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Deep into low-x region

H1 and ZEUS Combined PDF Fit
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m Partons in the low-x region is dominated by gluons. See HERA data.
m BFKL equation = Resummation of the a;In 1.

® When too many gluons squeezed in a confined hadron, gluons start to overlap
and recombine = Non-linear dynamics = BK (JIMWLK) equation

m Use Q;(x) to separate the saturated dense regime from the dilute regime.
m Core ingredients: Multiple interactions + Small-x (high energy) evolution

m Related theory talks: [Monday: lancu, Lappi, Beuf; Tuesday: Ramnath,
Jackson, Mantysaari; Thursday: Kovner, Lublinsky]
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Saturation physics (Color Glass Condensate)

Saturation physics describes high density parton distributions at high energy limit.

m Saturation is an inevitable consequence of QCD dynamics at high energy.

m Eminent question: What are the smoking guns? At what energy scale?

m Using AA collisions to search for saturation is too hard due to factorization
issues: Finding a needle in a haystack

m The search for parton saturation is much easier in dilute-dense scatterings.

m 1. single hadron (pA and eA);
m 2. dijet (dihadron) correlation (pA and eA).



k; factorization vs Dilute-Dense factorizations

The Scarch k; factorization for single inclusive gluon productions in hadron-hadron collision:
Saturation i
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Introduction
Lo m Factorization and NLO correction? Only proved for DY and Higgs !
o m For dijet processes in pp, AA collisions, no k; factorization[Collins, Qiu,
Collisions 08],[Rogers, Mulders; 10].
. Dilute-Dense factorizations
and Sudakov
o /. rojectile: 71 ~ T=¢*¥~1 valence
Summary > proj . Vs
P pL

target: 2o ~ 7@ Y« 1 gluon
S

m Protons and virtual photons are dilute probes of the dense target hadrons.
m For dijet productions in forward pA collisions, effective &, factorization:

doP 88X 1 dé
m =xp8(Xp, pr)xag(xa, g1 ) T




Forward hadron production in pA collisions

e Search [Dumitru, Jalilian-Marian, 02] Inclusive forward hadron production in pA collisions
Saturation in
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m Caveats: arbitrary choice of the renormalization scale 1« and K factor.
m NLO correction? [Dumitru, Hayashigaki, Jalilian-Marian, 06; Altinoluk,
Kovner 11] [Chirilli, Xiao and Yuan, 12]
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% Why do we need NLO calculations?

Large x: valence quarks Small x: Gluons, sea quarks
Ph-—>jet+X

/5= 1800 GeV E=70GaV 2<lyi<3

1000

w0
<O

GoldydE, (PbIGeV)

Due to quantum evolution, PDF and FF changes with scale. This introduces
large theoretical uncertainties in xf(x) and D(z). Choice of the scale at LO
requires information at NLO.

LO cross section is always a monotonic function of y, thus it is just order of
magnitude estimate.

NLO calculation significantly reduces the scale dependence. More reliable.
K= % is not a good approximation.

NLO is vital in establishing the QCD factorization in saturation physics.
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% NLO Calculation and Factorization

The Search

Jor Gluon m Factorization is about separation of short distant physics (perturbatively
ot calculable hard factor) from large distant physics (Non perturbative).

ollisions

Boen o~ xf(x) @ HQDy(z) @ F(kL)

m NLO (1-loop) calculation always contains various kinds of divergences.

Forward m Some divergences can be absorbed into the corresponding evolution equations.
o m The rest of divergences should be cancelled.
o i
Collsions m Hard factor

(0) s (1)
H:HIO + EHNI,()+"'

should always be finite and free of divergence of any kind.
m NLOvs NLL  Naive a, expansion sometimes is not sufficient!
LO | NLO | NNLO

LL 1 | oL | (aL)
NLL o ay (asL)

m Evolution — Resummation of large logs.
LO evolution resums LL; NLO = NLL.



Factorization for single inclusive hadron productions

Prascach Systematic factorization for the p + A — H + X process [Chirilli, BX and Yuan, 12]

for Gluon

Saturation in 3 e AheX
PA d3oPtA— dz dx
Collisions ddePJ_ Z - _5 [dx ] Haselas, &, [z1]p)
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Finite hard factor

Rapidity Divergence Collinear Divergence (P) Collinear Divergence (F)

m The NLO correction arises after subtracting off divergence according to
convention and MS scheme.

m In principle, by invoking the NLO evolutions, we can promote this NLO
calculation up to NLL.
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% Numerical implementation of the NLO result

Single inclusive hadron production up to NLO

do = /xfg(x) @ Da(z) @ Fo (ko) @ H©

Qg
o | M) © Do(@) & FG @ Hy

.t

Consistent implementation should include all the NLO « corrections.
m NLO parton distributions. (MSTW or CTEQ)

NLO fragmentation function. (DSS or others.)
Use NLO hard factors. (11 in total)
Use the one-loop approximation for the running coupling

rcBK evolution equation for the dipole gluon distribution [Balitsky, Chirilli,
08; Kovchegov, Weigert, 07]. Full NLO BK evolution not available.

The first most complete NLO results. [Stasto, Xiao, Zaslavsky, 13]
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Numerical implementation of the NLO result

[Albacete, Dumitru, Fujii, Nara, 12] [Stasto, Xiao, Zaslavsky, 13]

BRAHMS 7 = 2.2,3.2

STAR =1

10!

3
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[Z+=1.0 =+ NLO (fixed) ==~ NLO (running) |
100 F = T T T T T
-1k
E LHC at n = 6.375
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E 2 4 6 8 10
pL[GeV] (u/pr)?

m Agree with data for low p |, and reduced scale dependence, no K factor.
m For large p | , NLO correction dominates and becomes negative.
m Additional resummation ? or Kinematic constraints ? [G. Beuf]
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Two Different Gluon Distributions

[F.Dominguez, C.Marquet, BX and F. Yuan, 11]
I. Weizsacker Williams gluon distribution: Gauge Invariant definitions

G =2 / A AL e~y p|pti(e e U )P,

(2m)? Pt

II. Color Dipole gluon distributions: Gauge Invariant definitions

G =2 / dE 1 e ik ey pi (e ¢l U P).

(2m)3PT
l!-\ 51 o ET} -:1
T | - ] ap
L\ g g n

yl-) Y]

m The WW gluon distribution is the conventional gluon distributions.
Quadrupole = Direct measurement: DIS dijet, etc.

m The dipole gluon distribution has no such interpretation.
Dipole = «-jet correlation in pA.

11715



% Dihadron correlations in dAu collisions (STAR and PHENIX)

The Search
e Predicted by [C. Marquet]. Further calculated [Marquet, Albacete, 10]; [Stasto, BX,
o Yuan, 11] [Lappi, Mantysaari, 13] Need to have both gluon distributions.
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Dijet processes at one-loop order

Using various dijet processes to distinguish these gluon distributions.

rlgger
A¢

assocmted

Comments:
m What happens at one loop order for back-to-back dijet processes?
(PL=3lkiL —koi|>qu = kL + ko))

m Can we prove the factorization for dijet productions?

m Small-x ["‘2‘—7’:" In %]' resummation vs Sudakov (CSS) [” sCr 12 S }
resummation. Consistently resum both types of logarithms at the same time?
Unified description of the CSS and small-x evolution?
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Sudakov factor for dijet productions in pA collisions and DIS

Consider the dijet productions in pA collisions:[A. Mueller, BX, F. Yuan, 13]

AL _$ Wrmf @rlgger
Ca="% Coorn =

Cr=%+C associated

do
dyrdy,dP’ d?ky
Comments:
m For back-to-back dijet processes, MJ2 ~ Pi_ > kﬁ_

2 p2
ozSC ln2 PLfL

. 1
Ssud:ﬁ with RLNk—.

CO 1

m Probability interpretation of the Sudakov factor (Parton shower)

m Competition between Sudakov and Saturation suppressions.

H(Pi_)/dzdezyLeiki'RLe_S“‘“(PL’RL)VNVXA(xL,yl).
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Conclusion
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Bo-Wen m Inclusive forward hadron productions in pA collisions in the small-x saturation
Xiao .
formalism at one-loop order. (More work).

o m Towards the test of saturation physics beyond LL (More precise).
:{yﬁlff:,“ m Dijet (dihadron) correlation in pA collisions. (More striking)

e m One-loop calculation for hard processes in pA collisions, Sudakov factor.
(More complete)
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