Isolated photon measurements in pp and PbPb collisions with CMS

R. Alex Barbieri
MIT
For the CMS Collaboration

Hard Probes 2013
Stellenbosch Institute For Advanced Study
Stellenbosch, South Africa
Strong probes have surface bias

- Colored probes (dijets) occur frequently
- Dijets have two drawbacks:
 - Surface bias of data sample
 - Loss of information about initial energy
- Solution: tag strong probe (jet) with EW probe (photon)
Observables

- Azimuthal decorrelation: $\Delta \phi_{J\gamma}$, and its parametrized width $\sigma(\Delta \phi_{J\gamma})$
- Transverse momentum ratio: $x_{J\gamma} = p_{T}^{\text{Jet}} / p_{T}^{\gamma}$, and its mean $<x_{J\gamma}>$
- Fraction of photons with associated jets: $R_{j\gamma}$
- Ratio of jet yield, $\text{Jet} I_{AA}$: number of jets in each p_{T}^{γ} and p_{T}^{Jet} bin in PbPb over the number in pp.
Analysis

- Select leading isolated photon in event, correlate with all jets in event
- Apply background subtraction
 - Background from:
 - Decay/fragmentation photons (π^0, η)
 - Fake jets in underlying event
 - Rejected using
 - Isolation requirement (after a UE subtraction in PbPb)
 - Statistical subtraction of background photons based on purity
 - Subtraction of jets from mixed event
Background subtraction

- UE subtraction of photon isolation in PbPb
 - Isolation calculated as energy in cone of R=0.4
 - Avg. energy in area containing cone but extending to full 2π is subtracted from isolation

- Subtraction of uncorrelated jets
 - Photons correlated with jets from a different hard scattering
 - Correlation from second hard scattering subtracted

- Statistical subtraction of decay photons
 - Photon purity calculated with template method in calorimeter shower-shape variable
 - Each observable subtracted using background-enriched sample from shower-shape sideband
Kinematics

- **Photons**
 - $p_T^\gamma > 40 \text{ GeV} \ (> 60 \text{ GeV for } p_T^\gamma \text{ inclusive plots})$
 - $|\eta^\gamma| < 1.44$
 - p_T^γ bins: [40-50], [50-60], [60-80], [80+] GeV

- **Jets**
 - Anti-k_T particle-flow jets, R=0.3, UE subtracted
 - $p_T^{Jet} > 30 \text{ GeV}$
 - $|\eta^{Jet}| < 1.6$
 - ALL jets in each event which meet criteria are included, not just leading.

- **Photon-jet pairs**
 - $\Delta\phi > 7\pi/8$
 - Centrality bins: [100-50], [50-30], [30-10], [10-0]%
Data samples and goals

- Data used in this analysis:
 - 2011 PbPb data at 2.76 TeV, 150 μb⁻¹
 - 2013 pp data at 2.76 TeV, 5.3 pb⁻¹
 - 2013 pPb data at 5.02 TeV, 30.4 nb⁻¹
- $p_{Tγ}$ dependent analysis accesses energy loss as a function of initial parton momentum
- pPb offers insight into cold nuclear matter effects
No jet deflection observed

CMS-PAS-HIN-13-006
No jet deflection observed

CMS Preliminary \[s_{\text{NN}} = 2.76 \text{TeV}, \text{PbPb} 150 \mu \text{b}^{-1}, \text{pp} 5.3 \text{pb}^{-1} \]

$\sigma(\Delta \phi_{\gamma})$

- **PbPb Data**
- **pp Data**
- **Smeared pp reference**
- **PYTHIA + HYDJET**

- $p_T^\gamma > 60 \text{ GeV/c}$
- $|\eta^\gamma| < 1.44$
- $p_T^{\text{Jet}} > 30 \text{ GeV/c}$
- $|\eta^{\text{Jet}}| < 1.6$

CMS-PAS-HIN-13-006
Significant loss of jet partners with centrality

CMS Preliminary $|\sqrt{s_{NN}}|=2.76\text{TeV}$, PbPb 150 μb$^{-1}$, pp 5.3 pb$^{-1}$

$R_{J\gamma} = \frac{\Delta\phi_{J\gamma}}{7\pi/8}$

Fraction of photons with jet partner

$R_{J\gamma}$

$\Delta\phi_{J\gamma}$

N_{part}

CMS-PAS-HIN-13-006
Loss of jet partners constant over p_T^γ
Shift to lower $x_{J\gamma}$ with centrality

CMS Preliminary $\sqrt{s_{NN}}=2.76\text{TeV}$, PbPb 150 μb^{-1}, pp 5.3 pb$^{-1}$

$\Delta\phi_{J\gamma} > \frac{7}{8}\pi$

$x_{J\gamma} = \frac{p_{T}^{\text{jet}}}{p_{T}^{\gamma}}$

CMS-PAS-HIN-13-006
Shift to lower $x_{Jγ}$ with $p_T^{γ}$ in central PbPb

$$x_{Jγ} = \frac{p_T^{Jet}}{p_T^{γ}}$$
Jet spectra heavily modified

CMS-PAS-HIN-13-006

40 GeV $< p_T < 50$ GeV

50 GeV $< p_T < 60$ GeV

60 GeV $< p_T < 80$ GeV

$\sqrt{s_{NN}} = 2.76$ TeV

PbPb 150 μb$^{-1}$

pp 5.3 pb$^{-1}$

CMS Preliminary

PbPb 0-30%

Smeared pp reference

PbPb 30-100%

Smeared pp reference

CMS Preliminary

$\sqrt{s_{NN}} = 2.76$ TeV

PbPb 150 μb$^{-1}$

pp 5.3 pb$^{-1}$
Jet Yield shifted to lower p_T^{Jet}

- Jet yield pushed to lower p_T^{Jet} relative to $p_T^γ$
pPb results difficult to interpret without proper reference

CMS Preliminary
\(\sqrt{s_{NN}} = 5.02 \text{ TeV} \)
pPb 30.4 nb\(^{-1}\)
pp 5.3 pb\(^{-1}\)

CMS Preliminary
\(\sqrt{s_{NN}} = 5.02 \text{ TeV} \)
pPb 30.4 nb\(^{-1}\)
pp 5.3 pb\(^{-1}\)
Conclusion

- Update of pp reference agrees with previous conclusions from PLB 718 (2013) 773:
 - No deflection of jets
 - Decrease of $x_{J\gamma}$ with centrality
 - Decrease in number of partner jets with centrality

- p_T^{γ} – dependent results show:
 - Jet yields show a shift to lower p_T^{Jet}
 - Loss of jet partners roughly constant across p_T^{γ}

- pPb shows no effects; needs proper reference
Backup
Signal definition

- Signal – isolated photons
- Background – suppressed by isolation requirement