

The Search for Gluon Saturation in pA Collisions

> Bo-Wen Xiao

Testano de cat

Introduct

Hadron Production

Dihadron Correlation

Correlation and Sudako Factor

Summar

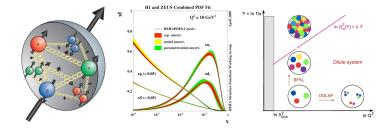
The Search for Gluon Saturation in pA Collisions

Bo-Wen Xiao

Institute of Particle Physics, Central China Normal University

Deep into low-x region

The Search for Gluon Saturation in pA Collisions


Bo-Wen Xiao

Introduction

Hadron Production in pA Collision

Correlation and Sudak Factor

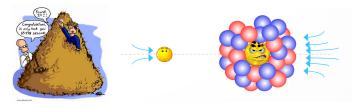
Summa

- Partons in the low-x region is dominated by gluons. See HERA data.
- BFKL equation \Rightarrow Resummation of the $\alpha_s \ln \frac{1}{x}$.
- When too many gluons squeezed in a confined hadron, gluons start to overlap and recombine ⇒ Non-linear dynamics ⇒ BK (JIMWLK) equation
- Use $Q_s(x)$ to separate the saturated dense regime from the dilute regime.
- Core ingredients: Multiple interactions + Small-x (high energy) evolution
- Related theory talks: [Monday: Iancu, Lappi, Beuf; Tuesday: Ramnath, Jackson, Mantysaari; Thursday: Kovner, Lublinsky]

Saturation physics (Color Glass Condensate)

The Search for Gluon Saturation in pA Collisions

Bo-Wen Xiao


Introduction

Hadron Production in pA Collision

Dihadron Correlation and Sudak Factor

Summ:

Saturation physics describes high density parton distributions at high energy limit.

- Saturation is an inevitable consequence of QCD dynamics at high energy.
- Eminent question: What are the smoking guns? At what energy scale?
- Using AA collisions to search for saturation is too hard due to factorization issues: Finding a needle in a haystack
- The search for parton saturation is much easier in dilute-dense scatterings.
 - 1. single hadron (pA and eA);
 - 2. dijet (dihadron) correlation (pA and eA).

k_t factorization vs Dilute-Dense factorizations

The Search for Gluon Saturation in pA Collisions

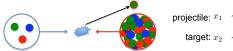
Bo-Wen Xiao

Introduction

Forward Hadron Production in pA

Dihadron Correlatio

Correlationand Sudai Factor


Summa

 k_t factorization for single inclusive gluon productions in hadron-hadron collision:

$$\frac{d\sigma}{d^2p_Tdy} = \frac{2\alpha_s}{C_F p_T^2} \times \\ \times \int d^2k_{A,T} f_A(x_A,k_{A,T}) f_B(x_B,p_T-k_{A,T}).$$

- Factorization and NLO correction? Only proved for DY and Higgs!
- For dijet processes in pp, AA collisions, no *k*_t factorization[Collins, Qiu, 08],[Rogers, Mulders; 10].

Dilute-Dense factorizations

$$\begin{array}{ccc} \text{projectile: } x_1 & \sim & \frac{p_\perp}{\sqrt{s}} e^{+y} \sim 1 & \text{valence} \\ & \text{target: } x_2 & \sim & \frac{p_\perp}{\sqrt{s}} e^{-y} \ll 1 & \text{gluon} \end{array}$$

- Protons and virtual photons are dilute probes of the dense target hadrons.
- For dijet productions in forward pA collisions, effective k_t factorization:

$$\frac{d\sigma^{pA\to ggX}}{d^2P_\perp d^2q_\perp dy_1 dy_2} = x_p g(x_p, \mu) x_A g(x_A, q_\perp) \frac{1}{\pi} \frac{d\hat{\sigma}}{d\hat{t}}.$$

Forward hadron production in pA collisions

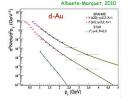
The Search for Gluon Saturation in pA Collisions

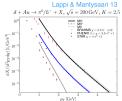
Bo-Wen Xiao

Introduct

Hadron Productions in pA Collisions

Dihadron Correlation and Sudako


Summa


[Dumitru, Jalilian-Marian, 02] Inclusive forward hadron production in pA collisions

$$p + A \rightarrow H + X$$
.

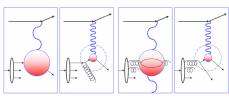
$$\frac{d\sigma_{\text{LO}}^{pA\to hX}}{d^2p_{\perp}dy_h} = \int_{\tau}^{1} \frac{dz}{z^2} \left[\sum_{f} x_p q_f(x_p, \boldsymbol{\mu}) \mathcal{F}(k_{\perp}) D_{h/q}(z, \boldsymbol{\mu}) + x_p g(x_p, \boldsymbol{\mu}) \tilde{\mathcal{F}}(k_{\perp}) D_{h/g}(z, \boldsymbol{\mu}) \right].$$

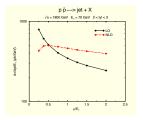
- **Caveats:** arbitrary choice of the renormalization scale μ and K factor.
- NLO correction? [Dumitru, Hayashigaki, Jalilian-Marian, 06; Altinoluk, Kovner 11] [Chirilli, Xiao and Yuan, 12]

Why do we need NLO calculations?

The Search for Gluon Saturation in pA Collisions

Bo-Wen Xiao


Introduct


Forward Hadron Productions in pA Collisions

Dihadron Correlation and Sudak

Summa

Large x: valence quarks Small x: Gluons, sea quarks

- Due to quantum evolution, PDF and FF changes with scale. This introduces large theoretical uncertainties in xf(x) and D(z). Choice of the scale at LO requires information at NLO.
- LO cross section is always a monotonic function of μ , thus it is just order of magnitude estimate.
- NLO calculation significantly reduces the scale dependence. More reliable.
- $K = \frac{\sigma_{\text{LO}} + \sigma_{\text{NLO}}}{\sigma_{\text{LO}}}$ is not a good approximation.
- NLO is vital in establishing the QCD factorization in saturation physics.

NLO Calculation and Factorization

The Search for Gluon Saturation in pA Collisions

Bo-Wen Xiao

Introduc

Forward Hadron Productions in pA Collisions

Dihadron Correlation and Sudako

Summa

■ Factorization is about separation of short distant physics (perturbatively calculable hard factor) from large distant physics (Non perturbative).

$$\sigma \sim x f(x) \otimes \mathcal{H} \otimes D_h(z) \otimes \mathcal{F}(k_{\perp})$$

- NLO (1-loop) calculation always contains various kinds of divergences.
 - Some divergences can be absorbed into the corresponding evolution equations.
 - The rest of divergences should be cancelled.
- Hard factor

$$\mathcal{H} = \mathcal{H}_{LO}^{(0)} + \frac{\alpha_s}{2\pi} \mathcal{H}_{NLO}^{(1)} + \cdots$$

should always be finite and free of divergence of any kind.

■ NLO vs NLL Naive α_s expansion sometimes is not sufficient!

	LO	NLO	NNLO	
LL	1	$\alpha_s L$	$(\alpha_s L)^2$	
NLL		α_s	$\alpha_s (\alpha_s L)$	

■ Evolution → Resummation of large logs. LO evolution resums LL; NLO ⇒ NLL.

Factorization for single inclusive hadron productions

The Search for Gluon Saturation in pA Collisions

Bo-Wen Xiao

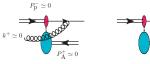
Introduct

Forward Hadron Productions in pA Collisions

Dihadron Correlation and Sudako Factor

Summai

Systematic factorization for the $p + A \rightarrow H + X$ process [Chirilli, BX and Yuan, 12]


$$\frac{d^3\sigma^{p+A\to h+X}}{dyd^2p_\perp} = \sum_a \int \frac{dz}{z^2} \frac{dx}{x} \xi \mathbf{x} \mathbf{f_a}(\mathbf{x}, \boldsymbol{\mu}) \mathbf{D_{h/c}}(\mathbf{z}, \boldsymbol{\mu}) \int [dx_\perp] \mathbf{S}_{\mathbf{a}, \mathbf{c}}^{\mathbf{Y}}([\mathbf{x}_\perp]) \mathcal{H}_{a\to \mathbf{c}}(\alpha_s, \xi, [\mathbf{x}_\perp]\boldsymbol{\mu})$$

Collinear divergence: pdfs

Collinear divergence: fragmentation functs

Rapidity divergence: BK evolution

Finite hard factor

Rapidity Divergence

Collinear Divergence (P)

Collinear Divergence (F)

- The NLO correction arises after subtracting off divergence according to convention and \overline{MS} scheme.
- In principle, by invoking the NLO evolutions, we can promote this NLO calculation up to NLL.

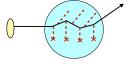
Numerical implementation of the NLO result

The Search for Gluon Saturation in pA

Bo-Wen Xiao

Introduc

Forward


Hadron Productions in pA Collisions

Dihadron Correlation and Sudako Factor

Summa

Single inclusive hadron production up to NLO

$$d\sigma = \int x f_a(x) \otimes D_a(z) \otimes \mathcal{F}_a^{x_g}(k_\perp) \otimes \mathcal{H}^{(0)}$$

$$+ \frac{\alpha_s}{2\pi} \int x f_a(x) \otimes D_b(z) \otimes \mathcal{F}_{(N)ab}^{x_g} \otimes \mathcal{H}_{ab}^{(1)}.$$

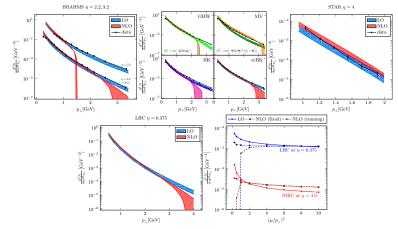
Consistent implementation should include all the NLO α_s corrections.

- NLO parton distributions. (MSTW or CTEQ)
- NLO fragmentation function. (DSS or others.)
- Use NLO hard factors. (11 in total)
- Use the one-loop approximation for the running coupling
- rcBK evolution equation for the dipole gluon distribution [Balitsky, Chirilli, 08; Kovchegov, Weigert, 07]. Full NLO BK evolution not available.
 - The first most complete NLO results. [Stasto, Xiao, Zaslavsky, 13]

Numerical implementation of the NLO result

The Search for Gluon Saturation in pA

Collisions
Bo-Wen
Xiao


Introduct

Forward Hadron Productions in pA Collisions

Dihadron Correlation and Sudako Factor

Summa

[Albacete, Dumitru, Fujii, Nara, 12] [Stasto, Xiao, Zaslavsky, 13]

- Agree with data for low p_{\perp} , and reduced scale dependence, no K factor.
- For large p_{\perp} , NLO correction dominates and becomes negative.
- Additional resummation ? or Kinematic constraints ? [G. Beuf]

Two Different Gluon Distributions

The Search for Gluon Saturation in pA Collisions

Bo-Wen Xiao

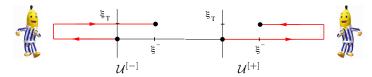
Introduc

Hadron Production in pA

Dihadron Correlation

Correlation and Sudakov Factor

Summa


[F.Dominguez, C.Marquet, BX and F. Yuan, 11]

I. Weizsäcker Williams gluon distribution: Gauge Invariant definitions

$$xG^{(1)} = 2 \int \frac{d\xi^{-} d\xi_{\perp}}{(2\pi)^{3} P^{+}} e^{ixP^{+}\xi^{-} - ik_{\perp} \cdot \xi_{\perp}} \text{Tr} \langle P | F^{+i}(\xi^{-}, \xi_{\perp}) \mathcal{U}^{[+]\dagger} F^{+i}(0) \mathcal{U}^{[+]} | P \rangle.$$

II. Color Dipole gluon distributions: Gauge Invariant definitions

$$xG^{(2)} = 2 \int \frac{d\xi^{-}d\xi_{\perp}}{(2\pi)^{3}P^{+}} e^{ixP^{+}\xi^{-} - ik_{\perp} \cdot \xi_{\perp}} \text{Tr} \langle P|F^{+i}(\xi^{-}, \xi_{\perp})\mathcal{U}^{[-]\dagger}F^{+i}(0)\mathcal{U}^{[+]}|P\rangle.$$

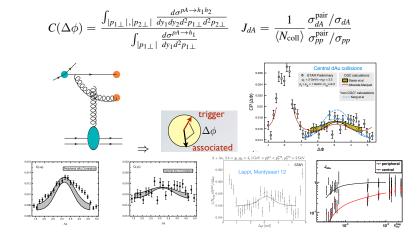
- The WW gluon distribution is the conventional gluon distributions.
 Quadrupole ⇒ Direct measurement: DIS dijet, etc.
- The dipole gluon distribution has no such interpretation. Dipole ⇒ γ-jet correlation in pA.

Dihadron correlations in dAu collisions (STAR and PHENIX)

The Search for Gluon Saturation in pA Collisions

Bo-Wen Xiao

Introducti


Forward Hadron Production

in pA
Collisions

Dihadron Correlation and Sudakov Factor

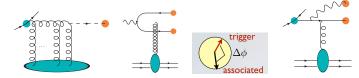
Summa

Predicted by [C. Marquet]. Further calculated [Marquet, Albacete, 10]; [Stasto, BX, Yuan, 11] [Lappi, Mantysaari, 13] Need to have both gluon distributions.

Dijet processes at one-loop order

The Search for Gluon Saturation in pA Collisions

Bo-Wen Xiao


Introduct

Hadron
Production
in pA
Collision

Dihadron Correlation and Sudakov Factor

Summa

Using various dijet processes to distinguish these gluon distributions.

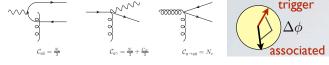
Comments:

- What happens at one loop order for back-to-back dijet processes? $(P_{\perp} \equiv \frac{1}{2}|k_{1\perp} k_{2\perp}| \gg q_{\perp} \equiv |k_{1\perp} + k_{2\perp}|)$
- Can we prove the factorization for dijet productions?
- Small- $x \left[\frac{\alpha_s N_c}{2\pi} \ln \frac{1}{x} \right]^n$ resummation vs Sudakov (CSS) $\left[\frac{\alpha_s C_R}{2\pi} \ln^2 \frac{Q_1^2}{Q_2^2} \right]^n$ resummation. Consistently resum both types of logarithms at the same time? Unified description of the *CSS* and small-x evolution?

Sudakov factor for dijet productions in pA collisions and DIS

The Search for Gluon Saturation in pA Collisions

Bo-Wen Xiao


Introduc

Hadron
Production
in pA
Collision

Dihadron Correlation and Sudakov

Summa

Consider the dijet productions in pA collisions:[A. Mueller, BX, F. Yuan, 13]

$$\frac{d\sigma}{dy_1 dy_2 dP_\perp^2 d^2k_\perp} \propto H(P_\perp^2) \int d^2x_\perp d^2y_\perp e^{ik_\perp \cdot R_\perp} e^{-\mathcal{S}_{sud}(P_\perp,R_\perp)} \widetilde{W}_{x_A}(x_\perp,y_\perp) \; .$$

Comments:

■ For back-to-back dijet processes, $M_J^2 \sim P_\perp^2 \gg k_\perp^2$

$$\mathcal{S}_{\mathrm{sud}} = rac{lpha_s \mathcal{C}}{2\pi} \ln^2 rac{P_{\perp}^2 R_{\perp}^2}{c_o^2} \quad \mathrm{with} \quad R_{\perp} \sim rac{1}{k_{\perp}}.$$

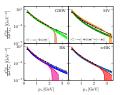
■ Probability interpretation of the Sudakov factor (Parton shower)

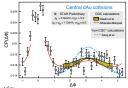
■ Competition between Sudakov and Saturation suppressions.

Conclusion

The Search for Gluon Saturation in pA Collisions

Bo-Wen Xiao


Introduct


Hadron
Production:
in pA
Collisions

Correlation and Sudako Factor

Summary

- Inclusive forward hadron productions in *pA* collisions in the small-*x* saturation formalism at one-loop order. (More work).
- Towards the test of saturation physics beyond LL (More precise).
- Dijet (dihadron) correlation in *pA* collisions. (More striking)
- One-loop calculation for hard processes in pA collisions, Sudakov factor.
 (More complete)

