Measurements of long-range angular correlation and anisotropy in d+Au collisions at 200 GeV from PHENIX

Shengli Huang
Vanderbilt University
for the PHENIX Collaboration

Outline

- Motivations
- lacktriangle Long-range angular correlations across Rapidity, Centrality and Trigger p_T
- ☐ Extracted v₂ using event-plane method Charged hadron, Identified particles
- **□**Summary

Ridge in p+Pb at 5.02 TeV

ALICE: Phys. Lett. B 719 (2013) ATLAS: Phys. Rev. Lett. 110(2013)

CMS: Phys. Lett. B 7198(2013

- ☐ A "ridge" is observed in the small system of high multiplicity p + Pb collisions
- \Box The $\Delta \phi$ distribution shows a cos(2 $\Delta \phi$) structure

V₂ in d+Au at 200 GeV

PHENIX: nucl-ex/1303.1794 (Accepted by PRL)

- □ The cos(2 Δ φ) structure is also seen in 0-5% d+Au. The cut of | Δ η|>0.48 is the limit of our central arm acceptance
- ☐ The v₂ in 0-5% d+Au is higher than that in 0-2% p+Pb collisions, which is consistent with P.Bozek hydro calculation
- \Box The measurement with large $|\Delta\eta|$ is required!

Initial or final state effect?

☐ The study of long-range correlation and precise measurements of anisotropy in d + Au collisions will be helpful in investigating these models.

Mass ordering in p+Pb at 5.02TeV

- \square Mass ordering of v_2 for identified particles is observed in p+Pb collisions, as we did in AA collisions
- ☐ What do we see in d+Au collisions?

Extend the Rapidity Range

☐ Muon Piston Calorimeter

Forward/backward-rapidity $3<|\eta|<4$

 \Box Extend the rapidity range by measuring the correlation between Tracks (<| η |<0.35) and MPC towers

PHOBOS Phys. Rev. C72, 031901

Angular correlations between Track and Tower: $C(\Delta \phi)$

•
$$s(\Delta \phi) = \frac{d(\omega_{tower}N_{same}^{track-tower})}{d(\Delta \phi)}$$

- $\checkmark \omega_{tower}$ is the transverse energy of each tower
- $\checkmark N_{same}^{track-tower}$ is number of pair of track-tower in same event

$$\checkmark \Delta \phi = \phi_{tower} - \phi_{track}$$

•
$$C(\Delta \phi) = \frac{\int M(\Delta \phi)S(\Delta \phi)}{\int S(\Delta \phi)M(\Delta \phi)}$$

 \checkmark M($\Delta\phi$) is track-tower correlation in mixed events

"Ridge" in d+Au collisions

Correlation between Track(mid-rapidity) and Tower(d-going) vs. centrality

- In peripheral collision, the distribution is dominated by the dipole term cos(Δφ) from Fourier fitting
- ☐ It indicates there is a strong contribution from momentum conservation in d+Au
- The mid-forward rapidity correlation in central d+Au is different from that in peripheral, even though there is no near-side peak

Correlation between Track(mid-rapidity) and Tower(Au-going) vs. centrality

- ☐ The near-side peak is visible until 10-20% centrality
- ☐ In peripheral collisions, the Au-going correlation is similar to the d-going correlation

A ridge is observed with $\Delta \eta > 6.0$

☐ Correlation between Au-going and d-going MPC towers

Correlation of Tower on Au-going and d-going vs. centrality

 $C(\Delta \phi)$ of p+p and dAu

- ☐ ZYAM normalization does not work due to the significant dipole contribution. Conditional yield of p+p can't be subtracted out correctly from d+Au
- \Box Dijet, resonance *et al* contributions to c₂ can be estimated by an approach similar to the Scalar Product method

Scalar Product Method: <µQ>

☐ In heavy ion collision:

$$<\mu Q> = <\Sigma \cos(2(\phi_{pt} - \phi_j))>$$

= $M \times v_2(pt) \times \overline{v_2} + nonflow$
= $M \times c_2(pt)$

The nonflow in AA(dA) is same as pp

☐ For the tower of MPC

$$\begin{split} Q &= (\Sigma \omega_i cos(2 \varphi_{tower,i}), \, \Sigma \omega_i sin(2 \varphi_{tower,i})) \\ \omega_i \text{ is } E_T \text{ of each MPC tower of} \\ \text{Au-going} \end{split}$$

$$<\mu Q> = \Sigma E_T \times c_2(pt)$$

The dijet, resonance et al contributions in d+Au collisions can be estimated in p+p collisions with the scale of $\Sigma E_T^{pp}/\Sigma E_T^{dAu^5}$

Compare c₂ from d+Au and p+p

- \Box The difference indicates that the contribution from di-jet, resonance decay ... is less than 10% for c_2^{dAu}
- The $|\Delta\eta|^{\sim}3$ significantly suppress the contribution from di-jets, resonance decay ... comparing with previous measurements, which is around 60% at p_T = 2 GeV/c

Event-plane method for v₂

Muon piston Calorimeter

MPC $(3.1<|\eta|<3.9)$

 $\Psi_{2,MPC}$ s Au-going

Central Arm tracking ($|\eta|$ <0.35) $\Psi_{2,CNT}$

Zero Degree Calorimeters(**ZDC**) Shower Max Detectors(**SMD**) **ZDC-SMD** ($|\eta|$ >6.5) $\Psi_{1,smd}$ s by Au-going spectator

- The difference between $c_2(dAu)$ and $c_2(pp)$ indicates that in EP methods, the contribution from dijet, resonance ... is less than 10% for pT up to 4.5 GeV/c
- \Box The event-plane $\Psi_{\rm 2,MPC_S}$ resolution is estimated from three-sub events which include the $\Psi_{\rm 2,CNT}$ and $\Psi_{\rm 1,SMD\ S}$

V₂(EP) for central-arm tracks in 0-5% d+Au

- A extended p_T range and improved statistical and systematic errors are obtained with the event plane method
- The v_2 (CNT-CNT) is higher than v_2 (EP), which may due to remaining jet and different method
- The two measurements are still close within statistical and systematic errors

V₂ in central d+Au and p+Pb

- The difference in v₂
 between central d+Au
 and p+Pb collisions is
 about 20%
- ☐ The multiplicity and eccentricity are quite different between d+Au and p+Pb collisions

Comparing with Hydro

Identified particles' v₂ from EP methods

Mass ordering is observed in 0-5% d+Au

Weaker radial flow in dAu?

- oxdot The magnitude of mass ordering in p+Pb is larger than in d+Au
- Weaker radial flow in d+Au due to smaller energy density?

Hydro results of PID v₂ in dAu

☐ A quick hydro calculation from P.Bozek does not show mass ordering in d+Au collisions

Number of quark scaling

 \Box The n_q scaling roughly holds in 0-5% d+Au collisions

Summary

- Using the Muon Piston Calorimeter (MPC), the ridge is observed in mid-backward (Au-going) and backward-forward rapidity correlation in 0-5% d+Au collisions
- The charged hadron v₂ from the event-plane method in 0-5% d+Au is close to that in 0-2% p+Pb collisions
- The v_2 of pions and protons shows a mass ordering at low p_T

c_2 and c_3 vs p_T

Scalar Product Method

