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Deep into low-x region

Partons in the low-x region is dominated by gluons. See HERA data.

BFKL equation⇒ Resummation of the αs ln 1
x .

When too many gluons squeezed in a confined hadron, gluons start to overlap
and recombine⇒ Non-linear dynamics⇒ BK (JIMWLK) equation

Use Qs(x) to separate the saturated dense regime from the dilute regime.

Core ingredients: Multiple interactions + Small-x (high energy) evolution

Related theory talks: [Monday: Iancu, Lappi, Beuf; Tuesday: Ramnath,
Jackson, Mantysaari; Thursday: Kovner, Lublinsky]
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Saturation physics (Color Glass Condensate)

Saturation physics describes high density parton distributions at high energy limit.

Operation in 2013 and 
future operations.  

Saturation is an inevitable consequence of QCD dynamics at high energy.

Eminent question: What are the smoking guns? At what energy scale?

Using AA collisions to search for saturation is too hard due to factorization
issues: Finding a needle in a haystack
The search for parton saturation is much easier in dilute-dense scatterings.

1. single hadron (pA and eA);
2. dijet (dihadron) correlation (pA and eA).
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kt factorization vs Dilute-Dense factorizations

kt factorization for single inclusive gluon productions in hadron-hadron collision:

3

atic error in the comparison of theory and experiment.
Explicitly noticing such problems can be an important
motivation for topics for further research that are impor-
tant for the success of a field.

The kT -factorization formula that we discuss, Eq. (1)
below, is intended to be valid for single inclusive jet pro-
duction in hadron-hadron collisions. It is widely used
in phenomenological applications to study the particle
multiplicity observed at hadron colliders. (For some ex-
amples see [4–12] and references therein. A comparison
of some phenomenological predictions to LHC data for
the particle multiplicities in both proton-proton and lead-
lead collisions was presented by the ALICE collaboration
[13].)

The kT -factorization formula used in this area is (see,
e.g., Ref. [8, Eq. (1)]):

dσ

d2pT dy
=

2αs

CF p2
T

×

×
∫

d2kA,T fA(xA, kA,T ) fB(xB , pT − kA,T ). (1)

Here fA and fB are TMD densities of gluons in their
parent hadrons, and the two gluons combine to give an
outgoing gluon of transverse momentum pT which gives
rise to an observed jet in the final state. In the formula,
CF = (N2

c − 1)/2Nc with Nc = 3 for QCD, y is the
rapidity of the final-state jet, and xA,B = (pT /

√
s)e±y.

The incoming hadrons A and B can be protons or nuclei.
Questions that now naturally arise are: Where does

this formula originate from? Where can a proper deriva-
tion be found, and under what conditions and to what
accuracy is the derivation valid? What are the explicit
definitions of the unintegrated distributions fA,B, and do
these definitions overcome the subtleties that are found
in constructing definitions of TMD distributions in QCD
in the non-small-x regime [2, Chs. 13 & 14]? In an ideal
world, we could say that in order for the requirements
(T1)–(T4) to be fulfilled, it is absolutely necessary that
these questions be answered, and that a person who reads
a paper which makes use of this formula can, if needed,
go back to the original source and himself/herself repro-
duce and verify the derivations. But we must recognize
that in the real world some of these issues are very deep
and difficult, and that therefore complete answers to the
questions do not (yet) all exist. Nevertheless, in this
subject, we should expect some kind of derivation, with
the accompanying possibility of an outsider being able
to identify, for example, possible gaps in the logic where
further work is needed.

However, as we will explain below, we tried to find any
kind of a derivation of the formula by following citations
given for it, but were unable to do so. Our findings can
be visualized in Fig. 1, which shows the chain of refer-
ences that one needs to follow to arrive at the nearest
possible source(s), starting from a selection of recent pa-
pers. Coming to those sources we find that the formula is
never derived but essentially asserted. Moreover, the ba-
sic concepts involved are never defined in a clear enough

way to make it understandable what exactly it is that
is being done. We therefore find it impossible that (1)
can be satisfactorily re-derived from sources referenced
in the literature, contrary to what should be the case if
principles (T1)–(T4) hold.

A clear symptom that these are not merely abstract
difficulties but are problems with practical impact is that
the overall normalization factor differs dramatically be-
tween the references. See, for example, Eq. (40) in [14]
and Eq. (4.3) in [15] — and notice that this difference in
normalization does not appear to be commented on, let
alone explained. The difference in normalization factors
demonstrates that at least one of the presented factor-
ization formulas is definitively wrong. (In the two ap-
pendices of the present paper, we will show that in fact
the normalizations of both formulas appear to be wrong.)
There are a number of difficult physical and mathemati-
cal issues that need to be addressed if one is to provide a
fully satisfactory proof of a factorization formula. These
issues go far beyond a mere normalization factor. But
the existence of problems with the normalization factor
is a diagnostic: it provides a clear and easily verifiable
symptom that something has gone wrong. A minimum
criterion for a satisfactory derivation is that it should be
explicit enough to allow us to debug how the normaliza-
tion factor arises.

At the top of our chart of references, Fig. 1, we have
chosen some of the recent phenomenological applications
[8–11] that make use of (1). We also include some earlier
highly cited phenomenological applications [5, 6]. There
exist a very great number of papers which make use of
(1), so we include here only a representative few. As is
indicated in the top part of Fig. 1, a central source that
is given for (1) is the highly cited Ref. [14]. We thus ask
whether we then can find a derivation of (1) in [14].

That paper performs a calculation in a quasi-classical
approximation of particle production in DIS using the
dipole formalism (see the reference for the exact calcu-
lations that define this “quasi-classical” approximation).
There actually is an implicit assumption of a factorized
structure from the very start in this formalism (see Eqs.
(1) and (7) in the reference). For our purposes it is im-
portant to notice what the exact statement is regarding
(1), which can be found as Eq. (40) in [14]. (An unimpor-
tant difference is that in [14], the f ’s in (1) are instead
written as f/k2

T .) Prior to this equation, an equation for
the production of gluons in DIS is derived, Eq. (39) in
[14]. The exact statement just prior to stating (1) in the
form of Eq. (40) in [14] reads

The form of the cross section in Eq. (39) sug-
gests that in a certain gauge or in some gauge
invariant way it could be written in a fac-
torized form involving two unintegrated gluon
distributions merged by an effective Lipatov
vertex.

There is no derivation of Eq. (1). Rather, this equation is
stated as being the “usual form of the factorized inclusive

Factorization and NLO correction? Only proved for DY and Higgs !
For dijet processes in pp, AA collisions, no kt factorization[Collins, Qiu,
08],[Rogers, Mulders; 10].

Dilute-Dense factorizations

x1 ∼ p⊥√
s
e+y ∼ 1

x2 ∼ p⊥√
s
e−y � 1

Jan 8, 2013 Zhongbo Kang, LANL

Observation at high energy

! The spin asymmetry becomes the largest at forward rapidity region, 
corresponding to
! The partons in the projectile (the polarized proton) have very large momentum 

fraction x: dominated by the valence quarks (spin effects are valence effects)
! The partons in the target (the unpolarized proton or nucleus) have very small 

momentum fraction x: dominated by the small-x gluons

! Thus spin asymmetry in the forward region could probe both
! The transverse spin effect from the valence quarks in the projectile: Sivers 

effect, Collins effect, and etc
! The small-x gluon saturation physics in the target

4

projectile:

target:

valence

gluon

√
s

Tuesday, January 8, 2013

Protons and virtual photons are dilute probes of the dense target hadrons.
For dijet productions in forward pA collisions, effective kt factorization:

dσpA→ggX

d2P⊥d2q⊥dy1dy2
=xpg(xp, µ)xAg(xA, q⊥)

1
π

dσ̂
d̂t
.
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Forward hadron production in pA collisions

[Dumitru, Jalilian-Marian, 02] Inclusive forward hadron production in pA collisions

p + A→ H + X.
· · ·

dσpA→hX
LO

d2p⊥dyh
=

∫ 1

τ

dz
z2


∑

f

xpqf (xp, µ)F(k⊥)Dh/q(z, µ) + xpg(xp, µ)F̃(k⊥)Dh/g(z, µ)


 .

Jan 8, 2013 Zhongbo Kang, LANL

Inclusive hadron production in small-x formalism

! At forward rapidity, the hadron is produced as follows (at LO)

! Dipole gluon distribution follows B-K evolution equation, which can be solved 
numerically

! Comparison with RHIC data

7

F (xA, q⊥) =

�
d2r⊥
(2π)2

eiq⊥·r⊥ 1

Nc

�
Tr

�
U(0)U†(r⊥)

��
xA

dσ

dyd2p⊥
=

K

(2π)2

�
d2b

� 1

xF

dz

z2
xfq/p(x)F (xA, q⊥)Dh/q(z)

q⊥

p⊥ = z q⊥

Albaete-Marquet, 2010

Tuesday, January 8, 2013

Caveats: arbitrary choice of the renormalization scale µ and K factor.
NLO correction? [Dumitru, Hayashigaki, Jalilian-Marian, 06; Altinoluk,
Kovner 11] [Chirilli, Xiao and Yuan, 12]

Single inclusive forward particle production in p(d)-A collisions

12
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Non-Linear Evolution of Cronin Enhancement
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Albacete, Armesto, Kovner, Salgado, Wiedemann,
hep-ph/0307179, PRL to appear.

Braun, PLB576 (2003) 115.

• CGC: Forward suppression originates in 
the dynamical shadowing generated by the 
quantum non-linear BK-JIMWLK evolution 

towards small-x

• Alternative: Energy loss arising from 

induced gluon bremstahlung (stronger in 

nucleus than in proton)  

  Kopeliovich et al, Frankfurt Strikman

Probability of not losing energy: 

P (�y) ⇥ e�nG(�y) ⇥ (1 � xF )#

Results J. L. Albacete

CRONIN EFFECT: Enhancement in the production of intermediate -particles in p-A

collisions respect to p-p collisions due to multiple scattering
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’Nuclear modification factor’

Suppression of Cronin effect is rooted in
small- evolution and in the behaviour of the
’gluon’

Running coupling slows down the suppres-
sion

LBL Feb 2005 – p.26

BRAHMS data

Results J. L. Albacete

CRONIN EFFECT: Enhancement in the production of intermediate -particles in p-A

collisions respect to p-p collisions due to multiple scattering
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Why do we need NLO calculations?

13J.Pawlowski / U. Uwer

Advanced Particle Physics: VII. Quantum Chromodynamics

QCD explains observed scaling violation

Large x: valence quarks Small x: Gluons, sea quarks

Q2 F2 for fixed x Q2 F2 for fixed x

Scaling violation is one of the clearest manifestation of 
radiative effect predicted by QCD.

Quantitative description of scaling violation 
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to emit gluon and 
becoming a quark with 
momentum reduced by 
fraction z.

0 cutoff parameter 

M
Qx

2

2

)(
1

)( x
a

ax

x
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• Now, calculate M2 ∂σ
∂M2

• Again, the derivative of the first line cancels a portion of the derivative of
the third and the remaining derivatives give results of O(α4

s) (Exercise:
Fill in the steps to show this)

• Both the renormalization and factorization scale dependences cancel to
the order calculated, although there is still residual scale dependence
due to higher order corrections

• The following plot shows the type of behavior which is typical of LO
and NLO calculations

0 0.5 1 1.5 2 2.5
µ/ET

100

1000

dσ
/d

yd
E T (

pb
/G

eV
)

p p− −−> jet + X
√s = 1800 GeV   ET = 70 GeV   2 < |y| < 3

LO
NLO

Due to quantum evolution, PDF and FF changes with scale. This introduces
large theoretical uncertainties in xf (x) and D(z). Choice of the scale at LO
requires information at NLO.

LO cross section is always a monotonic function of µ, thus it is just order of
magnitude estimate.

NLO calculation significantly reduces the scale dependence. More reliable.

K = σLO+σNLO
σLO

is not a good approximation.

NLO is vital in establishing the QCD factorization in saturation physics.
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NLO Calculation and Factorization

Factorization is about separation of short distant physics (perturbatively
calculable hard factor) from large distant physics (Non perturbative).

σ ∼ xf (x)⊗H⊗ Dh(z)⊗F(k⊥)

NLO (1-loop) calculation always contains various kinds of divergences.
Some divergences can be absorbed into the corresponding evolution equations.
The rest of divergences should be cancelled.

Hard factor
H = H(0)

LO +
αs

2π
H(1)

NLO + · · ·

should always be finite and free of divergence of any kind.

NLO vs NLL Naive αs expansion sometimes is not sufficient!

LO NLO NNLO · · ·
LL 1 αsL (αsL)2 · · ·
NLL αs αs (αsL) · · ·
· · · · · · · · ·

Evolution→ Resummation of large logs.
LO evolution resums LL; NLO⇒ NLL.
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Factorization for single inclusive hadron productions

Systematic factorization for the p + A→ H + X process [Chirilli, BX and Yuan, 12]

NLO calculation
Partial calculation Altinoluk, Kovner

&
Dumitru, Hayashigaki, Jalilian-Marian

Full calculation: virtual and real diagrams.
Subtractions performed according to the 

renormalization group equations

Chirilli, Xiao, Yuan

2

· · ·

H

Cp Cf

R

A X

PhP

FIG. 1. Schematic plot of the factorization, where H indicates the hard factor, R represents the rapidity divergence which
are factorized into the dipole gluon distribution of the target nucleus (A), Cp and Cf stand for the collinear divergences which
are absorbed into the parton distribution functions of the projectile proton (P ) and hadron (Ph) fragmentation functions,
respectively.

corrections will have terms that depend on the correlation functions beyond the simple two-point functions. Because
of this reason, the integral [dx⊥] represents all possible integrals at the particular order.

To evaluate NLO corrections, we will calculate the gluon radiation contributions. At one-loop order, the gluon
radiation will introduce various divergences. The factorization formula in Eq. (2) is to factorize these divergences into
the relevant factors. For example, there will be collinear divergences associated with the incoming parton distribution
and final state fragmentation functions. In addition, there is the rapidity divergence associated with SY ([x⊥]). These
divergences naturally show up in higher order calculations. The idea of the factorization is to demonstrate that these
divergences can be absorbed into the various factors in the factorization formula. After subtracting these divergences,
we will obtain the hard factors Ha→c, which describes the partonic scattering amplitude of parton a into a parton c in
the dense medium. This hard factor includes all order perturbative corrections, and can be calculated order by order.
Although there is no simple k⊥-factorization form beyond leading order formalism, we will find that in the coordinate
space, the cross section can be written into a nice factorization form as Eq. (2). Besides the explicit dependence on
the variables shown in Eq. (2), there are implicit dependences on p⊥[x⊥] in the hard coefficients as well.

Two important variables are introduced to separate different factorizations for the physics involved in this process:
the collinear factorization scale µ and the energy evolution rapidity dependence Y . The physics associated with µ
follows the normal collinear QCD factorization, whereas the rapidity factorization Y takes into account the small-x
factorization. The evolution respect to µ is controlled by the usual DGLAP evolution, whereas that for SY

a by the
Balitsky-Kovchegov (BK) evolution [23, 24]. In general, the energy evolution of any correlation functions can be given
by the JIMWLK equation[25], and the resulting equation is equivalent to the BK equation for dipole amplitudes.
In particular, our one-loop calculations will demonstrate the important contribution from this rapidity divergence.
Schematically, this factorization is shown in Fig. 1.

Our calculations should be compared to the similar calculations at next-to-leading order for the DIS structure func-
tions in the saturation formalism [26–28]. All these calculations are important steps to demonstrate the factorization
for general hard processes in the small-x saturation formalism [29]. The rest of the paper is organized as follows. In
Sec. II, we discuss the leading order results for inclusive hadron production in pA collision, where we also set up the
framework for the NLO calculations. Sec. III. is divided into four subsections, in which we calculate the NLO cross
section for the q → q, g → g, q → g and g → q channels . The summary and further discussions are given in Sec. IV.

II. THE LEADING ORDER SINGLE INCLUSIVE CROSS SECTION.

The leading order result was first formulated in Ref. [1]. For the purpose of completeness, we briefly derive the
leading order cross section to set up the baseline for the NLO calculation. Let us begin with the quark channel in pA
collisions. As illustrated in Fig. 2, the multiple scattering between the quark from the proton and the dense gluons
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Inclusive Hadron Productions in pA Collisions

Giovanni A. Chirilli,1 Bo-Wen Xiao,2 and Feng Yuan1

1Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
2Department of Physics, Pennsylvania State University, University Park, PA 16802, USA

We calculate inclusive hadrons production in pA collisions in the small-x saturation formalism
at one-loop order. The differential cross section is written into a factorization form in the coordi-
nate space at the next-to-leading order, while the naive form of the convolution in the transverse
momentum space does not hold. The rapidity divergence with small-x dipole gluon distribution of
the nucleus is factorized into the energy evolution of the dipole gluon distribution function, which
is known as the Balitsky-Kovchegov equation. Furthermore, the collinear divergences associated
with the incoming parton distribution of the nucleon and the outgoing fragmentation function of
the final state hadron are factorized into the splittings of the associated parton distribution and
fragmentation functions, which allows us to reproduce the well-known DGLAP equation. The hard
coefficient function, which is finite and free of divergence of any kind, is evaluated at one-loop order.

I. INTRODUCTION

Inclusive hadron production in pA collisions have attracted much of theoretical interests in recent years [1–13].
In particular, the suppression of hadron production in the forward dAu scattering at RHIC observed in the experi-
ments [14, 15] has been regarded as one of the evidences for the gluon saturation at small-x in a large nucleus [7, 8, 16].
Saturation phenomenon at small-x in nucleon and nucleus plays an important role in high energy hadronic scatter-
ing [17–20]. In this paper, as an important step toward a complete description of hadron production in pA collisions
in the saturation formalism, we calculate the one-loop perturbative corrections. Previous attempts have been made in
the literature. In particular, in Ref. [5], part of one-loop diagrams were evaluated. However, the rapidity divergence
is not identified and the collinear evolution effects are not complete. Recently, some of the higher order corrections
were discussed in Ref. [9], where it was referred as “inelastic” contribution. In the following, we will calculate the
complete next-to-leading order (NLO) corrections to this process in the saturation formalism. A brief summary of
our results has been published earlier in Ref. [21].

Inclusive hadron production in pA collisions,

p + A → h + X , (1)

can be viewed as a process where a parton from the nucleon (with momentum p) scatters on the nucleus target
(with momentum PA), and fragments into final state hadron with momentum Ph. In the dense medium of the large
nucleus and at small-x, the multiple interactions become important, and we need to perform the relevant resummation
to make the reliable predictions. This is particularly important because the final state parton is a colored object.
Its interactions with the nucleus target before it fragments into the hadron is crucial to understand the nuclear
effects in this process. In our calculations, we follow the high energy factorization, also called color-dipole or color-
glass-condensate (CGC), formalism [20, 22, 23] to evaluate the above process up to one-loop order. We notice that
alternative approaches have been proposed in the literature [10–13] to calculate the nuclear effects in this process.

According to our calculations, the QCD factorization formalism for the above process reads as,

d3σp+A→h+X

dyd2p⊥
=
∑

a

∫
dz

z2

dx

x
ξxfa(x, µ)Dh/c(z, µ)

∫
[dx⊥]SY

a,c([x⊥])Ha→c(αs, ξ, [x⊥]µ) , (2)

where ξ = τ/xz with τ = p⊥ey/
√

s, y and p⊥ the rapidity and transverse momentum for the final state hadron and
s the total center of mass energy square s = (p + PA)2, respectively. Schematically, this factorization is illustrated in
Fig. 1, where the incoming parton described by the parton distribution fa(x) scatters off the nuclear target represented
by multiple-point correlation function SY ([x⊥]), and fragments into the final state hadron defined by the fragmentation
function Dh/c(z). All these quantities have clear operator definitions in QCD. In particular, fa(x) and Dh/c(z) are
collinear parton distribution and fragmentation functions which only depend on the longitudinal momentum fraction
x of the nucleon carried by the parton a, and the momentum fraction z of parton c carried by the final state hadron h,
respectively. From the nucleus side, it is the multi-point correlation functions denoted as SY

a,c(x⊥) (see the definitions
below) that enters in the factorization formula, depending on the flavor of the incoming and outgoing partons and
the gluon rapidity Y associated with the nucleus: Y ≈ ln(1/xg) with xg being longitudinal momentum fraction.

At the leading order, SY represent the two-point functions, including the dipole gluon distribution functions in the
elementary and adjoint representations for the quark and gluon initialed subprocesses [20], respectively. Higher order

Factorization formula in coordinate space at one loop

Rapidity divergence: BK evolution

Collinear divergence: pdfs

Collinear divergence: fragmentation functs

Finite hard factor
23

k+ ≃ 0

P+

A
≃ 0

P−
p ≃ 0

Rapidity Divergence Collinear Divergence (F)Collinear Divergence (P)

The NLO correction arises after subtracting off divergence according to
convention and MS scheme.
In principle, by invoking the NLO evolutions, we can promote this NLO
calculation up to NLL.
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Numerical implementation of the NLO result

Single inclusive hadron production up to NLO

dσ =

∫
xfa(x)⊗ Da(z)⊗F xg

a (k⊥)⊗H(0)

+
αs

2π

∫
xfa(x)⊗ Db(z)⊗F xg

(N)ab ⊗H
(1)
ab .

Single inclusive forward particle production in p(d)-A collisions

12
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• CGC: Forward suppression originates in 
the dynamical shadowing generated by the 
quantum non-linear BK-JIMWLK evolution 

towards small-x

• Alternative: Energy loss arising from 

induced gluon bremstahlung (stronger in 

nucleus than in proton)  

  Kopeliovich et al, Frankfurt Strikman

Probability of not losing energy: 

P (�y) ⇥ e�nG(�y) ⇥ (1 � xF )#

Results J. L. Albacete

CRONIN EFFECT: Enhancement in the production of intermediate -particles in p-A

collisions respect to p-p collisions due to multiple scattering
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’Nuclear modification factor’

Suppression of Cronin effect is rooted in
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BRAHMS data
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12

Consistent implementation should include all the NLO αs corrections.
NLO parton distributions. (MSTW or CTEQ)
NLO fragmentation function. (DSS or others.)
Use NLO hard factors. (11 in total)
Use the one-loop approximation for the running coupling
rcBK evolution equation for the dipole gluon distribution [Balitsky, Chirilli,
08; Kovchegov, Weigert, 07]. Full NLO BK evolution not available.
The first most complete NLO results. [Stasto, Xiao, Zaslavsky, 13]
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Numerical implementation of the NLO result

[Albacete, Dumitru, Fujii, Nara, 12] [Stasto, Xiao, Zaslavsky, 13]
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Agree with data for low p⊥, and reduced scale dependence, no K factor.
For large p⊥, NLO correction dominates and becomes negative.
Additional resummation ? or Kinematic constraints ? [G. Beuf]
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Two Different Gluon Distributions

[F.Dominguez, C.Marquet, BX and F. Yuan, 11]
I. Weizsäcker Williams gluon distribution: Gauge Invariant definitions

xG(1) = 2
∫

dξ−dξ⊥
(2π)3P+

eixP+ξ−−ik⊥·ξ⊥Tr〈P|F+i(ξ−, ξ⊥)U [+]†F+i(0)U [+]|P〉.

II. Color Dipole gluon distributions: Gauge Invariant definitions

xG(2) = 2
∫

dξ−dξ⊥
(2π)3P+

eixP+ξ−−ik⊥·ξ⊥Tr〈P|F+i(ξ−, ξ⊥)U [−]†F+i(0)U [+]|P〉.

ξ
−

ξT

ξ
−

ξT

U [−] U [+]

The WW gluon distribution is the conventional gluon distributions.
Quadrupole⇒ Direct measurement: DIS dijet, etc.

The dipole gluon distribution has no such interpretation.
Dipole⇒ γ-jet correlation in pA.
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Dihadron correlations in dAu collisions (STAR and PHENIX)

Predicted by [C. Marquet]. Further calculated [Marquet, Albacete, 10]; [Stasto, BX,
Yuan, 11] [Lappi, Mantysaari, 13] Need to have both gluon distributions.

C(∆φ) =

∫
|p1⊥|,|p2⊥|

dσpA→h1h2

dy1dy2d2p1⊥d2p2⊥∫
|p1⊥|

dσpA→h1

dy1d2p1⊥

JdA =
1
〈Ncoll〉

σpair
dA /σdA

σpair
pp /σpp

⇒

Forward di-hadron correlations in 

d+Au collisions at RHIC
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! “Coincidence probability” at measured by STAR Coll. at forward rapidities:
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                          “monojets”
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Forward di-hadron angular correlations in RHIC dAu data
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pt  < 2 GeV/c <#t> = 3.2    

pt > pa > 1 GeV/c <#a>=3.2

"non-CGC" calculations

Kang et al

Uncertainties in current CGC phenomenological works:
  • Need of a better description of n-point functions.
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Quadrupole operator

CGC calculation by C. Marquet (Nucl.Phys. A796 (2007)):

d⇥

d2kTd2qTdyqdyk
⇥ xq(x , µ2)

⇤
d2x

(2�)2
d2x ⇤

(2�)2
d2b

(2�)2
d2b⇤

(2�)2
e ikT (x ��x)e iqT (b��b)

|⇤q⇥qg (x � b, x ⇤ � b⇤)|2
⌅

S (6) � S (3) � S (3) + S (2)
⇧

Dihadron production cross section depends on six-point function

S (6)(b, x , x ⇤, b⇤) = Q(b, b⇤, x ⇤, x)S(x , x ⇤) + O
�

1

N2
c

⇥
,

where Q is a correlator of 4 Wilson lines

Q(b, b⇤, x ⇤, x) =
1

N2
c

⇤Tr U(b)U†(b⇤)U(x ⇤)U†(x)⌅

Heikki Mäntysaari (JYFL) Azimuthal angle correlations 31.5.2012 6 / 15

Quadrupole operator

Comparison with full JIMWLK evolution (see talk by T. Lappi)
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T. Lappi et al. 1108.4764

Gaussian approximation is accurate, Naive Large-Nc is not.
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Results: Coincidence probability

Preliminary numerical results
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Preliminary results by 

T Lappi and H. Mantysaari 

Hard Probes ’12
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Dijet processes at one-loop order

Using various dijet processes to distinguish these gluon distributions.

· · ·

Forward di-hadron correlations in 

d+Au collisions at RHIC
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(away side)

(rad)

! “Coincidence probability” at measured by STAR Coll. at forward rapidities:

CP (∆φ) =
1

Ntrig

dNpair

d∆φ
∆φ

trigger

! Absence of away particle in d+Au coll.

                          “monojets”
! Away peak is present in p+p coll.

d+Au central

p+p

trigger

associated

(k1, y1)
(k2, y2) xA =

|k1| e−y1 + |k2| e−y2

√
s

20

Comments:

What happens at one loop order for back-to-back dijet processes?
(P⊥ ≡ 1

2 |k1⊥ − k2⊥| � q⊥ ≡ |k1⊥ + k2⊥|)
Can we prove the factorization for dijet productions?

Small-x
[
αsNc

2π ln 1
x

]n resummation vs Sudakov (CSS)
[
αsCR

2π ln2 Q2
1

Q2
2

]n

resummation. Consistently resum both types of logarithms at the same time?
Unified description of the CSS and small-x evolution?
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Sudakov factor for dijet productions in pA collisions and DIS

Consider the dijet productions in pA collisions:[A. Mueller, BX, F. Yuan, 13]

Cqq̄ = Nc

2 Cqγ = Nc

2 + CF

2 Cg→qq̄ = Nc

Forward di-hadron correlations in 

d+Au collisions at RHIC
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! “Coincidence probability” at measured by STAR Coll. at forward rapidities:
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! Absence of away particle in d+Au coll.

                          “monojets”
! Away peak is present in p+p coll.
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(k2, y2) xA =
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dσ
dy1dy2dP2

⊥d2k⊥
∝ H(P2

⊥)

∫
d2x⊥d2y⊥eik⊥·R⊥e−Ssud(P⊥,R⊥)W̃xA (x⊥, y⊥) .

Comments:

For back-to-back dijet processes, M2
J ∼ P2

⊥ � k2
⊥

Ssud =
αsC
2π

ln2 P2
⊥R2
⊥

c2
0

with R⊥ ∼ 1
k⊥
.

Probability interpretation of the Sudakov factor (Parton shower)

q⊥

k⊥
l⊥

Competition between Sudakov and Saturation suppressions.
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Conclusion

Inclusive forward hadron productions in pA collisions in the small-x saturation
formalism at one-loop order. (More work).

Towards the test of saturation physics beyond LL (More precise).

Dijet (dihadron) correlation in pA collisions. (More striking)

One-loop calculation for hard processes in pA collisions, Sudakov factor.
(More complete)
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Quadrupole operator

CGC calculation by C. Marquet (Nucl.Phys. A796 (2007)):

d⇥

d2kTd2qTdyqdyk
⇥ xq(x , µ2)

⇤
d2x

(2�)2
d2x ⇤
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d2b

(2�)2
d2b⇤

(2�)2
e ikT (x ��x)e iqT (b��b)

|⇤q⇥qg (x � b, x ⇤ � b⇤)|2
⌅

S (6) � S (3) � S (3) + S (2)
⇧

Dihadron production cross section depends on six-point function

S (6)(b, x , x ⇤, b⇤) = Q(b, b⇤, x ⇤, x)S(x , x ⇤) + O
�

1

N2
c

⇥
,

where Q is a correlator of 4 Wilson lines

Q(b, b⇤, x ⇤, x) =
1

N2
c

⇤Tr U(b)U†(b⇤)U(x ⇤)U†(x)⌅
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Quadrupole operator

Comparison with full JIMWLK evolution (see talk by T. Lappi)
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Gaussian approximation is accurate, Naive Large-Nc is not.
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Results: Coincidence probability

Preliminary numerical results
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