Production of W and Z bosons in heavy-ion collisions with CMS

Hard Probes 2013, Cape Town

Alice Florent On behalf of the CMS collaboration

Hard processes in QCD medium

- Weak bosons are formed before QGP due to their large mass t ≅ 1/M ≅ 0.003 fm/c
- Weak boson life time ≈ 0.1 fm/c

Unmodified probes

Electro + weak bosons (through their leptonic decays) are **medium-blind**

- References for modified processes
- Ultimately can help to constrain initial state

Which ones can we detect in heavy-ion collisions with CMS?

Unmodified probes All of them

Collision	\mathbf{Z}_{μ}	Z _e	\mathbf{W}_{μ}	W _e	Isolated y
pp 2.76 2011			PLB 715 * (2012) 66		PLB 710 (2012) 256 PLB 718 (2013) 773
pp 2.76 2013	PAS-13-004*	PAS-13-004*			PAS-13-006
PbPb 2.76 2010	PRL 106 (2011) 212301		PLB 715 * (2012) 66		PLB 710 (2012) 256
PbPb 2.76 2011	PAS-13-004*	PAS-13-004*			PLB 718 (2013) 773
pPb 5.02 2013		On going			PAS-13-006

* results presented in this talk

How to measure if a probe is affected by the medium?

 $\mathbf{R}_{\mathbf{A}\mathbf{A}}$ = ratio between the production yield in PbPb and the production yield in pp, normalized by the number elementary collisions

1. W \rightarrow $\mu^{\pm} + v$

CMS Excentment at the LHC, CERN

Datarocardost 2010 Nov 10 04:4 c58.002428 SN((05:4 c58 CE01) Pon /Evani: 15132771518723

(ODRIX SIZ ALQITE INSPECT

μ

μ and ν

PLB 715 (2012) 66

= 7.3 μb⁻¹

PbPb data (muon triggers)

△ PYTHIA + HYDJET

PbPb data (p^μ_τ > 25 GeV/c, |η^μ| < 2.1)

 p^{μ}_{T}

Signal already visible in muon p_T spectrum

20 0 Centrality [%] 80 60 40 v reconstruction: unbalanced energy in the transverse plane

Missing p_T from tracks

6

(b)

Transverse mass

$$m_T = \sqrt{2p_T^{\mu} \not\!\!/_T (1 - \cos\phi)}$$

PLB 715 (2012) 66

Yields extraction: $m_T > 40 \text{ GeV}/c^2$

Almost no background1% taken as systematic for QCD2% EWK subtracted

	PbPb	рр
W +	275	301
W -	264	165

Slightly worse resolution in PbPbPbPb data compatible with simulations

• Why different yield for W⁺ and W⁻?

$$\underbrace{\begin{pmatrix} P \\ P \end{pmatrix}}^{\mathsf{u}} \longrightarrow \underbrace{\overset{d}{\overset{d}}}_{(P)} \begin{pmatrix} P \\ \mathsf{d}\bar{\mathsf{u}} \longrightarrow \mathbf{W}^{+} \\ \mathsf{d}\bar{\mathsf{u}} \longrightarrow \mathbf{W}^{-} \end{pmatrix}$$

pp collisions = more W⁺ than W⁻ PbPb collisions = more W⁻ than W⁺

• Why different yield for W⁺ and W⁻?

$$\underbrace{\begin{pmatrix} P \\ P \end{pmatrix}}^{\mathsf{d}} \xrightarrow{\mathsf{d}} \underbrace{\begin{pmatrix} P \\ P \end{pmatrix}}^{\mathsf{d}} & u\bar{d} \rightarrow \mathsf{W}^{\mathsf{d}} \\ d\bar{u} \rightarrow \mathsf{W}^{\mathsf{d}}$$

pp collisions = more W⁺ than W⁻ PbPb collisions = more W⁻ than W⁺ 8

• Then why don't we have less W⁺ than W⁻?

- 1. μ^+ boosted back to the W⁺
- 2. μ^{-} boosted along with the W⁻

Muons charge asymmetry

Centrality independence and R_{AA}

Centrality independence and R_{AA}

 dN_{AA} / T_{AA} = $d\sigma_{pp}$

PLB 715 (2012) 66

Partial Conclusion

$\circ W^{\pm} \rightarrow \mu^{\pm} + v$

○ Yields of W+ and W- show isospin effect, as expected ○ Muon charge asymmetry compatible with pure isospin within statistical uncertainties ○ R_{AA} (W) = 1.04 ± 0.07 ± 0.12

2. $Z \rightarrow \mu^+ + \mu^-$ and $Z \rightarrow e^+ + e^-$

Muon reconstruction

- Muon pattern: hits in the tracker + muon seed in the muon stations
- High-p_T resolution: 1-2% for muons up to 100 GeV/c
- New muon reconstruction for PbPb collision: before 85% efficient in muon reconstruction, now 98%

Dimuon invariant mass

Electron Reconstruction

Electron pattern: tracks associated with a cluster in the calorimeter (ECAL)
Hadron rejection cut: shower shape + and ratio of energy deposits in ECAL and HCAL

DiElectron invariant mass

CMS

 $\begin{array}{l} R_{AA} \mbox{(muon)} &= 1.06 \pm 0.05 \pm 0.11 \\ R_{AA} \mbox{(electron)} &= 1.08 \pm 0.09 \pm 0.14 \end{array}$

Conclusion

$\circ W^{\pm} \rightarrow \mu^{\pm} + \nu$

 Yields of W+ and W- shows isospin effect as expected
 Muon charge asymmetry compatible with pure isospin but limited statistics

o Z → l⁺ + l⁻

Electron and muon channels show consistent results
 Possibility of small nuclear effect (shadowing...) still limited
 by statistics

○ W [±] → μ^{\pm} + v and Z → l^{+} + l^{-} ○ R_{AA} (W_µ) = 1.04 ± 0.07 ± 0.12 ○ R_{AA} (Z_µ) = 1.06 ± 0.05 ± 0.11 ○ R_{AA} (Z_e) = 1.08 ± 0.09 ± 0.14 ○ R_{AA} independent of centrality ○ R_{AA} consistent with pure isospin ○ Confirms scaling based on Glauber

Back up

Invariant Mass with the ATLAS detector

ATLAS: Muon: 1209 Z : 1223 opposite – 14 same charge Compatible with CMS within errors

Z yields versus centrality with ATLAS

Z yields in PbPb data divided by $\langle N_{coll} \rangle$ in function of centrality 1995 Z (muon and electron combined)

PRL 110 022301 (2013)