Hard Probes 2013

The 6th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions

Overview of ALICE results

Francesco Prino INFN – Sezione di Torino

for the ALICE collaboration

November 4 - 8, 2013 Cape Town, South Africa

ALICE at the LHC

Tracking with ALICE

Muons with ALICE

Data samples

System	Energy √s _{NN} (TeV)	Year	Integrated Iuminosity	Goal	
Pb-Pb	2.76	2010	~10 μb⁻¹	 Study the properties of hot and dense QCD matter 	
		2011	~100 μb⁻¹		
p-Pb	5.02	2012	~0.8 µb⁻¹	Assess cold nuclear	
		2013	~15 nb ⁻¹ of p-Pb	 matter effects and much more 	
			~15 nb ⁻¹ of Pb-p		

In addition (not covered in this presentation)

pp collisions at √s=0.9, 2.76, 7 and 8 TeV
 ⇒reference for Pb-Pb (and p-Pb)
 ⇒genuine pp physics program

p-Pb and Pb-p samples

• p-Pb

proton going towards muon arm

y_{cms} = 0.465 in the p-beam direction

• Pb-p

⇔Pb nucleus going towards muon arm

p-Pb and Pb-p samples

• p-Pb

proton going towards muon arm

Most of the results shown in this presentation from the p-Pb sample

$y_{CMS} = 0.465$ in the p-beam direction

Pb nucleus going towards muon arm

Centrality in p-Pb ?

C. Oppedisano, Thu 13:30

Estimator: V0A

⇒ in p-Pb: multiplicity in Pb hemisphere
⇒ in Pb-p: multiplicity in p hemisphere

Multiplicity -> geometry (Glauber)

Glauber → large r.m.s. -> events with same N^{Glauber} fall in different multiplicity classes

Bias in binary scaling for multiplicity classes

N. hits SPD

ALI-PERF-51411

N. hits SPD

Recap: Pb-Pb global properties

Identified particle v₂ in Pb-Pb

ALI-DER-55851

Identified particle elliptic flow

 ✓ Mass ordering at low p_T described by hydrodynamics
 ✓ Particle species dependence persists up to p_T≈ 8 GeV/c

Hadron-hadron correlations in p-Pb

More on the double ridge

16

h - π,K,p correlations

• v₂ extracted from twoparticle correlations

✓ Mass ordering at low p_T
 ✓ Crossing at p_T≈2 GeV/c

T. Schuster, Thu 14:50

HF decay e[±] - h correlations

Double ridge seen also in the correlation of heavy-flavour decay electrons with hadrons

Suggests that the mechanism generating the double ridge is at work also for heavy flavours

Identified particles in high multiplicity p-Pb

٥

Models:

- Blast-wave fit = locally thermalized medium expanding with collective flow velocity
- EPOS LHC = full event generator including hydrodynamical evolution
- Krakow = 3+1 viscous hydrodynamics (expected to work at low p_T)
- DPMJET = PHOJET pp +nuclei via Glauber-Grybov approach
- Models including hydrodynamics give a better description of the spectra

A. Ortiz, Mon 16:40

Baryon/meson ratios p-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ Pb-Pb, $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ + 0-5% V0A multiplicity + 0-5% -+ 60-80% V0A multiplicity + 60-80% 0.8 $0{<}y_{\rm cms}{<}0.5$ for $p_{\rm T}{<}3.0~{\rm GeV}/c$ $|y_{\rm cms}|{<}0.3$ for $p_{\rm T}{>}3.0~{\rm GeV}/c$ $|y_{\rm cms}|$ <0.5 for $p_{\rm T}$ < 3.0 GeV/c $(p + \overline{p})/(\pi^+ + \pi^-)$ $|y_{cms}| < 0.8$ for $p_{\pm} > 3.0$ GeV/c J. Otwinowski, 0.6 Tue 12:00 A. Ortiz, 0.4 Mon 16:40 0.2 2 6 10 12 14 6 8 10 12 14 $p_{_{\rm T}}\,({\rm GeV}/c)$

ALI-DER-61780

Similar evolution of baryon/meson ratios vs. p_{T} with multiplicity in Pb-Pb and p-Pb collisions

 \Rightarrow Enhancement at intermediate p_T

- Pb-Pb results commonly understood in terms of collective radial expansion and hadronization via quark recombination
- \Rightarrow Magnitude of the effect significantly different in p-Pb and Pb-Pb

Mini-jets in p-Pb

19

|Δη|<1.8

NS 1.2<|\Delta\n|<1.8

- Mini-jets: bundles of particles from semi-hard partonic scatterings
- How: from associated yield in near and away sides
 ⇒ Subtract the double ridge in p-Pb to remove the non-jet-

related yield

High multiplicity p-Pb events not built by a higher number of associated particles in the jet peaks
 Different from what observed in pp
 E. Leogrande, Thu 14:10

Mini-jets and MPIs

• Uncorrelated seeds = number of independent sources of particle production $< N_{uncorrelated seeds} >= \frac{< N_{trigger} >}{< 1 + N_{assoc, near+away} >}$

⇒ In PYTHIA strongly correlated with number of MPIs

Number of MPIs and multiplicity scale linearly in p-Pb

⇒ Different from what observed in pp

E. Leogrande, Thu 14:10 20

Jet quenching

Nuclear modification factor

- Charged particle spectra strongly modified in Pb-Pb w.r.t. pp
- p-Pb results confirm that jet quenching is a final state effect

22

Identified particle R_{AA}

 For p_T>8 GeV/c pions, kaons and protons are equally suppressed within uncertainties

 \Rightarrow Particle composition at high-p_T not affected by the medium

Jet reconstruction

Jet cross section in Pb-Pb

Strong suppression of jet yield in most central Pb-Pb collisions

 \Rightarrow Moderate increase of R_{AA} with increasing p_T

Jet structure in Pb-Pb

Ratio σ(R=0.2)/σ(R=0.3) of jet cross sections in Pb-Pb compatible with fragmentation in vacuum (PYTHIA)
 ⇒Sensitive to the profile of the jet energy density

⇒No evidence of jet shape modification in jet core

Jet cross section in p-Pb

Jet structure in pp and p-Pb

Ratio σ(R=0.2)/σ(R=0.4)

 \Rightarrow Sensitive to the profile of the jet energy density

➡ Compatible in p-Pb and pp (and PYTHIA)

✓ NOTE: comparison between different √s

→ No indication of jet structure modification due to CNM effects

R=0.2

R=0.4

Di-jets: k_T in p-Pb

Good agreement between data and PYTHIA8 (tune 4C)

 \Rightarrow No indication for additional k_T in p-Pb collisions

-> No significant cold nuclear matter effects observed in jet measurements in p-Pb

Heavy-flavours: R₄₄

- Strong modification of prompt D meson yield
- Cannot conclude on expected enhancement of D_s/D at low/intermediate p_T
- 🛄 Kuznetsova, Rafelski, EPJ C 51 (2007) 113 He, Fries, Rapp, arXiv:1204.4442

HF decay lepton yield suppressed in $3 < p_T < 18$ GeV/c

Similar R_{AA} for heavy-flavour decay electrons (|y|<0.6) and muons (2.5<y<4)

S. Li, Mon 13:30

Heavy-flavours in p-Pb

 R_{pPb} of prompt D mesons and heavy-flavour decay electrons compatible with unity in the measured p_T range
 ⇒ Data described both by EPS09 parameterization of nuclear PDFs and by Color-Glass-Condensate approach

E. Pereira, Tue 14:30

FONLL: M. Cacciari et al, JHEP0407 (2004) 033

EPS09: K. J. Eskola et al., JHEP 0904 (2009) 065

GGC: H. Fujii, K. Watanabe, arXiv: 1308.1258

 • R_{pPb} of prompt D mesons and heavy-flavour decay electrons compatible with unity in the measured p_T range
 ⇒ Data described both by EPS09 parameterization of nuclear PDFs and by Color-Glass-Condensate approach

A. Rossi, Mon 14:50

FONLL: M. Cacciari et al, JHEP0407 (2004) 033
 EPS09: K. J. Eskola et al., JHEP 0904 (2009) 065
 COOL III Fuill K. Wetensha arXiv: 4202 4252

🛄 CGC: H. Fujii, K. Watanabe, arXiv: 1308.1258

D mesons: p-Pb and Pb-Pb

-> the suppression observed in Pb-Pb is a **final state effect**

FONLL: M. Cacciari et al, JHEP0407 (2004) 033
 EPS09: K. J. Eskola et al., JHEP 0904 (2009) 065
 CGC: H. Fujii, K. Watanabe, arXiv: 1308.1258

Djordjevic et al.: arXiv:1307.4098

(2012) 014903

Simultaneous description of open charm R_{AA} and v₂ is a challenge for theoretical models

- POWLANG: Alberico et al., EPJ C71 (2011) 1666
- 🛄 Cao, Qin, Bass, arXiv:1308.0617
- Aichelin et al.: PRC79 (2009) 044906, J. Phys. G37 (2010) 094019
- BAMPS: Fochler et al., J. Phys. G38 (2011) 124152
- (2012) TAMU: Rapp, He et al., PRC 86 (2012) 014903
- **UrQMD:** Lang et al, arXiv:1211.6912, arXiv:1212.0696

Hierarchy in energy loss?

- Expectation from radiative energy loss: $\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b$
- Could be reflected in an hierarchy of R_{AA} : $R_{AA}(B) > R_{AA}(D) > R_{AA}(\pi)$

⇒ NOTE: comparison of D and π R_{AA} complicated by different fragmentation, different p_T spectra, and by soft π production (scaling with N_{part}) at low p_T

Hierarchy in energy loss?

- Expectation from radiative energy loss: $\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b$
- Could be reflected in an hierarchy of R_{AA} : $R_{AA}(B) > R_{AA}(D) > R_{AA}(\pi)$

Hierarchy in energy loss?

- Expectation from radiative energy loss: $\Delta E_a > \Delta E_{u.d.s} > \Delta E_c > \Delta E_b$
- Could be reflected in an hierarchy of R_{AA} : $R_{AA}(B) > R_{AA}(D) > R_{AA}(\pi)$

D meson and J/ψ←B (from CMS) R_{AA} vs. centrality in p_{T} ranges tuned to have <p_⊤(D)> ≈ <p_(B)>

G38 (2011) 124114

G38 (2011) 124152

-> clear indication for $R_{AA}(B) > R_{AA}(D)$

->consistent with the expectation $\Delta E_{c} > \Delta E_{b}$

-> first clear indication of a dependence on heavy quark mass

Quarkonia

J/ψ production in Pb-Pb

J/ψ production in Pb-Pb

J/ψ production in p-Pb vs. y

- R_{pPb} close to unity at backward rapidity
- Suppression at midand forward rapidity
- Models of CNM effects
 - CEM(NLO)+EPS09: describes well the backward rapidity, strong shadowing favoured by data at forward rapidity
 - Coherent energy loss: reproduces well the y dependence
 - CGC-based calculations disfavoured by the data
 - **Vogt, arXiv:1301.3395**

Pb

- Arleo et al., arXiv:1212.0434
- 🚇 Fuji et al., arXiv:1304.2221

M. Winn, <u>Thu 16:20</u>

J/ψ production in p-Pb vs. p_T ALICE

Mid-rapidity

Forward rapidity

- Backward rapidity (Pb-going side):
 - $\Rightarrow R_{pPb}$ close to unity, small p_T dependence
- Vogt, arXiv:1301.3395
 Arleo et al., arXiv:1212.0434
 Fuji et al., arXiv:1304.2221

• Mid-rapidity:

Backward rapidity

 \Rightarrow R_{pPb} lower than unity, more precision needed for clear p_T dependence

Forward rapidity (p-going side)

 \Rightarrow More significant p_T dependence, R_{pPb} lower than unity at low p_T

Data tend to favour strong shadowing, CGC-based model disfavoured

p-Pb and Pb-Pb

- In a 2→1 kinematics, assuming that shadowing factorizes:

 Gompare R_{AA} in Pb-Pb with R_{pPb}(y>0)xR_{pPb}(y<0)
 C. Hadjidakis, Fri 11:30

- Small CNM effects at high p_T (> 4-6 GeV/c)
 M. Winn, Thu 16:20
- At low p_T: similar (or lower) suppression in Pb-Pb relative to shadowing expectation

ψ(2S) production in p-Pb

Stronger suppression of ψ(2S) in p-Pb relative to J/ψ
 ⇒ Not described by initial state CNM effect and coherent energy loss
 ⇒ Similar observation by PHENIX in d-Au at √s_{NN} = 200 GeV
 ⇒ Final state effects?

Υ(1S) production

• p-Pb:

Similar R_{pPb} of J/ψ and Υ
 EPS09 shadowing in fair agreement with both J/ψ and Υ within uncertainties

• Pb-Pb:

 ⇒ Y (1S) yield suppressed relative to binary-scaled pp
 ⇒ Similar suppression at mid (CMS) and forward rapidity

F. Bossù, Mon 16:20 47

Conclusions

• p-Pb:

- ⇒More than just a control experiment
- Quantify Cold Nuclear Matter Effects, constrain shadowing/saturation at low x

 \Rightarrow Intriguing results from high multiplicity events, $\psi(2S)$

• Pb-Pb

- Significant progress in the studies of the properties of the hot and dense medium formed in the collision
- Decisive role of hard probes: jets, heavy flavour and quarkonia crucial to quantify the density, transport properties and the temperature of the medium

ALICE at HP2013

٠

ALICE plenary talks:	
R. Reed: Jets	Tue 9:30
→ J. Otwinowski: Light flavours	Tue 12:00
➡ D. Caffarri: Heavy flavours	Wed 9:00
A. Dobrin: Azimuthal correlations	Thu 11:00
	Fri 11:30
ALICE parallel talks:	
C. Oppedisano: particle production and centrality	Thu 13:30
A. Ortiz: Identified particle production	Mon 16:40
S. Li: Muons from heavy-flavour decays	Mon 13:30
A. Rossi: D mesons in pp, p-Pb and Pb-Pb	Mon 14:50
E. Pereira: Electrons from heavy-flavour decays	Tue 14:30
∠ L. Cunqueiro: Hadron-jets in Pb-Pb	Thu 13:50
➡ M. Verweij: Di-jets in p-Pb	Thu 14:30
➡ E. Leogrande: Minijets in p-Pb	Thu 14:10
T. Schuster: Two-particle correlations	Thu 14:50
A. Uras: Low mass dileptons	Tue 13:50
\Rightarrow M. Winn: J/ ψ and ψ (2S) in p-Pb	Thu 16:20
➡ F. Bossù: Y production in pp, p-Pb and Pb-Pb	Mon 16:20
and also 8 ALICE posters	

Mean p_T in pp, p-Pb and Pb-Pb

- Three different √s for pp, p-Pb and Pb-Pb ⇔but √s dependence
 - expected to be weak
- Much stronger increase of <p_T> in p-Pb than in Pb-Pb
- p-Pb follows pp up to N_{ch}~14-15
- N_{ch}>14 corresponds to
 ⇒~10% of pp x-section:
 ✓ pp already highly biased
 ⇒ 50% of p-Pb x-section
 ✓ only centrality bias

Baryon/meson vs. multiplcity

• In a given p_T bin, the ratio p/π as a function of dNch/dh follows a power-law behavior

Same power-law scaling eponent in p-Pb and Pb-Pb collisions

Same feature observed also in the K/K⁰_s ratio

D meson R_{AA}: LHC vs RHIC

D meson R_{AA}: LHC vs RHIC

same theoretical model

D meson R_{AA} quite different for 1<p_T<2 GeV/c

⇒Recombination + radial flow?

✓ Stronger effect at RHIC because of steeper dN/dp_T ?

 \Rightarrow Different role of shadowing at low p_T at the two energies?

Heavy Flavour decay electrons:

D_{s}/D^{0} and D_{s}/D^{+}

ALI-DER-44042

Heavy flavours in pp

 10^{3}

10²

(µb/GeV/c)

Heavy flavour p_{T} -differential cross sections well described by pQCD calculations

 Inclusive J/ψ production cross-section measured in pp at √s of 7 and 2.76 TeV
 □ ALICE, Phys.Lett. B718 (2012) 295

Results in agreement with NLO NRQCD calculations

 Υ (1S) vs. $J/\psi R_{\Delta\Delta}$

• No straightforward interpretation:

- different contribution of (re-)generation for charmonia and bottomonia
- ⇒different feed-down from higher mass-states for J/ψ and Y(1S)