Introduction to the Standard Model

Dr. Andrew Hamilton

Oct 2013

The Fundamental Building Blocks?

Earth, Fire, Wind, Water...

Periodic Table

Particle Physics

The base hypotheses of particle physics (in my opinion):

- the universe is made of a limited number of fundamental ${ }^{1}$ particles responsible for all physical phenomena
- there is a limited number of forces which interact with matter, these forces are manifestations of one universal force
- interactions evolve in a 4-dimensional vaccum which is not only a means to parameterize the interactions, but also as an active participant in the interactions
- all conservation laws reflect an underlying symmetry of nature
${ }^{1}$ fundamental (or elementary) means the particle has no internal structure $\bar{\equiv}$

From Lagrangian to Particles \& Interactions

Classical Mechanics

- define the Lagrangian

$$
L=\frac{1}{2} m v^{2}-V(x)
$$

- use the Euler-Lagrange equation
$\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)-\frac{\partial L}{\partial x}=0$
- get the equation of motion $F=m a$
- you get Newton's Law

Quantum Field Theory

- define the Lagrangian (density)

$$
\mathcal{L}_{f}=i \bar{\psi} \gamma_{\mu} \partial^{\mu} \psi-m \bar{\psi} \psi
$$

- use the Euler-Lagrange equation

$$
\partial^{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial^{\mu} \psi\right)}\right)-\frac{\partial \mathcal{L}}{\partial \psi}=0
$$

- get the 'equation of motion'

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0
$$

- you get the Dirac Equation

The Standard Model is defined by a Lagrangian:

- the Lagrangian determines the particles and their interactions

The Standard Model Lagrangian

$$
\begin{aligned}
& \mathcal{L}=-\frac{1}{2} \partial_{\nu} g_{\mu}^{a} \partial_{\nu} g_{\mu}^{a}-g_{s} f^{a b c} \partial_{\mu} g_{\nu}^{a} g_{\mu}^{b} g_{\nu}^{c}-\frac{1}{4} g_{s}^{2} f^{a b c} f^{a d c} g_{\mu}^{b} g_{\nu}^{c} g_{\mu}^{d} g_{\nu}^{e}+\frac{1}{2} i g_{s}^{2}\left(\bar{q}_{i}^{a} \gamma^{\mu} q_{j}^{\sigma}\right) g_{\mu}^{a}+\bar{G}^{a} \partial^{2} G^{a}+g_{s} f^{a b c} \partial_{\mu} \bar{G}^{a} G^{b} g_{\mu}^{c}- \\
& \partial_{\nu} W_{\mu}^{+} \partial_{\nu} W_{\mu}^{-}-M^{2} W_{\mu}^{+} W_{\mu}^{-}-\frac{1}{2} \partial_{\nu} Z_{\mu}^{0} \partial_{\nu} Z_{\mu}^{0}-\frac{1}{2 c_{\omega}^{2}} M^{2} Z_{\mu}^{0} Z_{\mu}^{0}-\frac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} A_{\nu}-\frac{1}{2} \partial_{\mu} H \partial_{\mu} H-\frac{1}{2} m_{h}^{2} H^{2}-\partial_{\mu} \phi^{+} \partial_{\mu} \phi^{-}- \\
& \left.M^{2} \phi^{+} \phi^{-}-\frac{1}{2} \partial_{\mu} \phi^{0} \partial_{\mu} \phi^{0}-\frac{1}{2 c_{\mu}^{2}} M \phi^{0} \phi^{0}-\beta_{h} \frac{2 M^{2}}{g^{2}}+\frac{2 M}{g} H+\frac{1}{2}\left(H^{2}+\phi^{0} \phi^{0}+2 \phi^{+} \phi^{-}\right)\right]+\frac{2 M^{4}}{g^{2}} \alpha_{h}-i g c_{w}\left[\partial _ { \nu } Z _ { \mu } ^ { 0 } \left(W_{\mu}^{+} W_{\nu}^{-}-\right.\right. \\
& \left.\left.W_{\nu}^{+} W_{\mu}^{-}\right)-Z_{\nu}^{0}\left(W_{\mu}^{+} \partial_{\nu} W_{\mu}^{-}-W_{\mu}^{-} \partial_{\nu} W_{\mu}^{+}\right)+Z_{\mu}^{0}\left(W_{\nu}^{+} \partial_{\nu} W_{\mu}^{-}-W_{\nu}^{-} \partial_{\nu} W_{\mu}^{+}\right)\right]-i g s_{w}\left[\partial_{\nu} A_{\mu}\left(W_{\mu}^{+} W_{\nu}^{-}-W_{\nu}^{+} W_{\mu}^{-}\right)-\right. \\
& \left.A_{\nu}\left(W_{\mu}^{+} \partial_{\nu} W_{\mu}^{-}-W_{\mu}^{-} \partial_{\nu} W_{\mu}^{+}\right)+A_{\mu}\left(W_{\nu}^{+} \partial_{\nu} W_{\mu}^{-}-W_{\nu}^{-} \partial_{\nu} W_{\mu}^{+}\right)\right]-\frac{1}{2} g^{2} W_{\mu}^{+} W_{\mu}^{-} W_{\nu}^{+} W_{\nu}^{-}+\frac{1}{2} g^{2} W_{\mu}^{+} W_{\nu}^{-} W_{\mu}^{+} W_{\nu}^{-}+ \\
& g^{2} c_{w}^{2}\left(Z_{\mu}^{0} W_{\mu}^{+} Z_{\nu}^{0} W_{\nu}^{-}-Z_{\mu}^{0} Z_{\mu}^{0} W_{\nu}^{+} W_{\nu}^{-}\right)+g^{2} s_{w}^{2}\left(A_{\mu} W_{\mu}^{+} A_{\nu} W_{\nu}^{-}-A_{\mu} A_{\mu} W_{\nu}^{+} W_{\nu}^{-}\right)+g^{2} s_{w} c_{w}\left[A_{\mu} Z_{\nu}^{0}\left(W_{\mu}^{+} W_{\nu}^{-}-W_{\nu}^{+} W_{\mu}^{-}\right)-\right. \\
& \left.2 A_{\mu} Z_{\mu}^{0} W_{\nu}^{+} W_{\nu}^{-}\right]-g \alpha\left[H^{3}+H \phi^{0} \phi^{0}+2 H \phi^{+} \phi^{-}\right]-\frac{1}{8} g^{2} \alpha_{h}\left[H^{4}+\left(\phi^{0}\right)^{4}+4\left(\phi^{+} \phi^{-}\right)^{2}+4\left(\phi^{0}\right)^{2} \phi^{+} \phi^{-}+4 H^{2} \phi^{+} \phi^{-}+2\left(\phi^{0}\right)^{2} H^{2}\right]- \\
& g M W_{\mu}^{+} W_{\mu}^{-} H-\frac{1}{2} g \frac{M}{c_{\mu}^{2}} Z_{\mu}^{0} Z_{\mu}^{0} H-\frac{1}{2} i g\left[W_{\mu}^{+}\left(\phi^{0} \partial_{\mu} \phi^{-}-\phi^{-} \partial_{\mu} \phi^{0}\right)-W_{\mu}^{-}\left(\phi^{0} \partial_{\mu} \phi^{+}-\phi^{+} \partial_{\mu} \phi^{0}\right)\right]+\frac{1}{2} g\left[W_{\mu}^{+}\left(H \partial_{\mu} \phi^{-}-\phi^{-} \partial_{\mu} H\right)-\right. \\
& \left.W_{\mu}^{-}\left(H \partial_{\mu} \phi^{+}-\phi^{+} \partial_{\mu} H\right)\right]+\frac{1}{2} g \frac{1}{c_{\psi}}\left(Z_{\mu}^{0}\left(H \partial_{\mu} \phi^{0}-\phi^{0} \partial_{\mu} H\right)-i g_{c_{w}}^{s_{\omega}^{2}} M Z_{\mu}^{0}\left(W_{\mu}^{+} \phi^{-}-W_{\mu}^{-} \phi^{+}\right)+i g s_{w} M A_{\mu}\left(W_{\mu}^{+} \phi^{-}-W_{\mu}^{-} \phi^{+}\right)-\right. \\
& i g \frac{1-2 c_{c}^{2}}{2 c_{w}} Z_{\mu}^{0}\left(\phi^{+} \partial_{\mu} \phi^{-}-\phi^{-} \partial_{\mu} \phi^{+}\right)+i g s_{w} A_{\mu}\left(\phi^{+} \partial_{\mu} \phi^{-}-\phi^{-} \partial_{\mu} \phi^{+}\right)-\frac{1}{4} g^{2} W_{\mu}^{+} W_{\mu}^{-}\left[H^{2}+\left(\phi^{0}\right)^{2}+2 \phi^{+} \phi^{-}\right]-\frac{1}{4} g^{2} \frac{1}{c_{w}^{2}} Z_{\mu}^{0} Z_{\mu}^{0}\left[H^{2}+\right. \\
& \left.\left(\phi^{0}\right)^{2}+2\left(2 s_{w}^{2}-1\right)^{2} \phi^{+} \phi^{-}\right]-\frac{1}{2} g^{2} \frac{s}{\mu}_{2}^{c_{w}} Z_{\mu}^{0} \phi^{0}\left(W_{\mu}^{+} \phi^{-}+W_{\mu}^{-} \phi^{+}\right)-\frac{1}{2} i g^{2} \frac{s_{c}^{2}}{c_{w}} Z_{\mu}^{0} H\left(W_{\mu}^{+} \phi^{-}-W_{\mu}^{-} \phi^{+}\right)+\frac{1}{2} g^{2} s_{w} A_{\mu} \phi^{0}\left(W_{\mu}^{+} \phi^{-}+\right. \\
& \left.W_{\mu}^{-} \phi^{+}\right)+\frac{1}{2} i g^{2} s_{w} A_{\mu} H\left(W_{\mu}^{+} \phi^{-}-W_{\mu}^{-} \phi^{+}\right)-g^{2} \frac{s_{w}}{e_{w}}\left(2 c_{w}^{2}-1\right) Z_{\mu}^{0} A_{\mu} \phi^{+} \phi^{-}-g^{1} s_{w}^{2} A_{\mu} A_{\mu} \phi^{+} \phi^{-}-\bar{e}^{\lambda}\left(\gamma \partial+m_{e}^{\lambda}\right) e^{\lambda}-\bar{\nu}^{\lambda} \gamma \partial \nu^{\lambda}- \\
& \bar{u}_{j}^{\lambda}\left(\gamma \partial+m_{u}^{\lambda}\right) u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}\left(\gamma \partial+m_{d}^{\lambda}\right) d_{j}^{\lambda}+i g s_{w} A_{\mu}\left[-\left(\bar{e}^{\lambda} \gamma^{\mu} e^{\lambda}\right)+\frac{2}{3}\left(\bar{u}_{j}^{\lambda} \gamma^{\mu} u_{j}^{\lambda}\right)-\frac{1}{3}\left(\bar{d}_{j}^{\lambda} \gamma^{\mu} d_{j}^{\lambda}\right)\right]+\frac{i g}{4 c_{w}} Z_{\mu}^{0}\left(\left(\bar{\nu}^{\lambda} \gamma^{\mu}\left(1+\gamma^{5}\right) \nu^{\lambda}\right)+\right. \\
& \left.\left(\bar{e}^{\lambda} \gamma^{\mu}\left(4 s_{w}^{2}-1-\gamma^{5}\right) e^{\lambda}\right)+\left(\bar{u}_{j}^{\lambda} \gamma^{\mu}\left(\frac{4}{3} s_{w}^{2}-1-\gamma^{5}\right) u_{j}^{\lambda}\right)+\left(\bar{d}_{j}^{\lambda} \gamma^{\mu}\left(1-\frac{8}{3} s_{w}^{2}-\gamma^{5}\right) d_{j}^{\lambda}\right)\right]+\frac{i g}{2 \sqrt{2}} W_{\mu}^{+}\left[\left(\bar{\nu}^{\lambda} \gamma^{\mu}\left(1+\gamma^{5}\right) e^{\lambda}\right)+\left(\bar{u}_{j}^{\lambda} \gamma^{\mu}(1+\right.\right. \\
& \left.\left.\left.\gamma^{5}\right) C_{\lambda \kappa} d_{j}^{\kappa}\right)\right]+\frac{i g}{2 \sqrt{2}} W_{\mu}^{-}\left[\left(\bar{e}^{\lambda} \gamma^{\mu}\left(1+\gamma^{5}\right) \nu^{\lambda}\right)+\left(\bar{d}_{j}^{\kappa} C_{\lambda k}^{\dagger} \gamma^{\mu}\left(1+\gamma^{5}\right) u_{j}^{\lambda}\right)\right]+\frac{i q}{2 \sqrt{2}} \frac{m_{k}^{\lambda}}{M}\left[-\phi^{+}\left(\bar{\nu}^{\lambda}\left(1-\gamma^{5}\right) e^{\lambda}\right)+\phi^{-}\left(\bar{e}^{\lambda}\left(1+\gamma^{5}\right) \nu^{\lambda}\right)\right]- \\
& \frac{g}{2} \frac{m_{\hat{2}}^{\lambda}}{M}\left[H\left(\bar{e}^{\lambda} e^{\lambda}\right)+i \phi^{0}\left(\bar{e}^{\lambda} \gamma^{5} e^{\lambda}\right)\right]+\frac{i g}{2 M \sqrt{2}} \phi^{+}\left[-m_{d}^{\kappa}\left(\bar{u}_{j}^{\lambda} C_{\lambda \kappa}\left(1-\gamma^{5}\right) d_{j}^{\kappa}\right)+m_{u}^{\lambda}\left(\bar{u}_{j}^{\lambda} C_{\lambda \kappa}\left(1+\gamma^{5}\right) d_{j}^{\kappa}\right]+\frac{i g}{2 M \sqrt{2}} \phi^{-}\left[m _ { d } ^ { \lambda } \left(\bar{d}_{j}^{\lambda} C_{\lambda \kappa}^{\dagger}(1+\right.\right.\right. \\
& \left.\left.\gamma^{5}\right) u_{j}^{\kappa}\right)-m_{u}^{\kappa}\left(\overline{d_{j}^{\lambda}} C_{\lambda \kappa}^{\dagger}\left(1-\gamma^{5}\right) u_{j}^{\kappa}\right]-\frac{g}{2} \frac{m_{\lambda}^{\lambda}}{M} H\left(\bar{u}_{j}^{\lambda} u_{j}^{\lambda}\right)-\frac{g}{2} \frac{m_{d}^{\lambda}}{M} H\left(\overline{d_{j}^{\lambda}} d_{j}^{\lambda}\right)+\frac{i g}{2} \frac{m_{\lambda}^{\lambda}}{M} \phi^{0}\left(\bar{u}_{j}^{\lambda} \gamma^{5} u_{j}^{\lambda}\right)-\frac{i g}{2} \frac{m_{d}^{\lambda}}{M} \phi^{0}\left(\overline{d_{j}^{\lambda}} \gamma^{5} d_{j}^{\lambda}\right)+\bar{X}^{+}\left(\partial^{2}-\right. \\
& \left.M^{2}\right) X^{+}+\bar{X}^{-}\left(\partial^{2}-M^{2}\right) X^{-}+\bar{X}^{0}\left(\partial^{2}-\frac{M^{2}}{c_{\omega}^{2}}\right) X^{0}+\bar{Y} \partial^{2} Y+i g c_{w} W_{\mu}^{+}\left(\partial_{\mu} \bar{X}^{0} X^{-}-\partial_{\mu} \bar{X}^{+} X^{0}\right)+i g s_{w} W_{\mu}^{+}\left(\partial_{\mu} \bar{Y} X^{-}-\right. \\
& \left.\partial_{\mu} \bar{X}^{+} Y\right)+i g c_{w} W_{\mu}^{-}\left(\partial_{\mu} \bar{X}^{-} X^{0}-\partial_{\mu} \bar{X}^{0} X^{+}\right)+i g s_{w} W_{\mu}^{-}\left(\partial_{\mu} \bar{X}^{-} Y-\partial_{\mu} \bar{Y} X^{+}\right)+i g c_{w} Z_{\mu}^{0}\left(\partial_{\mu} \bar{X}^{+} X^{+}-\partial_{\mu} \bar{X}^{-} X^{-}\right)+ \\
& i g s_{w} A_{\mu}\left(\partial_{\mu} \bar{X}^{+} X^{+}-\partial_{\mu} \bar{X}^{-} X^{-}\right)-\frac{1}{2} g M\left[\bar{X}^{+} X^{+} H+\bar{X}^{-} X^{-} H+\frac{1}{c_{2}^{2}} \bar{X}^{0} X^{0} H\right]+\frac{1-2 c_{w}^{2}}{2 \omega} \text { igM } M\left[\bar{X}^{+} X^{0} \phi^{+}-\bar{X}^{-} X^{0} \phi^{-}\right]+ \\
& \frac{1}{2 c_{w}} i g M\left[\bar{X}^{0} X^{-} \phi^{+}-\bar{X}^{0} X^{+} \phi^{-}\right]+i g M s_{w}\left[\bar{X}^{0} X^{-} \phi^{+}-\bar{X}^{0} X^{+} \phi^{-}\right]+\frac{1}{2} i g M\left[\bar{X}^{+} X^{+} \phi^{0}-\bar{X}^{-} X^{-} \phi^{0}\right]
\end{aligned}
$$

The Standard Model

- The Standard Model is the theory of all 'known' fundamental particles and their interactions.
- It explains almost all known physical phenomena.
- It is a Quantum Field Theory (QFT).

What is Force?

Force is transmitted by an exchange of particles.

The Four Forces

Force is transmitted by an exchange of particles.
There are 4 known fundamental forces:

Force	Strength	Theory	Mediator
Strong	10	Quantum Chromodynamics (QCD)	gluon
Electromagnetic	10^{-2}	Quantum Electrodynamics (QED)	photon
Weak	10^{-13}	Glashow-Weinberg-Salam (GSW)	W and Z
Gravitation	10^{-42}	General Relativity	graviton

The Standard Model is a quantum field theory:

- QED, QCD, and GSW are all quantum field theories
- General relativity is not a quantum field theory

Therefore, gravity is not part of the Standard Model

The Force Carriers (Mediators)

- photon (γ) : transmits the electromagnetic force between 'electrically' charged (+,-) particles, it has zero mass and carries 1 unit of spin
- W \& Z: transmit the weak force between 'weakly' charged particles, they have masses around 100 times the mass of the proton and carry 1 unit of spin
- gluon (g) : transmits the strong force between 'strongly' charged particles, it has zero mass and carries 1 unit of spin

All mediators are spin-1, so they are called bosons.

The Matter Particles

Quarks

- electrically, weakly, and strongly charged
- u and d form nuclear matter: proton $=(u, u, d)$

Leptons

- electrically and weakly charged
- e is our well known friend the electron

All matter particles are fermions (spin- $\frac{1}{2}$)

Standard Model Summary

*the photon and gluon do not directly couple to the Higgs...

The Small Matter of Antimatter

All matter particles have a corresponding antiparticle:

- an oppositely charged 'twin' with exactly the same mass and quantum properties
Predicted by Dirac in 1928, observed by Anderson in 1932.

- denoted by their the charge for charged leptons $\left(e^{+}\right)$, or an overbar for neutrinos ($\overline{\nu_{e}}$) and quarks (\bar{u})

Prediction of Antimatter

The Dirac equation, $\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0$, is the equation of motion for spin- $\frac{1}{2}$, where ψ is a 4-component "spinor": $\psi=\left(\begin{array}{c}\psi_{0} \\ \psi_{1} \\ \psi_{2} \\ \psi_{3}\end{array}\right)$
Finding the simplest stationary solutions leads to ${ }^{2}$:

$$
\psi_{A}(t)=e^{-i m \cdot t}\binom{\psi_{1}(0)}{\psi_{2}(0)} \quad \text { and } \quad \psi_{B}(t)=e^{+i m \cdot t}\binom{\psi_{3}(0)}{\psi_{4}(0)}
$$

How do you interpret $e^{+i m \cdot t}$?

- mathematically, anti-particles are either negative energy (mass) particles or particles moving backward in time

[^0]
Particle Interactions

Force is transmitted when a fermion emits or absorbs a boson:

These are called Feynman diagrams.

- time flows left to right (caution! not a universal convention)
- arrow denotes fermion (forward) or anti-fermion (backward)
- the vertical axis has no physical meaning

Quantum Electrodynamics (QED)

Electromagnetism mediated by the photon and described by QED. Every QED interaction is based on this vertex:

- the solid line is any quark (q) or electrically charged lepton (ℓ^{-})
- the squiggly line is a photon (γ)
- the coupling constant is $\alpha=\frac{1}{137}$

The vertex can be rotated to give other processes:

$e^{+} e^{-}$annihilation

e^{+}scatter

$e^{+} e^{-}$pair production

Some Examples of QED Interactions

$e^{-} \mu^{-} \rightarrow e^{-} \mu^{-}$

$$
\mu^{+} \mu^{-} \rightarrow d \bar{d}
$$

$$
e^{-} \gamma \rightarrow e^{-} \gamma
$$

$e^{-} \mu^{+} \rightarrow e^{-} \mu^{+}$

$e^{+} e^{-} \rightarrow e^{+} e^{-}$

$$
e^{\top} e \quad \rightarrow e^{\top} e
$$

$$
e^{-} e^{-} \rightarrow e^{-} e^{-}
$$

Virtual Particles

The particle that transmits the force is called the propagator. Look at the first half of the $e^{+} e^{-} \rightarrow e^{+} e^{-}$diagram:

conservation of momentum is not possible unless $m_{\gamma}>0$!

Particles that are off mass shell are called virtual particles.

- propagators are virtual
- initial and final state particles are real

Higher Order Diagrams

The previous examples are the lowest order (LO) diagrams for the processes. Every process has higher order diagrams.

Next-to-leading order (NLO) diagrams for $e^{-} \mu^{-} \rightarrow e^{-} \mu^{-}$are:

Higher order diagrams are constructed by adding additional internal lines without adding external lines.

Note that each diagram is constructed of the fundamental QED vertex, each vertex with a 'strength' proportional to α.

Perturbation Theory

To calculate what happens in an interaction like $e^{-} \mu^{-} \rightarrow e^{-} \mu^{-}$, one must add the diagrams at every order:

$\mathcal{O}\left(\alpha^{4}\right)$

$\mathcal{O}\left(\alpha^{2}\right)$
$+$

Because $\alpha<1$, each higher order contributes a smaller amount to the result. Phew!

Quantum Chromodynamics (QCD)

QCD describes the strong interaction mediated by the gluon

- the charge of the strong interaction is colour
- colour comes in 3 types: red, green, blue
- only quarks and gluons carry colour charge

There are 3 fundamental QCD vertices:

The strong coupling constant is $\alpha_{s} \gtrsim 1$

Freedom and Confinement

Asymptotic Freedom:

- gluon carries colour, the photon does not carry electric charge
- coupling constants: $\alpha_{s} \gtrsim 1$, while $\alpha<1$
- thankfully, at small distances, α_{s} becomes <1, so perturbation theory can be used for some QCD calculations
- this is called asymptotic freedom

Confinement:

- no naturally occurring particles carry colour
- quarks are confined to colourless bound states of 2 or 3 quarks

Hadrons and the Strong Interaction

Before the strong interaction was understood:

- many 'fundamental' particles were observed ($m \lesssim 2 \mathrm{GeV}$)
- the particles were arranged in patterns, Gell-Mann called it the "The Eightfold Way"

baryon octet

meson octet

baryon decuplet

The symmetry indicates that hadrons are composite particles.

The Omega Minus

Based on the baryon decuplet, Gell-Mann predicted the Ω^{-}

What about the Pauli exclusion principle?

Hadron Classification

Hadron: a particle made from a bound state of quarks

- Meson: a hadron made of a quark-antiquark pair
- Baryon: a hadron made of three quarks or three antiquarks

Examples:

	Quark Content	Spin	Charge	Mass (MeV)
Baryon				
p	$u u d$	$1 / 2$	+1	938
\bar{p}	$\bar{u} \bar{u} \bar{d}$	$1 / 2$	-1	938
n	$u d d$	$1 / 2$	0	939
Σ^{0}	$u d s$	$1 / 2$	0	1192
Δ^{++}	$u u u$	$3 / 2$	2	1232
Meson				
$\pi^{ \pm}$	$u \bar{d}, d \bar{u}$	0	± 1	140
$\rho^{ \pm}$	$u \bar{d}, d \bar{u}$	1	± 1	775
$K^{ \pm}$	$u \bar{s}, s \bar{u}$	0	± 1	494
$D^{ \pm}$	$c \bar{d}, d \bar{c}$	0	± 1	1869
$B^{ \pm}$	$u \bar{b}, b \bar{u}$	0	± 1	5279
ψ	$c \bar{c}$	1	0	3097
Υ	$b \bar{b}$	1	0	9460

Evidence for Quarks: Lepton-Nucleon Scattering

Similar to Rutherford's discovery of the nucleus

- bombard protons and neutrons with electron 'probes'
- if nucleons are made of partons the resulting differential cross section will show the internal structure

Evidence for Quarks: Jet Production

Jets (a columnated flow of hadrons) are observed in electron-positron collisions.

- underlying process $e^{+}+e^{-} \rightarrow q+\bar{q}$
- outgoing quarks form hadrons due to confinement, this is called hadronization

Gluons

Gluons can also be produced, in $e^{+} e^{-}$collisions:

Colour Charge

Most direct evidence of colour comes from $R \equiv \frac{\sigma(e e \rightarrow \text { hadrons })}{\sigma(e e \rightarrow \mu \mu)}$.

$$
\sigma=\frac{\pi}{3}\left(\frac{Q \alpha}{E}\right)^{2}
$$

where Q is the charge in units of $e\left(\frac{2}{3}\right.$ for u, c, t and $-\frac{1}{3}$ for $\left.d, s, b\right)$

- if $E<m_{q}$, quark production is kinematically forbidden
- σ increases when heavier quarks are energetically allowed

If we assume quarks carry 3 colours: $R(E)=3 \sum Q_{i}^{2}$

$$
R \rightarrow \underbrace{3\left[\left(\frac{2}{3}\right)^{2}+2\left(-\frac{1}{3}\right)^{2}\right]}_{2 \text { for } E<m_{c}} \rightarrow \underbrace{3\left[2\left(\frac{2}{3}\right)^{2}+2\left(-\frac{1}{3}\right)^{2}\right]}_{3.33 \text { for } E<m_{b}} \rightarrow \underbrace{3\left[2\left(\frac{2}{3}\right)^{2}+3\left(-\frac{1}{3}\right)^{2}\right]}_{3.67 \text { for } E<m_{t}}
$$

R does not describe hadronic resonances, but:

- the factor of 3 is clearly needed to describe data
- strong evidence of quarks carrying 3 colours

QCD Examples

$d \bar{d} \rightarrow u \bar{u}$

$b \bar{s} \rightarrow b \bar{s}$

$$
\Delta^{+} \rightarrow p+\pi^{0}
$$

Weak Interactions

Weak interactions are mediated by W and Z

- the weak charge is rather complex...
- all fermions carry weak charge
- W boson couples charged leptons to neutrinos
- W boson can also change quark flavour

Weak Interaction Examples

$$
e^{-}+\mu^{-} \rightarrow e^{-}+\mu^{-}
$$

$$
n \rightarrow p+e^{-}+\overline{\nu_{e}}
$$

$$
d+\nu_{e} \rightarrow u+e^{-}
$$

$$
\Lambda \rightarrow p+\pi^{-}
$$

The Cabibbo-Kobayashi-Maskawa (CKM) Matrix

The CKM matrix gives the relative strength of the coupling for quarks in a W interaction:

$$
\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)=\left(\begin{array}{ccc}
0.974 & 0.227 & 0.004 \\
0.227 & 0.973 & 0.042 \\
0.008 & 0.042 & 0.999
\end{array}\right)
$$

- transitions within a generation are most probable

There may be a similar (but much closer to unitary) matrix for the leptons due to neutrino oscillations.

Conservation Laws

Every particle decays to lighter particles unless prevented by some conservation law. Particles that don't decay are:

- photon: conservation of energy/momentum ($m_{\gamma}=0$)
- electron: conservation of charge (e is lightest charged particle)
- proton: conservation of baryon number (p is lightest baryon)
- neutrino: conservation of lepton number (ν 's is lightest lepton)
- gluon: conservation of colour (g is lightest coloured particle)

Symmetry

Symmetry: an operation that leaves a system invariant

$$
\begin{array}{cc}
\text { Static symmetry: } & \text { Dynamical symmetry: } \\
- \text { ie. shape } & \text { ie. motion }
\end{array}
$$

We are interested in dynamical symmetries manifest in the equations of motion (or Lagrangian) of a system.

Symmetry allows you to say something about a system even when it's full description is not available.

an odd function (ie. $f(-x)=-f(x)$):

$$
[f(-x)]^{2}=[f(x)]^{2} \quad ; \quad \int_{-3}^{+3} f(x) d x=0
$$

Noether's Theorem

Every symmetry in nature reflects a conservation law; every conservation law reflects and underlying symmetry.

Symmetry		Conservation Law
Translation in Time	\leftrightarrow	Energy
Translation in Space	\leftrightarrow	Momentum
Rotation in Space	\leftrightarrow	Angular Momentum
Gauge Transformation	\leftrightarrow	Charge

Example: space \leftrightarrow momentum with $L=\frac{1}{2} m \dot{x}^{2}-V(x)$

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)-\frac{\partial L}{\partial x}=0 \quad \rightarrow \quad \frac{d p}{d t}=-\frac{\partial V}{\partial x}
$$

Momentum is conserved if V (and thus L) does not depend on x

Group Theory

A group is a set of symmetry operations (R) that have:

- Closure: The product of elements, $R_{k}=R_{i} R_{j}$, is an element in the set.
- Identity: There is an identity element I such that $I R_{i}=R_{i} I=R_{i}$
- Inverse: There is an inverse, R_{i}^{-1}, such that $R_{i} R_{i}^{-1}=R_{i}^{-1} R_{i}=I$
- Associativity: All element are associative, $R_{i}\left(R_{j} R_{k}\right)=\left(R_{i} R_{j}\right) R_{k}$

If all elements commute, $R_{i} R_{j}=R_{j} R_{i}$, the group is called 'Albelian'
Note: the rotation group is non-Albelian.
Groups can be continuous (eg. rotations), or discrete (eg. reflections). Continuous groups are called 'Lie' groups.

Matrix Representation of Groups

Most groups can be represented by matrices.
Example: the Lorentz group is a set of $4 \times 4 \Lambda$ matrices.
Sets of unitary matrices with dimension $n \times n$ are labeled ' U ' Sets of real unitary matrices with dimension $n \times n$ are labeled ' O^{\prime} Sets of special matrices with determinant of 1 are labeled 'S'

Group Name	Dimension	Matrices in Group
$U(n)$	$n \times n$	unitary $\left(U^{\dagger} U=1\right)$
$S U(n)$	$n \times n$	unitary, determinant 1
$O(n)$	$n \times n$	orthogonal, $(\tilde{O} O=1)$
$S O(n)$	$n \times n$	orthogonal, determinant 1

Example: Rotational symmetry in 3 dimensional space is described by the group $S O(3)$.

Angular Momentum

Rotational symmetry $S O(3) \leftrightarrow$ Conservation of angular momentum.
A system's total angular momentum is conserved: $\mathbf{J}=\mathbf{L}+\mathbf{S}$

Orbital momentum (L):

- 'motion' of quarks
- $\mathbf{L}^{2} \rightarrow \ell(\ell+1)$

$$
\ell=0,1,2, \ldots
$$

- $L_{z} \rightarrow m_{\ell}$

$$
m_{\ell}=-\ell,-\ell+1, \ldots, \ell
$$

Spin (S):

- intrinsic property
- $\mathbf{S}^{2} \rightarrow s(s+1)$
$s=0, \frac{1}{2}, 1, \frac{3}{2}, 2, \ldots$
- $S_{z} \rightarrow m_{s}$

$$
m_{s}=-s,-s+1, \ldots, s
$$

States of L, S, and J represented by: $\left|\ell, m_{\ell}\right\rangle,\left|s, m_{s}\right\rangle$, and $|j, m\rangle$

Addition of Total Angular Momentum

A meson example: A $q \bar{q}$ bound state with $\mathbf{L}=0$ gives:
$\mathbf{J}=\mathbf{S}=\frac{1}{2}+\frac{1}{2}=1$, the 'vector' mesons ($\rho, K^{*}, \phi, \ldots$)
$\mathbf{J}=\mathbf{S}=\frac{1}{2}-\frac{1}{2}=0$, the 'pseudoscalar' mesons (π, K, η, \ldots)
A baryon example: A $q q q$ bound state with $\mathbf{L}=0$ gives:
$\mathbf{J}=\mathbf{S}=\left(\frac{1}{2}+\frac{1}{2}\right)+\frac{1}{2}=\frac{3}{2}$, the baryon 'decuplet' $\left(\Delta, \Sigma^{*}, \Omega^{-}, \ldots\right)$
$\mathbf{J}=\mathbf{S}=\left(\frac{1}{2}+\frac{1}{2}\right)-\frac{1}{2}=\frac{1}{2}$, the baryon 'octet' (p, n, Λ, \ldots)
$\mathbf{J}=\mathbf{S}=\left(\frac{1}{2}-\frac{1}{2}\right)+\frac{1}{2}=\frac{1}{2}$, also the baryon 'octet'
(Note that the $\frac{1}{2}$ state can be achieved in two ways.)
Particles classified by spin (S):

Bosons		Fermions	
Spin 0	Spin 1	Spin $\frac{1}{2}$	Spin $\frac{3}{2}$
-	Mediators	Quarks/Leptons	-
pseudoscalar mesons	vector mesons	baryon 'octet'	baryon 'decuplet'

Adding Components of Angular Momentum

How do $\mathbf{J}_{1}=\left|j_{1}, m_{1}\right\rangle$ and $\mathbf{J}_{2}=\left|j_{2}, m_{2}\right\rangle$ add to get $\mathbf{J}=|j, m\rangle$?
z component just adds:
$\bullet m=m_{1}+m_{2} \quad \forall j=\left|j_{1}-j_{2}\right|, \ldots,\left|j_{1}+j_{2}\right|$
You could work out all possible $|j, m\rangle$ states yourself...
or look up in the Clebsh-Gordon coefficients, $C_{m, m_{1}, m_{2}}^{j, j_{1}, j_{2}}$:

$$
\left|j_{1}, m_{1}\right\rangle\left|j_{2}, m_{2}\right\rangle=\sum_{j=\mid j_{1}-j_{2}}^{\left(j_{1}+j_{2}\right)} C_{m, m_{1}, m_{2}}^{j, j_{1}, j_{2}}|j, m\rangle
$$

$\left|C_{m, m_{1}, m_{2}}^{j, j_{1}, j_{2}}\right|^{2}$ is the probability of getting the $|j, m\rangle$ state from a system composed of $\left|j_{1}, m_{1}\right\rangle$ and $\left|j_{2}, m_{2}\right\rangle$.

The Clebsh-Gordon Table

Problem: Find the decomposition of the $\mathbf{L}=0$ mesons $\left(\frac{1}{2} \times \frac{1}{2}\right)$
Solution: We found earlier that total angular momentum is 0 or 1 . For decomposition into possible $|j, m\rangle$ (or $|J, M\rangle$) states, see the Clebsh-Gordon table (PDG), here is the $1 / 2 \times 1 / 2$ entry.

Notation:		J	\cdots
M	M	\ldots	
m_{1}	m_{2}		
m_{1}	m_{2}	Coefficients	
\vdots	\vdots		

$$
\begin{aligned}
& \left.\begin{array}{ll}
|1,1\rangle & =\left|\frac{1}{2}, \frac{1}{2}\right\rangle\left|\frac{1}{2}, \frac{1}{2}\right\rangle \\
|1,0\rangle & =\frac{1}{\sqrt{2}}\left[\left|\frac{1}{2}, \frac{1}{2}\right\rangle\left|\frac{1}{2},-\frac{1}{2}\right\rangle+\left|\frac{1}{2},-\frac{1}{2}\right\rangle\left|\frac{1}{2}, \frac{1}{2}\right\rangle\right] \\
|1,-1\rangle & =\left|\frac{1}{2},-\frac{1}{2}\right\rangle\left|\frac{1}{2},-\frac{1}{2}\right\rangle
\end{array}\right\} \text { symmetric }(1 \leftrightarrow 2) \\
& \left.|0,0\rangle=\frac{1}{\sqrt{2}}\left[\left|\frac{1}{2}, \frac{1}{2}\right\rangle\left|\frac{1}{2},-\frac{1}{2}\right\rangle-\left|\frac{1}{2},-\frac{1}{2}\right\rangle\left|\frac{1}{2}, \frac{1}{2}\right\rangle\right]\right\} \text { antisymmetric }(1 \leftrightarrow 2)
\end{aligned}
$$

Favour Symmetry (Isospin)

Because u and d quarks have almost equal mass, they can be viewed as two states of the same particle by the strong force.
Let's call this 'space' isospin, $\mathbf{I}=\left|I, I_{3}\right\rangle$, give u and d the values:

$$
u=\left|\frac{1}{2}, \frac{1}{2}\right\rangle, \quad d=\left|\frac{1}{2},-\frac{1}{2}\right\rangle \quad \text { and } \quad \bar{u}=\left|\frac{1}{2},-\frac{1}{2}\right\rangle, \quad \bar{d}=\left|\frac{1}{2}, \frac{1}{2}\right\rangle
$$

Isospin addition is analogous to spin, some possible states include:

$$
\begin{gathered}
\pi^{+}(u \bar{d})=\left|\frac{1}{2}, \frac{1}{2}\right\rangle\left|\frac{1}{2}, \frac{1}{2}\right\rangle=|1,1\rangle \\
\pi^{-}(d \bar{u})=\left|\frac{1}{2},-\frac{1}{2}\right\rangle\left|\frac{1}{2},-\frac{1}{2}\right\rangle=|1,-1\rangle
\end{gathered} \quad \pi^{0}\left\{\begin{array}{l}
(u \bar{u})=\left|\frac{1}{2}, \frac{1}{2}\right\rangle\left|\frac{1}{2},-\frac{1}{2}\right\rangle=|1,0\rangle \\
(d \bar{d})=\left|\frac{1}{2},-\frac{1}{2}\right\rangle\left|\frac{1}{2}, \frac{1}{2}\right\rangle=|1,0\rangle
\end{array}\right.
$$

What is the difference between Λ and Σ^{0} ?

Parity

Parity (P) : the inversion of the 3 spatial dimensions.

$$
P(x, y, z) \equiv(-x,-y,-z)
$$

Does $P(\mathbf{x})$ always give $-\mathbf{x}$? No!

Name	Behaviour
Scalar	$P(s)=s$
Pseudoscalar	$P(p)=-p$
Vector (or polar vector)	$P(\mathbf{v})=-\mathbf{v}$
Pseudovector (or axial vector)	$P(\mathbf{a})=\mathbf{a}$

Angular momentum (classic and quantum) is one pseudovector.

$$
\begin{aligned}
\mathbf{L}_{\text {classical }} & =\mathbf{r} \times \mathbf{p} \\
P\left(\mathbf{L}_{\text {classical }}\right) & =P(\mathbf{r} \times \mathbf{p})=P(\mathbf{r}) \times P(\mathbf{p})=(-1)^{2} \mathbf{r} \times \mathbf{p}=\mathbf{L}_{\text {classical }}
\end{aligned}
$$

Parity Violation

Is 'nature' left/right symmetric? Is parity a conserved quantity? Wu's ${ }^{60}$ Co experiment (recall: \mathbf{L} is a pseudovector)

If electron emission is asymmetric, then parity is not conserved.

- Result: electron emission is anti-parallel to nuclear spin
- Conclusion: weak interactions violate parity

Helicity

Helicity of a spin- $\frac{1}{2}$ particle is defined as the value of $\frac{m_{s}}{s}$ when \hat{z} is defined as the direction of motion.

- in other words; is the spin parallel or anti-parallel to the direction of motion

(a) Right-handed

$$
\left(\frac{m_{s}}{s}=+1\right)
$$

(b) Left-handed

$$
\left(\frac{m_{s}}{s}=-1\right)
$$

Helicity is only Lorentz invariant for massless particles:

- for massive particles, you can always go to a frame which reverses the velocity, therefore also reverses the helicity

Neutrino Helicity

We can use the $\pi^{-} \rightarrow \mu^{-}+\bar{\nu}_{\mu}$ decay to measure the helicity of the antineutrino:

if μ right-handed

then $\bar{\nu}$ must be right-handed

Observation: all μ 's in π^{-}decays are right handed Similarly for π^{+}decays, all 'observed' ν_{μ} 's are left handed

$$
\text { All } \nu \text { 's are left handed; All } \bar{\nu} \text { 's are right handed }{ }^{3}
$$

Neutrino's violate parity!

[^1]
The Parity Operator

Let P denote the parity operator.

- $P^{2}=I$ (acting P twice gets you back where you started)
- P is multiplicative, so eigenvalues of P are ± 1
- scalars and pseudovectors have $P=+1$
- vectors and pseudoscalars have $P=-1$

Hadrons are eigenstates of parity.

- quarks are defined as parity $=+1$
- parity of composite system is product of constituent parities
- parity of fermion is opposite its corresponding antifermion
- parity of boson is same as its corresponding antiboson
- excited states carry and extra $(-1)^{\ell}$ parity contribution

Charge Conjugation

Charge Conjugation: convert particle antiparticle

$$
C|p\rangle=|\bar{p}\rangle
$$

Most particles are not eigenstates of C :

- only particles who are their own antiparticle are C eigenstates
- for example; π^{0}, η, ψ

Act twice and you get back to where you started:

$$
C^{2}=I
$$

C is multiplicative, so eigenstates are ± 1.
For a $q \bar{q}$ state, $C=(-1)^{\ell+s}$. Photons have $C=-1$.

Determining C \& P

Particles are often listed with their $J^{P C}$ value.
Work out the $J^{P C}$ for the following:

Orbital Momentum	Net Spin	$J^{P C}$	Examples
$\ell=0$	$s=0$	0^{-+}	π, K, η
	$s=1$	1^{--}	ρ, ϕ, ω
$\ell=1$	$s=0$	1^{+-}	
	$s=1$	0^{++}	
	$s=1$	1^{++}	
	$s=1$	2^{++}	

Combination of C and P (almost) restores left/right symmetry Example: act $C P$ on $\pi^{+} \rightarrow \mu_{L}^{+}+\nu_{\mu}^{L}$ (I've explicitly noted the handedness)

$$
\begin{aligned}
C P\left(\pi^{+}\right) & \rightarrow C P\left(\mu_{L}^{+}+\nu_{\mu}^{L}\right) \\
C\left(\pi^{+}\right) & \rightarrow C\left(\mu_{R}^{+}+\nu_{\mu}^{R}\right) \\
\pi^{-} & \rightarrow \mu_{R}^{-}+\bar{\nu}_{\mu}^{R}
\end{aligned}
$$

So, acting C and P together (almost) restores left-right symmetry if we consider the 'mirror image' of a right-handed particle to be the left-handed antiparticle.

Neutral Kaons

Neutral Kaons can change from their particle into their antiparticle: $K^{0} \rightleftharpoons \bar{K}^{0}$

So Kaons are actually a linear combination of K^{0} and \bar{K}^{0}
Also, K 's are pseudoscalars, so K^{0} and \bar{K}^{0} are not CP eigenstates:

$$
C P\left|K^{0}\right\rangle=-\left|\bar{K}^{0}\right\rangle, \quad C P\left|\bar{K}^{0}\right\rangle=-\left|K^{0}\right\rangle
$$

CP is also violated in the Kaon system! (not covered here)

Time Reversal \& TCP

Time reversal symmetry (T) : interactions are equally likely in both time directions

Quantum field theory predicts the TCP theorem which states that the combined operation of time reversal, charge conjugation, and parity is an exact symmetry:

- if true, then T must not be conserved in weak interactions
- T violation has never been experimentally observed

Natural Units

$E^{2}=p^{2} c^{2}+m^{2} c^{4}$ and $\alpha=\frac{e^{2}}{\hbar c} \rightarrow$ that's a lot of c 's and \hbar 's...
$E^{2}=p^{2}+m^{2}$ and $\alpha=e^{2} \rightarrow$ that's much prettier!
Particle physicists are a clever (or lazy) bunch, we just say $c=\hbar=1$ are "Natural Units".

Implications:

- time is measured in centimeters
- we use electron volts (eV) for mass, energy, and momentum

A handy number is: $\hbar c=197 \mathrm{MeV} \cdot \mathrm{fm}$

Special Relativity

Space-time 4-vector x^{μ} :

$$
x^{\mu} \equiv\left(x^{0}, x^{1}, x^{2}, x^{3}\right)=(t, x, y, z)
$$

In another inertial frame,

$$
x^{\mu^{\prime}}=\sum_{\nu=0}^{3} \Lambda_{\nu}^{\mu} x^{\nu} \quad \Lambda=\left[\begin{array}{cccc}
\gamma & -\gamma \beta & 0 & 0 \\
-\gamma \beta & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

with

$$
\gamma \equiv \frac{1}{\sqrt{1-\beta^{2}}} \quad \text { and } \quad \beta \equiv v
$$

so

$$
t^{\prime}=\gamma t \quad \text { and } \quad L^{\prime}=\frac{L}{\gamma}
$$

Einstein Notation

Quantities that have the same value in any inertial system, are called Lorentz Invariant, for example:

$$
I \equiv t^{2}-x^{2}-y^{2}-z^{2}=t^{\prime 2}-x^{\prime 2}-y^{\prime 2}-z^{\prime 2}
$$

The negative spacial indices are so useful we define the metric:

$$
\mathbf{g} \equiv\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right] \quad \text { so } \quad I=\sum_{\mu=0}^{3} \sum_{\nu=0}^{3} g_{\mu \nu} x^{\mu} x^{\nu}
$$

To keep track of -'s, the covariant 4-vector is defined:

$$
x_{\mu} \equiv g_{\mu \nu} x^{\nu} \quad\left(x^{\mu} \text { is called contravariant }\right)
$$

So that using Einstein summation notation:

$$
I \equiv x_{\mu} x^{\mu}
$$

Energy-Momentum 4-vector

The 4-momentum p^{μ} :

$$
\begin{gathered}
p^{\mu} \equiv\left(p^{0}, p^{1}, p^{2}, p^{3}\right)=\left(E, p_{x}, p_{y}, p_{z}\right)=(E, \mathbf{p}) \\
E=\gamma m \quad \text { and } \quad \mathbf{p}=\gamma m \mathbf{v}
\end{gathered}
$$

Using Einstein summation notation for p^{μ} :

$$
p^{\mu} p_{\mu} \equiv E^{2}-\mathbf{p}^{2}=m^{2}
$$

A particle's mass, m, is a Lorentz Invariant.
For massless particles, $E=|\mathbf{p}|$
Note: I will sometimes use the notation $p \cdot p$ to mean $p^{\mu} p_{\mu}$.

Conserved vs. Invariant

Invariant: the same in all inertial reference frames. A particle's mass is invariant, so it is sometimes called invariant mass:

$$
p^{\mu} p_{\mu}=m^{2}
$$

Conserved: the same before and after an interaction. In relativistic collisions ${ }^{4}$, 4-momentum is conserved in all particle collisions:

$$
p_{A}^{\mu}+p_{B}^{\mu}=p_{C}^{\mu}+p_{D}^{\mu}
$$

for a collision of $A+B \rightarrow C+D$.

[^2]
Collision Example: π^{0} decay

A π^{0} at rest decays to $\gamma+\gamma$, what is E_{γ} ?

$$
\begin{aligned}
p_{\pi}^{\mu} & =p_{\gamma_{1}}^{\mu}+p_{\gamma_{2}}^{\mu} \quad \text { (conservation of 4-momentum) } \\
p_{\pi}^{2} & =p_{\gamma_{1}}^{2}+p_{\gamma_{2}}^{2}+2 p_{\gamma_{1}} \cdot p_{\gamma_{2}} \quad \text { (I dropped } \\
m_{\pi}^{2} & =m_{\gamma_{1}}^{2}+m_{\gamma_{2}}^{2}+2\left(E_{\gamma_{1}} E_{\gamma_{2}}-\mathbf{p}_{\gamma_{1}} \cdot \mathbf{p}_{\gamma_{2}}\right) \\
& \rightarrow m_{\gamma}=0, E_{\gamma}=\left|\mathbf{p}_{\gamma}\right|, \mathbf{p}_{\gamma_{1}}=-\mathbf{p}_{\gamma_{2}}, E_{\gamma_{1}}=E_{\gamma_{2}} \\
E_{\gamma} & =\frac{m_{\pi^{-}}}{2} \simeq 70 \mathrm{MeV}
\end{aligned}
$$

When solving kinematic problems:

- start with conservation of 4-momentum
- use 4-vector notation and exploit $p^{\mu} p_{\mu}=m^{2}$
- think about where 0's will be useful

Collision Example: π^{-}decay

A π^{-}at rest decays to $\bar{\nu}_{\mu}+\mu^{-}$, what is E_{ν} and $E_{\mu^{-}}$?

$$
\begin{aligned}
& p_{\pi^{-}}^{\mu}=p_{\nu}^{\mu}+p_{\mu^{-}}^{\mu} \\
& \text { Before } \\
& p_{\mu^{-}}=p_{\pi^{-}}-p_{\nu} \\
& \begin{aligned}
p_{\nu} & =p_{\pi^{-}}-p_{\mu^{-}} \\
m_{\nu}^{2} & =m_{\pi^{-}}^{2}+m_{\mu^{-}}^{2}-2 E_{\pi} E_{\mu}
\end{aligned} \\
& m_{\mu^{-}}^{2}=m_{\pi^{-}}^{2}+0-2 E_{\pi} E_{\nu} \\
& E_{\mu^{-}}=\frac{m_{\pi^{-}}^{2}+m_{\mu^{-}}^{2}}{2 m_{\pi}} \\
& E_{\nu}=\frac{m_{\pi^{-}}^{2}-m_{\mu^{-}}^{2}}{2 m_{\pi}}
\end{aligned}
$$

Choose the right frame

Laboratory Frame: one particle is at rest. (also called fixed target)
Center-of-Momentum Frame: total 3-vector momentum is zero.
Example: What is the threshold energy for $p+p \rightarrow p+p+p+\bar{p}$ in a fixed target experiment?

Evaluate the invariants: $p^{\mu} p_{\mu}$ and $k^{\mu} k_{\mu}$ (p is total 4-momentum in lab frame, k is total 4 -momentum in cm frame)

$$
\begin{aligned}
p & =(E+m, \mathbf{p}) \quad \text { (before collision) } \\
k & =(4 m, 0) \quad \text { (after collision) } \\
p^{\mu} p_{\mu} & =k^{\mu} k_{\mu} \rightarrow(E+m)^{2}-\mathbf{p}^{2}=(4 m)^{2} \\
E & \left.=7 m \quad \text { after using } \mathbf{p}^{2}=E^{2}-m^{2}\right)
\end{aligned}
$$

Mandelstam Variables

Mandelstam variables are Lorentz invariants in $2 \rightarrow 2$ interactions:

$$
\begin{aligned}
s & \equiv\left(p_{A}+p_{B}\right)^{2} \\
t & \equiv\left(p_{A}-p_{C}\right)^{2} \\
u & \equiv\left(p_{A}-p_{D}\right)^{2}
\end{aligned}
$$

Examples:

$$
e^{+} e^{-} \rightarrow e^{+} e^{-}
$$

Collider vs. Fixed Target

Example: Find the CM energy (\sqrt{s}) for a fixed target vs colliding proton beam with energy is $E_{b}=3.5 \mathrm{TeV}$.
fixed target:

$$
\begin{aligned}
s & =\left(p_{b}+p_{t}\right)^{2} \\
& =p_{b}^{2}+p_{t}^{2}+2 p_{b} \cdot p_{t} \\
& =2 m_{p}^{2}+2 E m_{p} \\
\sqrt{s} & =\sqrt{2 m_{p}\left(E+m_{p}\right)} \\
& \simeq 83 \mathrm{GeV}
\end{aligned}
$$

colliding beam:

$$
\begin{aligned}
s & =\left(p_{b 1}+p_{b 2}\right)^{2} \\
& =p_{b 1}^{2}+p_{b 2}^{2}+2 p_{b 1} \cdot p_{b 2} \\
& =2 m_{p}^{2}+2\left(E_{b}^{2}+\left|\mathbf{p}_{b}\right|^{2}\right) \\
\sqrt{s} & =2 E \\
& =7000 \mathrm{GeV}
\end{aligned}
$$

[^0]: ${ }^{2}$ if interested, see Griffith's Chap. 8 for details

[^1]: ${ }^{3}$ strictly true only if $m_{\nu}=0$

[^2]: ${ }^{4}$ In classical collisions, mass, momentum, and energy are all independently conserved quantities - this is not true in relativistic collisions.

