From Jet Quenching to Wave Turbulence

Edmond Iancu IPhT Saclay & CNRS

Jet production at the LHC

Di-jet asymmetry (ATLAS)

- Central Pb+Pb: 'mono-jet' events
- The secondary jet cannot be distinguished from the background: $E_{T1} > 100$ GeV, $E_{T2} > 25$ GeV
- Additional energy imbalance as compared to p+p : 20 to 30 GeV
- Remarkably large if compared to the typical scale in the medium: $T\sim 1~{\rm GeV}$

Di-jet asymmetry (CMS)

- Central Pb+Pb: the secondary jet is barely visible
- Detailed studies show that the 'missing energy' is carried by many soft ($p_{\perp} < 4$ GeV) hadrons propagating at large angles
- Can we understand that from first principles?

pQCD: the BDMPSZ mechanism

Baier, Dokshitzer, Mueller, Peigné, and Schiff; Zakharov (96–97)

Additional gluon radiation triggered by interactions in the medium

- Several related approaches from first-principles (pQCD) ... Wiedemann (2000); Guylassy, Levai, Vitev (2000); Guo and Wang (2000); Arnold, Moore, Yaffe (2002); Armesto, Salgado, and Wiedemann (2003) ...
- ... which have mostly focused on a single gluon emission > the total energy loss by the leading particle

• The LHC data call for a global understanding of the jet evolution

- Heuristic treatment of multiple emissions: independent branchings Baier, Dokshitzer, Mueller, Schiff (2001); Jeon, Moore (2003) ...
- Implicitly assumed in the Monte–Carlo event generators
 - Q-PYTHIA: Armesto, Cunqueiro, and Salgado (09) [BDMPSZ]
 - MARTINI : Schenke, Gale, Jeon, Young (since 09) [BDMPSZ]
 - JEWEL: Zapp, Stachel, Wiedemann, Krauss ... (since 08)
 - YaJEM: Renk (since 2009)

The LHC data call for a global understanding of the jet evolution

- Recent extension of the theory to multiple medium—induced emissions Mehtar-Tani, Salgado, Tywoniuk (10–12); Casalderrey-Solana, E. I. (11); Blaizot, Dominguez, E.I., Mehtar-Tani (2012–13)
- Intense ongoing activity with many contributions to this meeting Wang, Salgado, Apolinario, Mehtar-Tani, Tywoniuk, Rodriguez-Calvo, ...

• The LHC data call for a global understanding of the jet evolution

- Recent extension of the theory to multiple medium-induced emissions Mehtar-Tani, Salgado, Tywoniuk (10–12); Casalderrey-Solana, E. I. (11); Blaizot, Dominguez, E.I., Mehtar-Tani (2012–13)
- Intense ongoing activity with many contributions to this meeting Wang, Salgado, Apolinario, Mehtar-Tani, Tywoniuk, Rodriguez-Calvo, ... > Thanks to Carlos for an enlightening introduction !

The LHC data call for a global understanding of the jet evolution

- New, qualitative, phenomenon (no analog in pQCD) which naturally explains the energy transport via soft quanta at large angles:
 - > turbulent flow of the energy throughout the cascade

The LHC data call for a global understanding of the jet evolution

- New, qualitative, phenomenon (no analog in pQCD) which naturally explains the energy transport via soft quanta at large angles:
 - > turbulent flow of the energy throughout the cascade
- This talk: from single to multiple emissions ... pedagogically See the closely related talks by Y. Mehtar-Tani and K. Tywoniuk for more details and applications to phenomenology

Medium-induced emissions à la BDMPSZ

- Gluon emission is linked to transverse momentum broadening
 - transverse kicks provide acceleration and thus allow for radiation
 - they increase the emission angle θ
 - they occur randomly \Longrightarrow Brownian motion in k_{\perp}

- Gluon emissions can occur anywhere inside the medium (with size L)
 - ... but they are not instantaneous: formation time $\tau_f \simeq 1/\Delta E$

Formation time & emission angle

- By the uncertainty principle, $\tau_f \simeq \omega/k_\perp^2$
- During formation, the gluon acquires a k_{\perp} momentum $k_{\perp}^2 \sim \hat{q}\tau_f$

$$au_f(\omega) \simeq \sqrt{\frac{\omega}{\hat{q}}} \qquad \& \qquad heta_f(\omega) \simeq \frac{k_\perp}{\omega} \sim \left(\frac{\hat{q}}{\omega^3}\right)^{1/4}$$

- Maximal ω for this mechanism : $au_f \simeq L \ \Rightarrow \ \omega_c = \hat{q}L^2$
- Minimal emission angle: $\theta_c \equiv \theta(\omega_c) \sim 1/\sqrt{\hat{q}L^3}$
- Soft gluons have short formation times & large emission angles

$$\omega \ll \omega_c \implies$$

$$au_f \ll L$$
 & $heta_f \gg heta_c$

$$\theta_f \gg \theta_c$$

Formation time & emission angle

- By the uncertainty principle, $au_f \simeq \omega/k_\perp^2$
- During formation, the gluon acquires a k_{\perp} momentum $k_{\perp}^2 \sim \hat{q}\tau_f$

$$au_f(\omega) \simeq \sqrt{\frac{\omega}{\hat{q}}} \qquad \& \qquad \theta_f(\omega) \simeq \frac{k_\perp}{\omega} \sim \left(\frac{\hat{q}}{\omega^3}\right)^{1/4}$$

- ullet Maximal ω for this mechanism : $au_f \simeq L \ \Rightarrow \ \omega_c = \hat{q}L^2$
- Minimal emission angle: $\theta_c \equiv \theta(\omega_c) \sim 1/\sqrt{\hat{q}L^3}$
- Soft gluons have short formation times & large emission angles

$$\omega \ll \omega_c \implies \tau_f \ll L \quad \& \quad \theta_f \gg \theta_c$$

Some typical value (consistent with the phenomenology) :

$$\hat{q} \simeq (1 \div 2) \text{ GeV}^2/\text{fm}, \ L \simeq 5 \text{ fm}, \ \omega_c \simeq 40 \text{ GeV}, \ \theta_c \simeq 0.1$$

Emission probability

• Spectrum : Bremsstrahlung × average number of emissions

$$\omega \frac{\mathrm{d}N}{\mathrm{d}\omega} \simeq \alpha_s \frac{L}{\tau_f(\omega)} \simeq \alpha_s \sqrt{\frac{\omega_c}{\omega}} \qquad (\omega_c = \hat{q}L^2)$$

- LPM effect : the emission rate decreases with increasing ω (from Landau, Pomeranchuk, Migdal, within QED)
 - coherence: many collisions contribute to a single, hard, emission
 - formation time $\tau_f(\omega) \gg$ mean free path λ
- Energy loss by the leading particle :

$$\Delta E = \int^{\omega_c} d\omega \, \omega \, \frac{dN}{d\omega} \, \sim \, \alpha_s \omega_c \, \sim \, \alpha_s \hat{q} L^2$$

- integral dominated by its upper limit $\omega = \omega_c$
- energy loss scales like L^2

Emission probability

• Spectrum : Bremsstrahlung × average number of emissions

$$\omega \frac{\mathrm{d}N}{\mathrm{d}\omega} \simeq \alpha_s \frac{L}{\tau_f(\omega)} \simeq \alpha_s \sqrt{\frac{\omega_c}{\omega}} \qquad (\omega_c = \hat{q}L^2)$$

- One is naturally led to distinguish between 2 types of emissions
- Relatively hard emissions with $\omega \sim \omega_c$:
 - large formation times: $\tau_f \sim L$
 - rare events : probability of $\mathcal{O}(\alpha_s)$
 - control the energy loss by the leading particle
 - small emission angle $\theta_c \Rightarrow$ the energy remains inside the jet
- Arguably, not so important for the di-jet asymmetry

Emission probability

• Spectrum : Bremsstrahlung × average number of emissions

$$\omega \frac{\mathrm{d}N}{\mathrm{d}\omega} \simeq \alpha_s \frac{L}{\tau_f(\omega)} \simeq \alpha_s \sqrt{\frac{\omega_c}{\omega}} \qquad (\omega_c = \hat{q}L^2)$$

- Relatively soft emissions with $\omega \ll \omega_c$:
 - ullet small formation times : $au_f \ll L$
 - ullet quasi-deterministic : probability of $\mathcal{O}(1)$ for $\omega \lesssim \alpha_c^2 \, \omega_c$
 - a relatively smaller contribution to the energy loss : $\Delta E_{\rm soft} \sim \alpha_s^2 \omega_c$
 - ... but this can be lost at very large angles
- Potentially relevant for the di-jet asymmetry
- When probability of $\mathcal{O}(1) \Longrightarrow \text{multiple branchings}$ become important

A typical gluon cascade

- A 'rain' of soft gluons plus (sometimes) a harder one $(\omega \sim \hat{q}L^2)$
- From now on, we shall focus on the 'rain'!
- To that aim, we need to understand multiple branchings

A typical gluon cascade

- A 'rain' of soft gluons plus (sometimes) a harder one $(\omega \sim \hat{q}L^2)$
- From now on, we shall focus on the 'rain'!
- Potential difficulty: interference effects between different sources

Angular ordering in the vacuum

Quantum interference: one sums the amplitudes

Vacuum: daughter gluons keep color coherence till the next emission

Destructive interference effects leading to angular ordering

Color decoherence in the medium

- In medium, color coherence is rapidly lost via rescattering

 Mehtar-Tani, Salgado, Tywoniuk; Casalderrey-Solana, E. I. (10 –11)
- Originally demonstrated for a 'frozen antenna' with fixed opening angle

$$S(t, heta) \simeq \exp\left\{-\hat{q} heta^2t^3
ight\}$$
 $t_{
m decoh} \simeq rac{1}{(\hat{q} heta^2)^{1/3}}$

Color decoherence in the medium

- In medium, color coherence is rapidly lost via rescattering Mehtar-Tani, Salgado, Tywoniuk; Casalderrey-Solana, E. I. (10 –11)
- Generalization to a dynamical antenna : $g \rightarrow gg$ branching Blaizot, Dominguez, E.I., Mehtar-Tani (arXiv: 1209.4585)

- The daughter gluons lose color coherence already by the time of formation \Rightarrow interference effects are suppressed by a factor τ_f/L
- Successive emissions of soft gluons ($\omega \ll \omega_c$) are independent

A classical branching process

- Markovian process in $D=3+1: \omega, k_{\perp}$, time t (or medium size L)
 - the $g \to gg$ splitting vertex (the 'blob') : the BDMPSZ spectrum
 - the propagator (the 'line'): transverse momentum broadening
- Well suited for Monte Carlo simulations.
- The D=1+1 version ($\omega \& t$) already studied in the literature
 - Baier, Mueller, Schiff, Son, 2001: 'bottom-up thermalization'
 - Jeon, Moore, 2003: jet quenching ⇒ MARTINI
- Interesting new physics that has been missed by such previous studies
 - J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

Quasi-democratic branchings

- Previous studies focused on the energy loss by the leading particle
- Here: the energy flow towards soft modes ($\omega \ll \omega_c$), or large angles
- The branchings of the soft gluons are quasi-democratic
 - the daughter gluons carry comparable energy fractions: $x \sim 1/2$
- Non-trivial! Not true for bremsstrahlung in the vacuum!

- probability of $\mathcal{O}(1)$ when $\alpha_s \ln(1/x) \sim 1 \Longrightarrow$ favors $x \ll 1$
- argument independent of the parent energy ω_0

Quasi-democratic branchings

- Previous studies focused on the energy loss by the leading particle
- Here: the energy flow towards soft modes ($\omega \ll \omega_c$), or large angles
- The branchings of the soft gluons are quasi-democratic
 - the daughter gluons carry comparable energy fractions: $x \sim 1/2$
- In-medium radiation : a consequence of the LPM effect

- the rate also depends upon the parent gluon energy ω_0
- probability of $\mathcal{O}(1)$ when $\omega_0 \sim \alpha_s^2 \omega_c$ for any value of x

Quasi-democratic branchings

- Previous studies focused on the energy loss by the leading particle
- Here: the energy flow towards soft modes ($\omega \ll \omega_c$), or large angles
- The branchings of the soft gluons are quasi-democratic
 - the daughter gluons carry comparable energy fractions: $x \sim 1/2$
- In-medium radiation : a consequence of the LPM effect

- A similar scenario at strong coupling (Y. Hatta, E.I., Al Mueller '08)
- ... but no other example in a weakly coupled gauge theory

Wave turbulence

- The leading particle emits mostly soft gluons $(x \ll 1)$
- The subsequent branchings of these soft gluons are quasi-democratic
- The quasi-democratic cascade develops wave turbulence
 - the most efficient mechanism to transport energy between 2 widely separated scales (Richardson, '21; Kolmogorov, '41; Zakharov, '92 ...)

Wave turbulence

- The rate for energy transfer from one parton generation to the next one is independent of the generation (i.e. of x)
 - via successive branchings, the energy flows from large x to small x, without accumulating at any intermediate value of x

Wave turbulence

- The rate for energy transfer from one parton generation to the next one is independent of the generation (i.e. of x)
- This is not what happens for a jet in the vacuum (DGLAP equation)
 - ullet splittings are typically asymmetric and the energy remains in the partons with the largest values of x

The gluon spectrum

- Time evolution of $D(x,t) \equiv x \frac{dN}{dx}$ where $x = \omega/E$
- Described by a rate equation : $\partial D/\partial t = Gain Loss$
- At small times: single branching ⇒ BDMPSZ spectrum :

$$D^{(1)}(x,L) \simeq \alpha_s \frac{L}{\tau_f(\omega)} = \frac{t}{\sqrt{x}}$$
 $(t=L \text{ in appropriate units})$

The scaling spectrum

• The spectrum at later times : exact solution to the rate equation

$$D(x \ll 1, t) \simeq \frac{t}{\sqrt{x}} e^{-\pi t^2}$$

$$\begin{array}{c} \mathcal{F} & 1 \\ \mathcal{S} & 0.1 \\ 0.01 & 0.1 \\ x \end{array}$$

- "BDMPSZ" × "survival probability for the leading particle"
- The 'scaling' spectrum $\frac{1}{\sqrt{x}}$ is regenerated by the evolution: fixed point
 - 'Gain' = 'Loss' \Longrightarrow the energy flux is independent of x

The scaling spectrum

• The spectrum at later times : exact solution to the rate equation

$$D(x \ll 1, t) \simeq \frac{t}{\sqrt{x}} e^{-\pi t^2}$$

$$\int_0^1 dx D(x, t) = e^{-\pi t^2}$$

$$0.01$$

$$0.01$$

$$0.1$$

- "BDMPSZ" × "survival probability for the leading particle"
- The 'scaling' spectrum $\frac{1}{\sqrt{x}}$ is regenerated by the evolution: fixed point
- The energy flows out from the spectrum

Where does the energy go?

- Via successive branchings, the energy flows down to x=0
 - formally, it accumulates into a 'condensate' at x=0
 - physically, it goes below $x_{\rm th} = T/E \ll 1$, meaning it thermalizes
- The energy fraction carried away by this flow

$$\mathcal{E}_{\text{flow}}(t) \equiv 1 - \int_0^1 dx \, D(x, t) = 1 - e^{-\pi t^2}$$

... ends up at arbitrarily large angles

- In practice : $t = \alpha_s \sqrt{2\omega_c/E} \sim 0.3$ for E = 100 GeV
 - $1 \mathrm{e}^{-\pi t^2} \sim 0.25 \Rightarrow$ about 25% of the energy is lost at large angles
 - ... irrespective of the details of the thermalization mechanism (x_{th})
- A property of the gluon cascade, not of the in-medium dissipation

Energy flow at large angles

• The energy inside the jet is only weakly increasing with the jet angular opening R, within a wide range of values for R \odot

Energy flow at large angles

 $E_{\mathrm{flow}} \simeq \pi \, \alpha_s^2 \, \hat{q} L^2 \qquad (\sim 20 \, \mathrm{GeV} \, \, \mathrm{for} \, \, L = 5 \, \, \mathrm{fm})$

A large radiative correction to \hat{q}

- ullet \hat{q} : the result of collisions in the medium ... but not only !
- Gluon emissions contribute to momentum broadening, via their recoil!

A large radiative correction to \hat{q}

- \hat{q} : the result of collisions in the medium ... but not only !
- Gluon emissions contribute to momentum broadening, via their recoil!

• Dominant effect from relatively hard emissions (large k_{\perp}), as triggered by a single scattering (Gunion-Bertsch spectrum)

$$\frac{\mathrm{d}N}{\mathrm{d}\omega\,\mathrm{d}^2\boldsymbol{k}} \simeq \frac{\alpha_s\,\hat{q}L}{\omega\,k_\perp^4} \implies \langle p_\perp^2\rangle_{\mathrm{rad}} \sim L\,\alpha_s\hat{q}\int\frac{\mathrm{d}\omega}{\omega}\int\frac{\mathrm{d}k_\perp^2}{k_\perp^4} \equiv L\,\Delta\hat{q}$$

• Formally NLO but enhanced by a double-log (Liou, Mueller, Wu, 13)

$$\frac{\Delta\hat{q}}{\hat{q}}\simeq \frac{\alpha_sN_c}{2\pi}\,\ln^2(LT)\,\simeq\,0.75~(!)$$
 \Longrightarrow need for resummation

A large radiative correction to \hat{q}

- \hat{q} : the result of collisions in the medium ... but not only !
- Gluon emissions contribute to momentum broadening, via their recoil!

ullet Dominant effect from relatively hard emissions (large k_{\perp}), as triggered by a single scattering (Gunion-Bertsch spectrum)

$$\frac{\mathrm{d}N}{\mathrm{d}\omega\,\mathrm{d}^2\boldsymbol{k}} \simeq \frac{\alpha_s}{\omega} \frac{\hat{q}L}{k_{\perp}^4} \implies \langle p_{\perp}^2 \rangle_{\mathrm{rad}} \sim L \,\alpha_s \hat{q} \int \frac{\mathrm{d}\omega}{\omega} \int \frac{\mathrm{d}k_{\perp}^2}{k_{\perp}^4} \equiv L \,\Delta \hat{q}$$

- The beginning of QCD evolution for jet quenching ... to be continued
- Not included in the recent lattice calculation (cf. talk by Panero)

Conclusions

- Remarkable progress in understanding medium-induced jet evolution
 - a new kind of branching process in pQCD
 - hard emissions at small angles (energy loss by leading particle, R_{AA})
 - soft, quasi-democratic, branchings leading to turbulent flow (di-jet asymmetry)
 - probabilistic picture, well suited for Monte Carlo implementations
 - fully 3+1-dim simulations possible \implies jet shapes
 - large radiative corrections to \hat{q} which are under control in pQCD
- Many open problems: proper interplay with 'vacuum' radiation, matching with the lattice result for \hat{q} , fully 3+1-dim simulations, extensive phenomenology ...
- All that was possible due to the LHC fantastic work and results! THANKS!

Energy transport at large angles

• Just a little fraction of the 'missing energy' is recovered when gradually increasing the jet opening: most of the energy is lost at large angles

ATLAS, arXiv:1208.1967

Energy transport at large angles

• Even for R as large as R = 0.8, a large fraction of the missing energy lies still outside the cone and is carried by very soft hadrons

ATLAS, arXiv:1208.1967

• What is the mechanism for energy transport at large angles?

A few words on the formalism

Quantum emission: amplitude × the complex conjugate amplitude

- 'Medium' = randomly distributed scattering centers (Gaussian)
 - Coulomb scattering with Debye screening
 - multiple scattering in eikonal approximation (one Wilson line per gluon)
 - $1 \rightarrow 2$ gluon branching \Rightarrow 3-p and 4-p functions of the Wilson lines

A few words on the formalism

Quantum emission: amplitude × the complex conjugate amplitude

- Contains and extends the original BDMPSZ/AMI formalisms already at the level of a single medium-induced emission ...
 - > transverse momentum dependence for the emission vertex, correct inclusion of single scattering, color (de)coherence after emission ...
- Permits the treatment of interference & multiple branchings

A fake DGLAP-like scenario

- ullet Via successive branchings, gluons fall at smaller and smaller values of x
- At any t, the energy remains in the spectrum: $\int_0^1 dx \, D(x,t) = 1$

- The spectrum becomes steeper and steeper at small x, yet the total energy stored in the bins with $x \ll 1$ remains small
 - > very little energy can be lost in this way at large angles

The usual turbulence set-up

• Steady source at x=1 and sink at $x=x_{\rm th}$ (here $x_{\rm th}=0$)

$$D_{\rm tb}(x,t) = \frac{1}{2\pi\sqrt{x(1-x)}} \left(1 - e^{-\pi\frac{t^2}{1-x}}\right)$$

• The spectrum approaches a steady shape when $\pi t^2 \gtrsim 1$