Hard Probes 2013

The 6th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions

November 4 - 8, 2013 Cape Town, South Africa

Electroweak Boson Production in Pb+Pb

Thomas Balestri
On Behalf of the ATLAS Collaboration
Thursday, 7 November, 2013

Electroweak Bosons in HI: Standard Candles

Electroweak bosons (photons, W/Z) may be used as benchmarks for in-medium effects ("jet-quenching")

Can also be used to check understanding of collision geometry (i.e. Glauber)

Electroweak Bosons in HI: Nuclear PDFs

Nuclear effects: difference between cross-sections in collisions involving heavy ion and those involving free

nucleons (EPS09)

$$x_a = \frac{m_W}{\sqrt{s}} \exp(y_W), \quad x_b = \frac{m_W}{\sqrt{s}} \exp(-y_W).$$

- EW probes are sensitive to nuclear effects:
 - Fermi motion
 - EMC-effect
 - Anti-shadowing
 - Shadowing

The ATLAS Detector

- Comprised of 3 sub-systems
 - Inner Detector
 - Calorimeter
 - Muon Spectrometer

The ATLAS Detector: Inner Detector

Tracking

- Precision tracking and vertexing
- Coverage: |η|< 2.5
- B(solenoid) = 2T
- Pixel Detector
 - Three layers of silicon pixel detectors
- Semi-Conductor Tracker (SCT)
 - Silicon strip detectors in back-to-back wafers
 - Four layers in barrel, nine layers in end-caps
- Transition Radiation Tracker (TRT)
 - 4mm diameter straw drift tubes

The ATLAS Detector: Calorimeters

EM Calorimeter

- Pb/LAr detectors
- Three active layers |η|< 2.5
- Two active layers 2.5 < |η|< 4.9
- Pre-samplers at $0 < |\eta| < 1.8$
- e/γ identification and triggering

Hadronic Calorimeter

- Scintillator tiles and steel as absorber medium
- Tile calorimeter 0 < |η|< 1.7
- Cu/LAr HEC $1.5 < |\eta| < 3.2$
- Cu/W-LAr FCal 3.2 < $|\eta|$ < 4.9
- Hadron, jet, and missing transverse energy identification

The ATLAS Detector: Muon Spectrometer

Muon Spectrometer

- Muon coverage up to |η|< 2.7
- Air-core toroid B-field on average 0.5 T
- Monitored Drift Tubes (MDT) and Cathode Strip Chambers (CSC) measure position in bending plane
- Resistive Plate Chambers (RPC) and Thin Gap Chambers (TGC) provide muon triggering up to |η|< 2.4 and position in the non-bending plane

Heavy Ions in ATLAS

Pb+Pb runs at $\sqrt{s_{NN}} = 2.76$ TeV in Nov-Dec 2010 (8 μ b⁻¹) and Nov-Dec 2011 (0.158 nb⁻¹)

Data-taking efficiency > 95%

Run	2010	2011
L _{int} Recorded	8 μb ⁻¹	158 μb ⁻¹
Triggers	Min Bias	γ,e,μ,jets,UPC, Min Bias
N _{events} Sampled	43.6 million	1.03 billion

Direct Photon Spectra

Direct Pb+Pb photon cross-section as function of p_T

Good agreement with model (JETPHOX) and CMS result in HI and pp

Agreement in Pb+Pb and pp cross-section from JETPHOX (R_{AA} equivalent)

Photon+jet

Photon-jet yield (normalized per photon) as a function of momentum fraction

Agreement with PYTHIA prediction decreases when moving to more central collisions, indicative of large jet energy-loss relative to photons

Z→II Corrected Yields

Corrected Z boson rapidity distribution

Agreement with NNLO PYTHIA prediction scaled to the Z→II cross-section and

HP 2013 Thomas Balestri 7 November 2013

Phys. Rev. Lett 110, 022301 (2013)

Corrected Z boson p_T distribution in five centrality classes

Number of Z+jet events (fully unfolded and normalized per Z boson) as function of momentum fraction Jets and Z bosons produced back-to-back in azimuth

Agreement with the PYTHIA prediction decreases when moving to more central events, however low statistical precision

https://cdsweb.cern.ch/record/1472941

Boson+jet

HP 2013 Thomas Balestri 7 November 2013

Momentum fraction

■ R=0.2 Data

O R=0.2 PYTHIA+Data

ATLAS Preliminary

Pb+Pb L_{int}=0.13 nb⁻¹

√s_{NN}=2.76 TeV

×

■ R=0.3 Data

☐ R=0.3 PYTHIA+Data

ATLAS Preliminary

Pb+Pb L_{int}=0.13 nb⁻¹

√s_{NN}=2.76 TeV

photons

Jet-quenching increases with respect to EW bosons in more central events

Z bosons

 $\langle N_{part} \rangle$

Production ratios

Boson-jet production decreases relative to EW bosons in more central events

 $\langle N_{part} \rangle$

 $\langle N_{part} \rangle$

W[±] Bosons in Pb+Pb

ATLAS-CONF-2013-106

- Measured via W→µv channel
 - ID-MS combined muons
- Fiducial region:

$$p_{\rm T}^{\mu} > 25 \; {\rm GeV}, \quad 0.1 < |\eta_{\mu}| < 2.4, $p_{\rm T}^{\nu} > 25 \; {\rm GeV}, \quad m_T > 40 \; {\rm GeV}.$$$

- Muon isolation
 - $\Sigma p_T^{ID}/p_T^{\mu} < 0.1 \text{ in } \Delta R < 0.2$
 - Reduces jet contamination

- Reject muon from Z bosons
 - Reject opposite-sign muons pairs with invariant mass combinations > 66 GeV
- Cannot directly detect neutrino
 - Use track-based p_T^{miss} variable $p_i^{miss} = \sum_{i=1}^{nirks} p_i^{miss}$ as a proxy

$$m_T = \sqrt{2p_{\rm T}^{\mu}p_{\rm T}^{\rm miss}(1-\cos\Delta\phi_{\mu,p_{\rm T}^{\rm miss}})}$$

$$\mathbf{p}^{\text{miss}} = \sum_{i=1}^{ntrks} \mathbf{p}_i^{\text{miss}} = -(\mathbf{p}_1 + \mathbf{p}_2 + ... \mathbf{p}_{ntrks})$$

W: Background Sources

- QCD (e.g. $B \rightarrow \mu \nu X$)
 - Scale MC to (N_{coll})
 - Jet quenching: Re-scale to data in control region
 - Extrapolate to signal region
 - ≈ 3.7% contribution
- $Z \rightarrow \mu^+\mu^-$
 - One muon of decay is outside acceptance
 - Uses data and MC
 - ≈ 2.4% contribution
- $W \rightarrow TV_T \rightarrow \mu V_\mu V_T$
 - 17.4% of taus decay to a muon
 - Estimated with MC
 - ≈ 1.5% contribution
- Total background at the level of 7.6%

W: Corrected Yields

W bosons per binary collision in each $|\eta_u|$ interval

LO prediction tends to undershoot data, whereas NLO is in much better agreement

W+/W-Charge Ratio

- Integrated ratio: 1.04 ±0.03(stat.) ±0.2(syst)
 - Consistent with unity in each centrality class
- LO* and NLO predictions both accurately represent the data
- Conclusion: NLO K-factor is independent of charge and cancels in ratio

W: Muon Charge Asymmetry

Data agrees with both LO* and NLO model No visible nuclear modifications

- W bosons at large y_W produced from high-x (valence) quarks
 - left-handed q + right-handed \bar{q} = left-handed W[±]
 - Decay angle determined by product of µ[±] and W[±] helicities
 - μ⁻ boosted in direction of W⁻ → more μ⁻ at large η_u

Electroweak Boson Binary Scaling

Boson yields show clear scaling with the number of binary collisions

Summary

- Presented boson (W[±], Z, γ) measurements in HI collected with ATLAS in 2011
- Presented W production rates as a function of $\left\langle N_{part}\right\rangle$ and $\left|\eta_{\mu}\right|$
 - NLO predictions with represent the data well, whereas LO* tends to underestimate yields
- Presented the fiducial W+/W- as a function of (N_{part})
 - Consistent with unity in each centrality class considered
- Presented the W \rightarrow $\mu\nu$ charge asymmetry as a function of $|\eta_{\mu}|$
 - Both NLO and LO* prediction (without any nuclear modifications) describes the data well
- All bosons scale with the number of binary collisions
 - Confirms an understanding of collision geometry (Glauber)
 - Provides standard candle for colour-charge interactions in a QCD medium
 - Exemplified by photon-jet and Z-jet measurements
- Sets the stage for exciting new results in future Pb+Pb and p+Pb EW boson measurements

Backup

W: Reconstruction-Level Kinematics (p_T)

Show for both μ^+ and μ^- signal candidates Background normalized to expected fraction Signal MC normalized to background-subtracted counts in data

W: Reconstruction-Level Kinematics (p_Tmiss)

Show for both μ^+ and μ^- signal candidates Background normalized to expected fraction Signal MC normalized to background-subtracted counts in data

Z Bosons in Pb+Pb

Phys. Rev. Lett 110, 022301 (2013)

Invariant mass distributions integrated over momentum, rapidity, and centrality

- Z → ee
 - $E_T > 20 \text{ GeV}$, $|\eta_e| < 2.5$
 - UE subtracted from each electron
 - Background ≈ 5%
- $Z \rightarrow \mu\mu$
 - $p_T > 10 \text{ GeV}$, $|\eta_u| < 2.7$
 - Background ≈ 1%
- Signal region
 - $66 < m_{\mu\nu} < 116 \text{ GeV}$

Direct Photon Measurement in Pb+Pb

https://cds.cern.ch/record/1451913

- UE subtraction from each event
- Isolated photons
 - Reject clusters arising from hadronic jetfragments
- Shower shape cuts in multiple layers of EM and hadronic calo
 - Reject jets and hadrons
- Signal extraction with "double side-band" method
 - Region A: Primary signal region
 - Region B: Photons near a jet or UE fluctuation
 - Region C: Isolated jet-fragments + non-tight photons
 - Region D: Primary background region

$$N^{\text{sig}} = N_A^{\text{obs}} - N_B^{\text{obs}} \frac{N_C^{\text{obs}}}{N_D^{\text{obs}}}$$
Correct for signal "leakage"
$$c_i = N_i^{\text{sig}}/N_A^{\text{sig}}$$

$$N_A^{\text{sig}} = N_A^{\text{obs}} - \left(N_B^{\text{obs}} - c_B N_A^{\text{sig}}\right) \frac{\left(N_C^{\text{obs}} - c_C N_A^{\text{sig}}\right)}{\left(N_D^{\text{obs}} - c_D N_A^{\text{sig}}\right)}$$

Centrality Definition

Centrality	$\langle N_{ m part} angle$		$\langle N_{ m coll} angle$	
0-5%	382.2	0.5%	1683.3	7.7 %
5-10%	330.3	0.9%	1318.0	7.5%
10-15%	281.9	1.3%	1035.4	7.4%
15-20%	239.5	1.6%	811.2	7.4%
20-40%	157.8	2.6%	440.6	7.3%
40-80%	45.9	7.6 %	77.8	14.2%
0-80%	139.5	4.7%	452.0	9.5%

Muon and Electron Triggers

Photon Efficiency and Purity

Photon identification efficiency as well as total efficiency (reconstruction, identification, and isolation) in 4 centrality classes

1 - Purity =
$$1 - N_A^{\text{sig}}/N_A^{\text{obs}}$$

