# JET CORRELATIONS

# opportunities and pitfalls

### Thorsten Renk







### Introduction

- triggered soft vs. hard correlations
  The bias problem
- how the trigger condition changes observations  $V\!\!$  ARIOUS JET CORRELATIONS
- current phenomenology and what to learn from it Conclusions

# JET CORRELATIONS



- basic structure: hard event, back-to-back QCD jets
- select a trigger object:
- ightarrow unclustered: leading hadron, hard  $\gamma$ ,  $Z^0$ , back-to-back hadron pair
- → clustered: jet, back-to-back jet pair
- ⇒ trigger defines event-by-event condition; observables are conditional probabilities
- select the observable
- $\rightarrow$  near side subleading yield, clustered yield, . . directly biased by trigger condition
- → away side yield, clustered yield, . . indirectly biased by trigger condition
- need to understand biases before interpreting results

# NOT JET CORRELATIONS



- triggering on hadrons below 6 GeV does not trigger back-to-back jet topologies
- → 3 GeV triggers predominantly select fluid dynamics modes
- ullet in this case, angular distribution of associates is given by  $v_n$  pattern
- ightarrow powerful technique of  $v_n$  determination from correlations

Jet correlations are relevant where the hadron  $P_T$  spectrum and and PID differential yield is explained by pQCD and fragmentation. Typically, that happens for triggers above 6-8 GeV.

# Medium-modified jets in the eye of a theorist



- 1) hard process 2) vacuum shower 3) medium-induced radiation 4) medium evolution 5) medium correlated with jet by interaction
- ullet series of splittings  $a \to bc$  with decreasing t

$$dP_a = \sum_{b,c} \frac{\alpha_s(t)}{2\pi} P_{a \to bc}(z) dt dz \quad \text{with} \quad t = \ln Q^2 / \Lambda_{QCD} \quad \text{and} \quad z = E_d / E_p$$

$$P_{q \to qg}(z) = \frac{4}{3} \frac{1+z^2}{1-z} \quad P_{g \to gg}(z) = 3 \frac{(1-z(1-z))^2}{z(1-z)} \quad P_{g \to q\overline{q}}(z) = \frac{N_F}{2} (z^2 + (1-z)^2)$$

- ullet add medium perturbations, terminate at a soft virtuality scale  $t_0$  or  $Q_0$  and hadronize
- ⇒ compute the fate of the hard parton *forward* in time to get the final hadron shower

# Medium-modified jets in the eye of an experimentalist



- 'Where is my jet, what belongs to it and what doesn't?'
- ightarrow triggered observables and background subtraction techniques
- → form 'modified over unmodified' ratios
- $\Rightarrow$  conclude from the observed jet *backward* in time what the hard process and the modification might have been

# DOES THIS MATTER?



- initial state assumed by the theorist can lead to final states which are not triggered (and remain unobserved)
- experimental final state can come from initial states theory did not consider (background fluctuations, 'fake jets',...)
- $\Rightarrow$  a correct comparison requires to compute for *all* initial states, taking the *biases* by the experimental observation into account

# Case studies — biases matter!

Theoretical: shower from quark with fixed initial energy, fixed in-medium path (left)

**Experimental:** jets which clustered to fixed energy with anti- $k_T$ , R=0.3 (middle) (averaged over parton type, energy, medium geometry . . . )



- experimental observables are massive averages over possible initial states
- $\rightarrow$  information loss
- jet clustering represents a 'trigger' condition for the analysis
- → the observable is always biased (cf. also jet shape, right)
- biases can qualitatively change the picture and need to be understood

# Types of biases

In dicussing high  $P_T$  reactions in heavy-ion collisions, 4 types of biases are relevant:

- kinematic bias shift in the relation between hadron and parton kinematics
- → occurs because the medium induces some extra radiation from partons
- parton type bias shift in the mixture of quark to gluon jets
- $\rightarrow$  occurs because gluons couple with a factor  $C_F = 9/4$  more strongly to the medium
- **geometry bias** observed hard reactions do not come from all vertices equally
- → occurs because medium modification grows with medium density and pathlength
- shower bias a trigger condition makes some shower structures unobservable
- → occurs because of a direct selection effect
- → shower bias directly affects analysis of clustered jet properties
- ⇒ look more closely

TR, 1212.0646 [hep-ph].

# THE SHOWER BIAS



- a trigger condition biases the shower in which the trigger is created (left)
- → suppresses medium-modifications highly modified showers don't trigger (right)
- → similar if energy flux through a subcone is required jet trigger condition
- leading cause for 'near-null effect' in FF and jet shape analysis
- this bias is unrelated to the hard process itself
- → just affects the trigger side
- → strong advantage of back-to-back correlations: no shower bias on away side

## THE KINEMATIC BIAS

 $\bullet$  same trigger condition in vacuum and medium  $\neq$  same initial kinematics



- $\rightarrow$  counter-intuitively tends to increase  $I_{AA}$  in medium, naive argument misses this
- ullet also other complications, intrinsic  $k_T$  points on average in trigger direction,. . .

The energy of a trigger object  $\neq$  parton energy. This relation changes in a medium.

# THE PARTON TYPE BIAS

ullet same trigger condition in vacuum and medium eq same parton types

### vacuum



- ullet most trigger conditions enhance the fraction of quark jets on the trigger side o if qg o qg is important, this may enhance away side gluon fraction
- gluon jets in medium get additional penalty due to 9/4 higher interaction strength  $\rightarrow$  in-medium away side may have quite a different quark/gluon ratio than vacuum

Quark showers are more likely to trigger. The probability is changed by the medium.

# THE GEOMETRY BIAS

- if medium modification on average increases with medium length and density
- ightarrowsame trigger condition in vacuum and medium eq same geometry probed



- partons with short in-medium paths have higher chance of fulfilling trigger condition
- → vertex distribution of triggered events is biased in a characteristic way
- interconnected with parton type and kinematical bias
- → harder parton spectra unbias geometry

Triggered objects in medium do not represent binary collision geometry.

Case study: compare away side  $I_{AA}$  for different trigger objects

near side away side



- the away side has no shower bias, because trigger is not from away side shower
- $\gamma$ -h, h-h, jet-h (anti- $k_T$  with R=0.4,  $P_T>2$  GeV, STAR PID cuts), i(deal)jet-h (anti- $k_T$  R=0.4)
- trigger momentum range 12-15 GeV
- study away side charged hadron  $I_{AA}$
- RHIC kinematics (steeply falling parton spectra, energetic partons strongly penalized)
- LHC kinematics (energetic partons accessible)
- not quantitative predictions, no attempt made to adjust model to data

 $\bullet$  distribution of away side parton  $p_T$  ( $\approx$  scale of back-to-back event)



- ullet different trigger objects imply rather different kinematics for same trigger  $P_T$
- also different response to medium
- $\rightarrow$  misleading to compare  $I_{AA}$  for same trigger kinematics
- → only for same parton type and kinematics a comparison becomes useful

### RHIC

| trigger     | $f_{glue}^{vac}$ near | $f^{vac}_{glue}$ away | $f_{glue}^{med}$ near | $f_{glue}^{med}$ away |
|-------------|-----------------------|-----------------------|-----------------------|-----------------------|
| $\gamma$ -h | N/A                   | 0.03                  | N/A                   | 0.03                  |
| h-h         | 0.04                  | 0.69                  | 0.04                  | 0.69                  |
| jet-h       | 0.12                  | 0.68                  | 0.08                  | 0.69                  |
| ijet-h      | 0.44                  | 0.55                  | 0.33                  | 0.61                  |

### LHC

| trigger     | $f^{vac}_{glue}$ near | $f^{vac}_{glue}$ away | $f_{glue}^{med}$ near | $f_{glue}^{med}$ away |
|-------------|-----------------------|-----------------------|-----------------------|-----------------------|
| $\gamma$ -h | N/A                   | 0.04                  | N/A                   | 0.04                  |
| h-h         | 0.33                  | 0.79                  | 0.32                  | 0.78                  |
| jet-h       | 0.47                  | 0.79                  | 0.38                  | 0.80                  |
| ijet-h      | 0.77                  | 0.78                  | 0.69                  | 0.78                  |

- moderately different parton type distribution, especially on near side
- $\rightarrow \gamma$ -h is really quite different in having quarks on the away side
- → also needs to be considered before comparison



- completely different geometry bias
- $\rightarrow$  unbiased for  $\gamma$ -h, nearly unbiased for ijet-h, highly biased for h-h
- $\rightarrow$  note that bias depends on jet definition!



• harder spectrum unbiases geometry



- at RHIC, results fairly similar mere coincidence, completely different physics!
- at LHC, better separation, kinematic bias is seen to be very important
- ightarrow pushed  $I_{AA}$  strongly up for h-h
- for seemingly similar trigger conditions, biases cause lots of variation in
  - geometry
  - parton type
  - kinematics

# Proposal

- experimental trigger cuts define a **filter** which controls the averaging
- $\rightarrow$  we see the theoretical shower through this filter
- different trigger conditions probe quite a range in geometry, parton type, kinematics
- $\rightarrow$  the filter is **controllable**

Since we can't get clean kinematics and can't suppress biases, can we not actually *use* them to our advantage? More specifically, can biases not be designed such that they allow detailed tomography?

- ⇒ try understanding observables from the position
- → What is the trigger bias?
- → And thus what physics are we specifically sensitive to?

# PROPOSAL



- different averaging process filter set for different physics
- ullet differently 'blurred' filter  $\gamma$ -h is a cleaner trigger than h-h

# $I_{AA}$ of hadrons

### near side

### away side



trigger: leading hadron observable: away side yield

$$I_{AA} = rac{ ext{yield per trigger medium}}{ ext{yield per trigger vacuum}}$$

(this is a conditional probability, and trigger biased)

# $I_{AA}$ of hadrons

### AuAu 200 AGeV 0-5% centrality



- picture of the full MMFF
- → shows limits of leading parton energy loss picture
- constrains incoherent component from above with just 20% uncertainty
- ullet constrains  $\hat{e}$  from below to about 10% from subleading yield

# $I_{AA}$ of Charm mesons

- interesting idea (difficult experimentally) how would heavy quarks be different?
- $\rightarrow$  compute D-D and D-e correlations



- different parton type bias (always quark showers)
- different geometry bias (less coherent radiation, different pathlength dependence)
- different kinematical bias (harder fragmentation on the trigger side)
- $\Rightarrow$  translate into significantly different result for  $I_{AA}$

# $I_{AA}$ of hadrons

- $\bullet$   $I_{AA}$  shows clearly that there is medium-induced radiation
- → outside the applicability of leading parton energy loss
- strong sensitivity to pathlength dependence
- → and modest uncertainty due to fluid dynamics background
- constrains elastic energy transfer into the medium from above and below
- $\rightarrow$  constraints both point to about 10%

Observes full longitudinal structure of the MMFF, but statistics insufficient to see transverse structure as well. Move to jet-h correlations instead!

# $I_{AA}$ in jet-H correlations

near side

away side



trigger: jet observable: away side yield and transverse width

$$D_{AA} = \mathsf{yield}_{AA}(P_T)\langle P_T \rangle - \mathsf{yield}_{pp}(P_T)\langle P_T \rangle$$

(this is also a conditional probability, and trigger biased)

# $I_{AA}$ in jet-H correlations

- differential long. and transverse picture of away side jet
- → correlation measurement can be carried down to few hundred MeV



- 'upturn' of balance function around 3 GeV
- jet width increases over vacuum physics at the same scale
- → this happens independent of trigger energy (parton kinematics)
- crucial test for models, rules out fractional energy loss

# DIJET IMBALANCE

### near side

## away side



observable: momentum imbalance between jets

$$A_J = \frac{E_{T1} - E_{T2}}{E_{T1} + E_{T2}}$$
 or  $E_{T2}/E_{T1}$ 

#### DIJET IMBALANCE 0-20% 2.76 ATeV PbPb R = 0.4 theory $120 \text{ GeV} < P_{T1} < 150 \text{ GeV}$ $150 \text{ GeV} < P_{T1} < 180 \text{ GeV}$ 0.2 0.15 (1/o) do/dA<sub>J</sub> NLO pQCD, A+A, $g_{med} = 1.8$ NLO pQCD, A+A, $g_{med} = 2.0$ NLO pQCD, A+A, $g_{med} = 2.0$ NLO pQCD, A+A, $g_{med} = 2.2$ 25 GeV < E<sub>T2</sub> < E YaJEM-DE YaJEM-E 100 GeV < E<sub>T1</sub> $180 \text{ GeV} < P_{T1} < 220 \text{ GeV}$ Central Pb+Pb $220 \; GeV < P_{_{\rm T\, I}} < 260 \; GeV$ CMS central Pb+Pb data NLO pQCD theory, p+p (1/a) da/dA<sub>J</sub> NLO pQCD, A+A, $p_T^{min} = 0$ GeV NLO pQCD, A+A, $p_T^{min} = 20$ GeV away side quark $-260 \text{ GeV} < P_{T1} < 300 \text{ GeV}$ no collimation $50 \text{ GeV} < E_{T2} < E_{T3}$ LHC $s^{1/2} = 2.76 \text{ TeV}$ 120 GeV < E. 0.2 0.4 0.8 $\alpha_{s}=0.3$ $\alpha_{s}=0.27$ $\alpha_{s}=0.10\%$ ATLAS Pb-Pb 0-10% PYTHIA ATLAS Pb-Pb 10-20% 2.5 PYTHIA PYTHIA + medium PYTHIA + medium dN/dA<sub>j</sub> 1.5 0.5

0.2

- contains lots of vacuum physics
- ightarrow kinematical collimation, ratio of quark to gluon jets, EbyE jet mass distribution. . .

0.2 0.4 0.6 0.8 0

8.0

Y. He et al.,1105.2566; T. Renk, 1204.5572; C. Young et al, Phys. Rev. C **84** (2011) 024907, G. -Y. Qin and B. Muller, Phys. Rev. Lett. **106** (2011) 162302

# $\gamma$ –JET

 $\bullet$  cleaner parton kinematics in  $\gamma$ -jet, away side is dominantly quark jet



- also well described by models
- $\Rightarrow$  conceptually similar to  $A_J$ , but different kinematical and parton type bias

# DIJET IMBALANCE

- medium-induced angular decorrelation expected to be small
- ightarrow compare 100 GeV jet with T=300 MeV thermal scale  $\sim$  0.17 $^{\circ}$  deflection
- ⇒ random kicks from a thermal medium can't significantly alter a 100 GeV jet axis
- ⇒ (neither can they change radiation phase space to create a hard gluon emission)
- ullet beyond vacuum physics,  $A_J$  has little sensitivity to precise jet quenching mechanism
- → reason: the observable is a clustered quantity

**Purpose** of clustering in  $e^+e^-$  or p-p collisions: Get an observable which is sensitive only to hard physics (which we can do with pQCD) and not to soft physics (soft gluon emission, hadronization, . . . ) which we can't.

jet ↔ good proxy for original parton (and hard physics)

## This really means:

- ullet clustering suppresses physics effects around  $\Lambda_{QCD}\sim 300~{
  m MeV}$
- ightarrow it also suppresses physics around  $T\sim300~{
  m MeV}$
- clustering tends to undo the branching cascade of a shower
- $\rightarrow$  clustering also tends to undo the medium modification of a shower

# Hadron vs. Jet $R_{AA}$

• compare the effect of QCD scale evolution and out of medium evolution



⇒ clustering removes the sensitivity to model details (as it should)

Clustered observables are less constraining for models than unclustered ones.

# CONCLUSIONS

## We know how medium-modified jets look like.

- they've been observed through a number of different filters with consistent results
- $\rightarrow$  above  $\sim 3$  GeV, structure resembles vacuum jets, but distributions are depleted
- $\rightarrow$  below  $\sim 3$  GeV, broad and soft pedestal by hadronizing induced radiation
- this structure can be measured and plotted in many different ways
- → efforts should perhaps move towards detailed quantitative understanding

# Not all observables are equally constraining.

- biases can be used to make an observable (in)sensitive to a physics question
- → designed biases may be the future generation of measurements

# The results do not make a 'new physics' story.

- counter-intutive findings can usually be understood by complicated biases
- → no comparison with data should be made without modelling realistic biases
- results are consistent with 'simple' kinematical broadening of radiation phase space
- → some evidence for elastic energy transfer into medium
- → color coherence breakdown, modified color flow, . . . may be there, but not required

# CONCLUSIONS

# Implications for p-A

- jet correlations are a bad place to see initial state physics
- $ightarrow Q^2$  evolution erases signals of nPDFs or CGC at high  $P_T$
- some evidence for medium formation in p-A
- → but medium is small-sized, many hard partons get out before medium forms
- → LPM interference suppresses radiation for short paths
- ⇒ even if a medium exists, no strong effects on jets are expected

# Urgently needed

- jet correlation results (h-h, jet-h,...) from other jet quenching codes
- $\rightarrow$  much more constraining than popular observables  $R_{AA}, A_J$
- experimental agreement on how things are plotted
- $\rightarrow D_{AA}, I_{AA}$  and  $A_J$  medium vs. vacuum do not contain different information
- → but it's very hard to see what the message is right now

# CONCLUSIONS

## Medium tomography is becoming possible.

- original idea: use jets as calibrated probes to study medium density
- $\rightarrow$  jet observables can probe  $\epsilon_n$  from hydro with good sensitivity
- $\rightarrow$  no clear message, higher  $\epsilon_2$  preferred than hydro codes give
- → is jet pathlength dependence or hydro density evolution not quite right?

# Things that do not work

- large (> 20%) incoherent (elastic) component to energy loss
- ightarrow ruled out by geometry bias effect in correlation  $I_{AA}$
- fractional energy loss
- ightarrow ruled out by the relative independence of upturn point in trigger momentum
- AdS/CFT strong coupling scenarios for jet quenching
- ightarrow rules out by  $\sqrt{s}$  scaling and observed predictable pQCD radiation pattern