

Anisotropic flow of thermal photons as a quark-gluon plasma viscometer

Chun Shen The Ohio State University

In collaboration with Jean-Francois Paquet, Ulrich Heinz, and Charles Gale

Nov. 4, 2013 Hard Probes

arXiv: 1308.2111, 1308.2440

Little Bang

Challenge from Experiment

PHENIX measurements show large direct photon v_2 at $p_T < 4 \text{ GeV}$

The state-of-the-art calculation underestimates the data by a factor of 5!

3(15)

Work flow of Theoretical Calculation

Work flow of Theoretical Calculation

General Formalism

Thermal photon emission rates can be calculated by

$$E_q \frac{dR}{d^3 q} = \int \frac{d^3 p_1}{2E_1 (2\pi)^3} \frac{d^3 p_2}{2E_2 (2\pi)^3} \frac{d^3 p_3}{2E_3 (2\pi)^3} \frac{1}{2(2\pi)^3} |\mathcal{M}|^2$$

 $\times f_1(p_1^{\mu}) f_2(p_2^{\mu}) (1 \pm f_3(p_3^{\mu})) (2\pi)^4 \delta^{(4)}(p_1 + p_2 - p_3 - q)$ With

$$f(p^{\mu}) = f_0(E) + f_0(E)(1 \pm f_0(E)) \frac{\pi^{\mu\nu} \hat{p}_{\mu} \hat{p}_{\nu}}{2(e+p)} \chi\left(\frac{p}{T}\right)$$

We can expand photon emission rates around the thermal equilibrium:

$$q \frac{dR}{d^3 q} = \Gamma_0 + \frac{\pi^{\mu\nu} \hat{q}_\mu \hat{q}_\nu}{2(e+p)} a_{\alpha\beta} \Gamma^{\alpha\beta},$$
$$a_{\mu\nu} = \frac{3}{2(u\cdot\hat{q})^4} \hat{q}_\mu \hat{q}_\nu + \frac{1}{(u\cdot\hat{q})^2} u_\mu u_\nu + \frac{1}{2(u\cdot\hat{q})^2} g_{\mu\nu} - \frac{3}{2(u\cdot\hat{q})^3} (\hat{q}_\mu u_\nu + \hat{q}_\nu u_\mu).$$
 5(15)

- Shear viscous suppression of photon v₂ is dominated by the viscous corrections to photon emission rates
- Photon elliptic flow is more sensitive to the evolution of shear stress tensor during the early time

- Shear viscous suppression of photon v₂ is dominated by the viscous corrections to photon emission rates
- Photon elliptic flow is more sensitive to the evolution of shear stress tensor during the early time

Fluctuation effects on photon elliptic flow

Fluctuation effects on photon elliptic flow

Initial fluctuations increase photon's elliptic flow

Fluctuation effects on photon elliptic flow

- Initial fluctuations increase photon's elliptic flow
- Viscous suppression is larger in the event-by-event runs

- The anisotropic flows of photons show similar centrality behavior as hadrons v_{n}

- The anisotropic flows of photons show similar centrality behavior as hadrons v_{n}
- The ratio of v_2/v_3 increase with the shear viscosity.
- The centrality dependence of this ratio is stronger for MCKLN model

 The ratio of v₂/v₃ of photons is larger than the ratio of thermal pions

- The ratio of v₂/v₃ of photons is larger than the ratio of thermal pions
- The ratio of v₂/v₃ is larger for QGP photons compared to hadronic photons which indicates triangular flow develops faster than elliptic flow during the late stage of hydrodynamic evolution

Missing rates in hadronic phase Photon production rates from baryonic channels are missing in the hadronic phase. We can estimate this by increase photon emission rates in hadronic phase by a factor of 2,

Missing rates in hadronic phase Photon production rates from baryonic channels are missing in the hadronic phase. We can estimate this by increase photon emission rates in hadronic phase by a factor of 2,

 it increases total photon v₂ by ~45% at both RHIC and LHC energies

14(15)

Conclusion

- We calculate photon anisotropic flows v_n from *event*by-event viscous hydrodynamic medium
- Shear viscosity suppresses photon v_n. Dominant suppression comes not from flow, but from the viscous correction to the production rates.
- Elliptic and triangular flow of photons are more sensitive than hadrons to the shear stress tensor at early time and the initial state fluctuations.
- Photon production from missing sources (e.g. baryonic channels) are needed to improve the agreement between experiment and theory.

Conclusion

- We calculate photon anisotropic flows v_n from *event*by-event viscous hydrodynamic medium
- Shear viscosity suppresses photon v_n. Dominant suppression comes not from flow, but from the viscous correction to the production rates.
- Elliptic and triangular flow of photons are more sensitive than hadrons to the shear stress tensor at early time and the initial state fluctuations.
- Photon production from missing sources (e.g. baryonic channels) are needed to improve the agreement between experiment and theory.

arXiv: 1308.2111, 1308.2440

Viscous effects on dilepton flow: Gojko Vujanovic Tue 2:30

Back ups ...

Photon Emission Rates QGP vs HG

 QGP rates have very different p_T dependence compared to HG rates

Photon Emission Rates QGP vs HG

- Comparing with ideal hydro runs, the v₂/v₃ ratio increases with shear viscosity
- MCKLN model shows stronger centrality dependence than MCGlb model