.
- SVD unfolding was used to account effect of bin migration caused by detector and UE effects.
 - Small effect on R=0.2 jets.
 - R_{CP} is reduced for R=0.4 by factor of two for low E_{T} jets.

Centrality Dependence of Jet R

- Factor of 2 suppression in central with respect to peripheral collisions.
- The increase is linear for high p_{τ} , quick turns on at low p_{τ} .
- Similar result is observed also for other jet radii.

 \implies The jet suppression factor shows small variation with the jet p_{τ} .

Jet R_{CP} as a Function of Jet Radius

R_{CP} – R dependence

Less suppression for jets with larger R.

Azimuthal dependence of jet yields

HILV SALT TO SALT

- Path length dependence of jet suppression
- Ratios of yields in different slices of $\Delta \varphi = \varphi^{jet} - \Psi_{\gamma}$ with respect to $\Delta \varphi = 0 - \pi/8$

 \rightarrow ~15% reduction in plane yields with respect to out of plane yields.

Consistent result with the measurement using single high-p₊ particles

15

Jet Structure

Ζ

We measured two sets of fragmentation distributions describing the jet structure:

D(z) centrality dependence

Shaded bands uncorrelated or partially correlated systematic errors: regularization, JES, JER, tracking efficiency, non-zero central to peripheral ration of D(z) and D(p_{τ}) in MC.

Solid lines

100% correlated systematic errors: tracking efficiency.

~15% suppression at intermediate z (~0.1) and 25% enhancement at very low z (~0.02).

No strong modification at large z (↔ leading parton) in central collisions with respect to peripheral ones.

$D(p_{\tau})$ centrality dependence

Shaded bands: uncorrelated or partially correlated systematic errors Solid lines:

100% correlated systematic errors

Similar behaviour as for D(z) distribution.

Conclusions

- Energy imbalance in the di-jet system is strongly increasing with increasing centrality.
- Suppression by a factor of 2 is observed in jet yield in central with respect to peripheral collisions.
- The dependence of the R_{CP} is very weak on jet p_{T}
- Less suppression is observed for jets with larger R parameters.
- Azimuthal dependence of jet yields exhibits a clear path length dependence.
- Study of jet internal structure shows increasing size of modifications of fragmentation functions with increasing centrality.

R_{CP} – Systematics

JES: Relative energy scale differences central and peripheral

JER: Possible disagreement between data and MC in UE fluctuations Efficiency: cover possible MC/data differences, 5% for pT < 100 GeV

Xini: Sensitivity to power in power law: +0.5, -0.5 R_{coll} : sensitive to centrality determination, $\sigma_{_{NN}}$ Regularization:

Sensitivity to choice of k:+/-1

Subtracted E₊

Mean subtracted energy as a function of asymmetry

- no asymmetry dependence
- amount of subtracted energy for leading and sub-leading jet is comparable

Study of Background Fluctuations

- Study physics of underlying event fluctuations → it can provide a basic information about correlations in the underlying event.
- Independent validation of JER.
- The size of fluctuations is characterized by standard deviation $\sigma = \sqrt{\langle E_T^2 \rangle - \langle E_T \rangle^2}$ and plotted as a function of FCal ΣE_{τ} .
- A very good agreement between data and MC.

Background Fluctuations

- Fluctuations are measured in single towers and also in larger windows comparable to the area of jet:
 - 7x7 towers ~ R = 0.4 jets.
 - 4x3 towers ~ R = 0.2 jets.

- An agreement between data and MC is better than 5% for R=0.2 jets.
- Fluctuations in data are at most 5% higher than in MC for R=0.4 jets.
- Fluctuations are higher in MC in the most central events.

Detail study of Underlying Event

Data and MC are compared in a narrow bin of FCal ΣE₁:

- HIJING over-predicts the size of upward fluctuations.
- HIJING over-predicts the size of downward fluctuations in central collisions.
- Where the spread in fluctuations is larger in data than in MC it is because data has larger downward fluctuations.

Azimuthal dependence of jet yields: JES and JER

Azimuthal dependence of jet yields: Systematic uncertainties

Fragmentation analysis: analysis setup

- Seven centrality bins and three jet p_{τ} ranges: p_{τ} > 85 (*R*=0.2), 92 (*R*=0.3), 100 GeV (*R*=0.4).
- Charged particles with $p_{T} > 2$ GeV in cone of 0.4 around the jet axis were used.
- Jet required to be isolated (to avoid biases from split jets).
- b-jet candidates were excluded from the analysis.
- Jet p_{τ} was corrected to reduce the effect of the jet up-feeding due to JER.
- "fake" jets (from UE fluctuations) were identified and rejected by requirement of matching calorimeter jet to a track jet or electro-magnetic cluster > 7 GeV.
 - A Measurement is restricted to $|\eta| < 2.1$.
 - We operate on trigger and jet reconstruction efficiency plateau for selected jet energies.
 - Residual fake rate is negligible for selected jet energies.

Results of Subtraction and Unfolding

- SVD unfolding was used to correct detector effects and to reduce the effect of statistical fluctuations.
- D(z) unfolding accounts for track momentum and jet energy resolution, $D(p_{-})$ for track momentum resolution.

3

Performance of the Track Reconstruction

- H H Y SIC Y O C C T T Y SIC Y O C C T Y SIC
- Performance was evaluated using Pythia particles embedded into HIJING MB events.

Very good description of detector response by MC.