Dielectrons in d + Au collisions at $\sqrt{s} = 200$ GeV measured by PHENIX and its implications on heavy flavor

Deepali Sharma

PHENIX Collaboration

Stony Brook University

5th November, 2013

Motivation (dileptons and heavy flavor)

Dilpeton mass spectrum is a unique probe \rightarrow allows access to diverse physics signal

Modifications to the dilepton spectrum due to the QCD phase transition

Motivation (dileptons and heavy flavor)

Dilpeton mass spectrum is a unique probe \rightarrow allows access to diverse physics signal

Modifications to the dilepton spectrum due to the QCD phase transition

 This talk is focussed on the heavy flavor (charm and bottom), that dominates the Stony Mass's spectrum above 1 GeV/c².

- 10% of c (or b) decay semileptonically to electrons.
- Looking simultaneously in the mass and *p_T* space allows the separation between charm and bottom.

Why look into d + Au collisions

- Recent RHIC results have shown modification of heavy quark production rates and kinematics in d + Au collisions.
- Any intial state effects such as gluon shadowing, anti-shadowing etc will affect the heavy quark production.
- The shape of the mass and p_T distributions should additionally be sensitive to other effects, such as parton energy loss and rescattering in cold nuclear matter.

d + Au signal extraction

- Background Estimation
 - Like-sign technique is used for the signal extraction, after the like-sign pairs are corrected for the acceptance difference for ++ and -- pairs. This method takes care of both the combinatorial background and correlated background. The relative acceptance correction α is derived from the mixed events and is defined as follows:

$$\alpha = \frac{BG_{+-}}{BG_{++} + BG_{--}}$$

Signal to Background in d + Au;

• One should take into account the signal from the like-sign heavy quark correlations (explained in the following slide).

Deepali Sharma (Stony Brook University)

Like-sign Correlations – (like-sign subtraction)

Origin of Like-sign correlated pairs

- BR for $B \rightarrow e \sim 10\%$, BR for $B \rightarrow D \sim 10\%$,
- Oscillations
 - B^0B^0 mixing. This leads to $\sim 60\%$ unlike-sign pairs and $\sim 40\%$ like-sign pairs.
- Nearly half the bottom yield is like-sign!.

- Because we use like-sign subtraction in data, we account for this effect in simulations too.
- This effect is less extreme for charm (<1% within PHENIX acceptance).

Minimum Bias d + Au *dielectrons*

- Consistent with the expected cocktail of known sources
- Large mass range coverage $0 14 \ GeV/c^2$.

• Subtract out the yield of the pseudoscalar and vector mesons, and the Drell-Yan.

- Subtract out the yield of the pseudoscalar and vector mesons, and the Drell-Yan.
- Done double differentially in mass and p_T .

- Subtract out the yield of the pseudoscalar and vector mesons, and the Drell-Yan.
- Done double differentially in mass and p_T .
- Subtracted mass spectrum shown on right represents heavy-flavor yield.

- Subtract out the yield of the pseudoscalar and vector mesons, and the Drell-Yan.
- Done double differentially in mass and p_T .
- Subtracted mass spectrum shown on right represents heavy-flavor yield.
- Preliminary cross-sections extracted from this data set used earlier MC@NLO simulations.
- Studies shown in the following slides use new PYTHIA and higher statistics MC@NLO simulations so as to explore the model dependence on cross-section extrapolations.

- Subtract out the yield of the pseudoscalar and vector mesons, and the Drell-Yan.
- Done double differentially in mass and p_T .
- Subtracted mass spectrum shown on right represents heavy-flavor yield.
- Simulate the e^+e^- pair yield from heavy flavor

- Subtract out the yield of the pseudoscalar and vector mesons, and the Drell-Yan.
- Done double differentially in mass and p_T .
- Subtracted mass spectrum shown on right represents heavy-flavor yield.
- Simulate the e^+e^- pair yield from heavy flavor
- Done using two event generators PYTHIA (which is a *leading-order* simulation) and MC@NLO (a next-to-leading order simulation).

- Subtract out the yield of the pseudoscalar and vector mesons, and the Drell-Yan.
- Done double differentially in mass and p_T .
- Subtracted mass spectrum shown on right represents heavy-flavor yield.
- Simulate the e^+e^- pair yield from heavy flavor
- Done using two event generators PYTHIA (which is a *leading-order* simulation) and MC@NLO (a *next-to-leading* order simulation).
- Evident here is the separation of e^+e^- pairs from charm and bottom in mass and p_T .
 - charm dominates at low mass and low p_T for pairs below 3 GeV/ c^2 mass.
 - at $p_T = 2 \text{ GeV/}c$ the low mass dominance of charm vanishes.
 - bottom starts to dominate at all masses for $p_T > 2.5 \text{ GeV/}c$

- e^+e^- pair acceptance governed by the correlation between the e^- and e^+ , which depends on the production process
- For e⁺e⁻ pairs from heavy flavor decays, the correlation is an interplay of two contributions:
 - the QCD production of the $q\bar{q}$ pair
 - the decay kinematics of the two independent semi-leptonic decays.

8/19

- e^+e^- pair acceptance governed by the correlation between the e^- and e^+ , which depends on the production process
- For e⁺e⁻ pairs from heavy flavor decays, the correlation is an interplay of two contributions:
 - the QCD production of the $q\bar{q}$ pair
 - the decay kinematics of the two independent semi-leptonic decays.

Acceptance	PYTHIA $c\bar{c}$ pairs	MC@NLO $c\bar{c}$ pairs
4π	1	1
$ \Delta y_{c\bar{c}} < 0.5$	0.275	0.297
$ \Delta y_{c\bar{c}} < 0.35$	0.2	0.215

Acceptance	PYTHIA e^+e^- pairs	MC@NLO e^+e^- pairs
	from $c\bar{c}$ [$F_{BR}^{c\bar{c}}$ ⁻¹]	from $c\bar{c}$ [$F_{BR}^{c\bar{c}}$ ⁻¹]
4π	1	1
$ y_{e^+} & y_{e^-} < 0.5$	0.042	0.035
$ y_{e^{+}} \& y_{e^{-}} < 0.5$ $m_{e^{+}e^{-}} > 1.16 \text{GeV}/c^{2}$	0.0047	0.00022
$m_{e^+e^-} > 1.16 \text{GeV}/c^2$		
$ y_e + \& y_e - _{PHENIX}$	0.0023	0.0016

 $F_{BR}^{c\bar{c}} = (B.R.(c \to e))^2$, where B.R. is the effective branching ratio of 9.4%

- e^+e^- pair acceptance governed by the correlation between the e^- and e^+ , which depends on the production process
- For e⁺e⁻ pairs from heavy flavor decays, the correlation is an interplay of two contributions:
 - the QCD production of the $q\bar{q}$ pair
 - the decay kinematics of the two independent semi-leptonic decays.

Acceptance	PYTHIA $b\bar{b}$ pairs	MC@NLO bb pairs
4π	1	1
$ \Delta y_{b\bar{b}} < 0.5$	0.39	0.40
$\begin{aligned} \Delta y_{b\bar{b}} &< 0.5\\ \Delta y_{b\bar{b}} &< 0.35 \end{aligned}$	0.28	0.29

Acceptance	PYTHIA e^+e^- pairs	MC@NLO e^+e^- pairs
	from $b\bar{b} [F_{BR}^{b\bar{b}}]^{-1}$	from $b\bar{b}$ [$F_{BR}^{c\bar{c}}$ ⁻¹]
4π	1	1
$ y_{e^{+}} & y_{e^{-}} < 0.5$	0.095	0.091
$ y_{e^{+}} & y_{e^{-}} < 0.5$	0.0425	0.0395
$ y_{e^{+}} \& y_{e^{-}} < 0.5$ $m_{e^{+}e^{-}} > 1.16 GeV/c^{2}$		
$ y_{e}+\&y_{e}- _{PHENIX}$	0.0084	0.0080

 $F_{BR}^{b\bar{b}}=(B.R.(b\to e))^2$, B.R. is the effective branching ratio of 15.8% using a likesign pair subtraction, or 22% not considering like sign pairs.

- e^+e^- pair acceptance governed by the correlation between the e^- and e^+ , which depends on the production process
- For e⁺e⁻ pairs from heavy flavor decays, the correlation is an interplay of two contributions:
 - the QCD production of the $q\bar{q}$ pair
 - the decay kinematics of the two independent semi-leptonic decays.

Acceptance	PYTHIA $b\bar{b}$ pairs	MC@NLO bb pairs
4π	1	1
$ \Delta y_{b\bar{b}} < 0.5$	0.39	0.40

- The number of e^+e^- pairs from $c\bar{c}$ in 1 unit of rapidity differ by 1.2, that increases to 2.2 if one restricts the mass range above 1 GeV c^2 .
- For $b\bar{b}$, the two simulations yield similar results within 5%.
- Is this a coincidence? may be not!

	$m_{e^+e^-} > 1.16 GeV/c^2$			•
ĺ	$ y_{e^+} \& y_{e^-} _{PHENIX}$	0.0084	0.0080	

 $F_{BR}^{b\bar{b}}=(B.R.(b\to e))^2$, B.R. is the effective branching ratio of 15.8% using a likesign pair subtraction, or 22% not considering like sign pairs.

5th November 2013

Model dependence explained...

- If $m_q >> p$, the e^+e^- decay pair randomizes the correlation of $q\bar{q}$ pair.
- For a very heavy quark, the decay electron has no directional preference.
- $\bullet \approx 1$ out of 80 pairs will fall into the phenix acceptance.
- the number of e^+e^- pairs from $b\bar{b}$ differ only by 30%
- For $c\bar{c}$, the deviation is by more than a factor of 5.
- implies a large model dependence for $c\bar{c}$ and small from $b\bar{b}$, as evident from the previous tables.
- consequently extrapolated cross-sections for $c\bar{c}$ will be different from PYTHIA and MC@NLO, but very similar for $b\bar{b}$.

Model dependence explained...

- If $m_q >> p$, the e^+e^- decay pair randomizes the correlation of $q\bar{q}$ pair.
- For a very heavy quark, the decay electron has no directional preference.
- $\bullet \approx 1$ out of 80 pairs will fall into the phenix acceptance.
- the number of e^+e^- pairs from $b\bar{b}$ differ only by 30%
- For $c\bar{c}$, the deviation is by more than a factor of 5.
- implies a large model dependence for $c\bar{c}$ and small from $b\bar{b}$, as evident from the previous tables.
- consequently extrapolated cross-sections for $c\bar{c}$ will be different from PYTHIA and MC@NLO, but very similar for bb.

This is a physics issue, not an acceptance issue

Some model distributions

- Different input correlations between the quarks in the two models.
- Final e^+e^- distribution for $c\bar{c}$ is different, while very similar for $b\bar{b}$.

 Stony Brook University

Results of fitting the simulations to the data

Results of fitting the simulations to the data

4□ > 4♂ > 4 ≥ > 4

Extracted heavy flavor cross-section from MC@NLO

- Preliminary p + p equivalent extrapolated heavy flavor cross-sections using the MC@NLO simulations are:
- $\sigma_{cc}^{pp} = 704 \pm 47 \text{ (stat)} \pm 183 \text{ (syst)} \pm 40 \text{ (model)} \ \mu\text{b.}$
- $\sigma_{bb}^{pp} = 4.29 \pm 0.39 \text{ (stat)} \pm 1.08 \text{ (syst)} \pm 0.11 \text{ (model)} \ \mu\text{b}.$
- Results are consistent to the previously published PHENIX measurements of heavy flavor cross-section from singles and dielectrons in p + p (assuming small CNM effects on dielectrons).
- Final cross-section from the fits shown in the earlier slide to be published soon.
- Similar analysis in p + p is underway.

Summary

- The d+Au data dielectron spectrum is consistent with the expected cocktail of known sources and, to the scaled p + p results.
- Any dielectron enhancement seen in the HI collisions is not due to any cold nuclear matter effects.
- The d + Au dielectrons data provides a new independent measurement for the heavy flavor that are consistent with the already published results.
- Both the leading-order (PYTHIA) and next-to-leading order calculations (MC@NLO)
 describe the data nicely.

Hard Probes 2013@Stellenbosch

- The extrapolation for charm cross-section using the two models are different.
- The extrapolation for bottom cross-section is model independent.

Back-ups

Back-ups

14 / 19

PHENIX Experimental set-up

PHENIX Central arms Acceptance: -0.35< η <0.35, 2×90° in φ

Measure rare probes in different collision systems: p+p, d+Au, Cu+Cu, Au+Au

- Vertex: **BBC**
- Tracking: DC/PC1
- $p_e > 0.2 \text{ GeV/c}$;

Electron identification based on:

- RICH (Ring Imaging Čerenkov detector) (e/π) rejection >1000)
- EMCal (Electromagnetic Calorimeter) (E-p matching, e/π rejection ~ 10)

Extraction of cross-section of charm and bottom -II

• Fit the simulated charm and bottom distributions to the data with two free parameters $N_{c\bar{c}}$ and $N_{b\bar{b}}$.

$$\frac{1}{N_{\rm evt}^{\rm MB}}\frac{dN_{ee}^{\rm hf}}{dmdp_T}\Big|_{\rm PHENIX} = N_{c\bar{c}}\frac{dn_{ee}^{c\bar{c}}}{dmdp_T} + N_{b\bar{b}}\frac{dn_{ee}^{b\bar{b}}}{dmdp_T},$$

Like-sign pair subtraction

Backup Slide

like-sign pair subtraction

$$Signal = FG12 - \alpha \cdot (FG11 + FG22)$$

- · Like-sign FG is used for the background subtraction.
- At high m,p_T this is fine, but at lower m,p_T must correct for the difference in PHENIX's acceptance for like-sign and unlike-sign pairs.
 - α = Relative Acceptance Correction.
- use like-sign FG because it contains "correlated background" of cross/jet pairs.

note:

All manipulation is done differentially in mass and pT (of the pair). Low-stats mass projections are shown for illustration purposes.

Correlated background

4 □ > 4 圖 > 4 ≧ >

EPS09s Mass Dependent Modification

Calculate the mass dependent R $_{\rm dAu}$ from EPS09s using the PHENIX $\rm r_{_T}$ distributions for each centrality bin.

Use the sea quark modification for up & down quarks.

For heavier quarks assume gluon fusion and use gluon modification.

No PHENIX Geometry cut!

