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The Fundamental Building Blocks?

Earth, Fire, Wind, Water...
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Particle Physics

The base hypotheses of particle physics (in my opinion):

I the universe is made of a limited number of fundamental1

particles responsible for all physical phenomena

I there is a limited number of forces which interact with matter,
these forces are manifestations of one universal force

I interactions evolve in a 4-dimensional vaccum which is not
only a means to parameterize the interactions, but also as an
active participant in the interactions

I all conservation laws reflect an underlying symmetry of nature

1fundamental (or elementary) means the particle has no internal structure
Dr. Andrew Hamilton Introduction to the Standard Model



From Lagrangian to Particles & Interactions

Classical Mechanics

I define the Lagrangian
L = 1

2mv
2 − V (x)

I use the Euler-Lagrange equation
d
dt

(
∂L
∂ẋ

)
− ∂L

∂x = 0

I get the equation of motion
F = ma

I you get Newton’s Law

Quantum Field Theory

I define the Lagrangian (density)
Lf = iψ̄γµ∂

µψ −mψ̄ψ
I use the Euler-Lagrange equation

∂µ
(

∂L
∂(∂µψ)

)
− ∂L

∂ψ = 0

I get the ‘equation of motion’
(iγµ∂µ −m)ψ = 0

I you get the Dirac Equation

The Standard Model is defined by a Lagrangian:

I the Lagrangian determines the particles and their interactions
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The Standard Model Lagrangian
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The Standard Model

I The Standard Model is the
theory of all ‘known’
fundamental particles and their
interactions.

I It explains almost all known
physical phenomena.

I It is a Quantum Field Theory
(QFT).
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What is Force?

Force is transmitted by an exchange of particles.
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The Four Forces

Force is transmitted by an exchange of particles.

There are 4 known fundamental forces:

Force Strength Theory Mediator

Strong 10 Quantum Chromodynamics (QCD) gluon
Electromagnetic 10−2 Quantum Electrodynamics (QED) photon
Weak 10−13 Glashow-Weinberg-Salam (GSW) W and Z
Gravitation 10−42 General Relativity graviton

The Standard Model is a quantum field theory:

I QED, QCD, and GSW are all quantum field theories

I General relativity is not a quantum field theory

Therefore, gravity is not part of the Standard Model
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The Force Carriers (Mediators)

I photon (γ): transmits the electromagnetic force
between ’electrically’ charged (+,−) particles, it
has zero mass and carries 1 unit of spin

I W & Z: transmit the weak force between ’weakly’
charged particles, they have masses around 100
times the mass of the proton and carry 1 unit of
spin

I gluon (g): transmits the strong force between
’strongly’ charged particles, it has zero mass and
carries 1 unit of spin

All mediators are spin-1, so they are called bosons.
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The Matter Particles

Quarks

I electrically, weakly, and
strongly charged

I u and d form nuclear matter:
proton = (u, u, d)

Leptons

I electrically and weakly charged

I e is our well known friend the
electron

All matter particles are fermions (spin-12)
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Standard Model Summary

*the photon and gluon do not directly couple to the Higgs...
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The Small Matter of Antimatter

All matter particles have a corresponding antiparticle:

I an oppositely charged ‘twin’ with exactly the same mass and
quantum properties

Predicted by Dirac in 1928, observed by Anderson in 1932.

I denoted by their the charge for charged leptons(e+), or an
overbar for neutrinos (ν̄e) and quarks (ū)
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Prediction of Antimatter

The Dirac equation, (iγµ∂µ −m)ψ = 0, is the equation of motion

for spin-12 , where ψ is a 4-component “spinor”: ψ =

(
ψ0
ψ1
ψ2
ψ3

)
Finding the simplest stationary solutions leads to2:

ψA(t) = e−im·t
(
ψ1(0)
ψ2(0)

)
and ψB(t) = e+im·t

(
ψ3(0)
ψ4(0)

)

How do you interpret e+im·t?

I mathematically, anti-particles are either negative energy
(mass) particles or particles moving backward in time

2if interested, see Griffith’s Chap. 8 for details
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Particle Interactions

Force is transmitted when a fermion emits or absorbs a boson:

e

γ

e

electron absorbs photon

e

γ

e

electron emits photon
e

e

e

e

electrons exchange photon

−−→
time

These are called Feynman diagrams.

I time flows left to right (caution! not a universal convention)

I arrow denotes fermion (forward) or anti-fermion (backward)

I the vertical axis has no physical meaning
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Quantum Electrodynamics (QED)

Electromagnetism mediated by the photon and described by QED.
Every QED interaction is based on this vertex:

ℓ−, q ℓ−, q

γ
I the solid line is any quark (q) or

electrically charged lepton (`−)

I the squiggly line is a photon (γ)

I the coupling constant is α = 1
137

The vertex can be rotated to give other processes:

e e

γ

e

e

γ

e e

γ

e

e

γ

e− scatter e+e− annihilation e+ scatter e+e− pair production
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Some Examples of QED Interactions

µ

e

µ

e

µ

e

µ

e

µ

µ

d

d

γ

e

e

γ

e−µ− → e−µ− e−µ+ → e−µ+ µ+µ− → dd̄ e−γ → e−γ

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e+e− → e+e− e−e− → e−e−
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Virtual Particles

The particle that transmits the force is called the propagator.

Look at the first half of the e+e− → e+e− diagram:

e

e

γ
conservation of momentum is not possible
unless mγ > 0!

Particles that are off mass shell are called virtual particles.

I propagators are virtual

I initial and final state particles are real
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Higher Order Diagrams

The previous examples are the lowest order (LO) diagrams for the
processes. Every process has higher order diagrams.

Next-to-leading order (NLO) diagrams for e−µ− → e−µ− are:

µ

e

µ

e

µ

e

µ

e

µ

e

µ

e

µ

e

µ

e

Higher order diagrams are constructed by adding additional
internal lines without adding external lines.

Note that each diagram is constructed of the fundamental QED
vertex, each vertex with a ‘strength’ proportional to α.
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Perturbation Theory

To calculate what happens in an interaction like e−µ− → e−µ−,
one must add the diagrams at every order:

µ

e

µ

e

+

µ

e

µ

e

µ

e

µ

e

µ

e

µ

e

µ

e

µ

e

+ · · ·

O(α2) + O(α4) + · · ·

Because α < 1, each higher order contributes a smaller amount to
the result. Phew!
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Quantum Chromodynamics (QCD)

QCD describes the strong interaction mediated by the gluon

I the charge of the strong interaction is colour

I colour comes in 3 types: red, green, blue

I only quarks and gluons carry colour charge

There are 3 fundamental QCD vertices:

q q

g

g g

g

g

g

g

g

The strong coupling constant is αs & 1
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Freedom and Confinement

Asymptotic Freedom:

I gluon carries colour, the photon does not carry electric charge

I coupling constants: αs & 1, while α < 1

I thankfully, at small distances, αs becomes < 1, so
perturbation theory can be used for some QCD calculations

I this is called asymptotic freedom

Confinement:

I no naturally occurring particles carry colour

I quarks are confined to colourless bound states of 2 or 3 quarks
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Hadrons and the Strong Interaction

Before the strong interaction was understood:

I many ‘fundamental’ particles were observed ( m . 2 GeV)

I the particles were arranged in patterns, Gell-Mann called it
the “The Eightfold Way”

baryon octet meson octet baryon decuplet

The symmetry indicates that hadrons are composite particles.
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The Omega Minus

Based on the baryon decuplet, Gell-Mann predicted the Ω−

What about the Pauli exclusion principle?
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Hadron Classification

Hadron: a particle made from a bound state of quarks

I Meson: a hadron made of a quark-antiquark pair

I Baryon: a hadron made of three quarks or three antiquarks

Examples:
Quark Content Spin Charge Mass (MeV )

Baryon
p uud 1/2 +1 938
p̄ ūūd̄ 1/2 -1 938
n udd 1/2 0 939

Σ0 uds 1/2 0 1192

∆++ uuu 3/2 2 1232
Meson

π± ud̄, dū 0 ±1 140

ρ± ud̄, dū 1 ±1 775

K± us̄, sū 0 ±1 494

D± cd̄, dc̄ 0 ±1 1869

B± ub̄, bū 0 ±1 5279
ψ cc̄ 1 0 3097
Υ bb̄ 1 0 9460
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Evidence for Quarks: Lepton-Nucleon Scattering

Similar to Rutherford’s discovery of the nucleus

I bombard protons and neutrons with electron ‘probes’

I if nucleons are made of partons the resulting differential cross
section will show the internal structure
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Evidence for Quarks: Jet Production

Jets (a columnated flow of hadrons) are observed in
electron-positron collisions.

I underlying process e+ + e− → q + q̄

I outgoing quarks form hadrons due to confinement, this is
called hadronization
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Gluons

Gluons can also be produced, in e+e− collisions:

e

e

q

g

q
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Colour Charge

Most direct evidence of colour comes from R ≡ σ(ee→hadrons)
σ(ee→µµ) .

e q

e q

p1

p2

p4

p3

→ σ =
π

3

(
Qα

E

)2

where Q is the charge in units of e (23 for u, c, t and −1
3 for d, s, b)

I if E < mq, quark production is kinematically forbidden

I σ increases when heavier quarks are energetically allowed

If we assume quarks carry 3 colours: R(E) = 3
∑
Q2
i

R → 3
[
( 2

3
)2 + 2(− 1

3
)2]︸ ︷︷ ︸

2 for E<mc

→ 3
[
2( 2

3
)2 + 2(− 1

3
)2]︸ ︷︷ ︸

3.33 for E<mb

→ 3
[
2( 2

3
)2 + 3(− 1

3
)2]︸ ︷︷ ︸

3.67 for E<mt
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R does not describe hadronic resonances, but:

I the factor of 3 is clearly needed to describe data

I strong evidence of quarks carrying 3 colours
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QCD Examples

d

d

u

u

s

b

s

b

u

u

d

u

u

d

u

u

dd̄→ uū bs̄→ bs̄ ∆+ → p + π0
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Weak Interactions

Weak interactions are mediated by W and Z

I the weak charge is rather complex...

I all fermions carry weak charge

I W boson couples charged leptons to neutrinos

I W boson can also change quark flavour

f f

Z

�− ν�

W−

q−
1
3 q+

2
3

W−
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Weak Interaction Examples

Z

µ

e

µ

e

W−

d

νe

u

e

e− + µ− → e− + µ− d + νe → u + e−

W−

d

u

d

d

u

u

e

νe

W−

u

d

s

u

d

u

d

u

n→ p + e− + ν̄e Λ→ p + π−
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The Cabibbo-Kobayashi-Maskawa (CKM) Matrix

The CKM matrix gives the relative strength of the coupling for
quarks in a W interaction: Vud Vus Vub

Vcd Vcs Vcb
Vtd Vts Vtb

 =

 0.974 0.227 0.004
0.227 0.973 0.042
0.008 0.042 0.999


I transitions within a generation are most probable

There may be a similar (but much closer to unitary) matrix for the
leptons due to neutrino oscillations.
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Conservation Laws

Every particle decays to lighter particles unless prevented by some
conservation law. Particles that don’t decay are:

I photon: conservation of energy/momentum (mγ = 0)

I electron: conservation of charge (e is lightest charged particle)

I proton: conservation of baryon number (p is lightest baryon)

I neutrino: conservation of lepton number (ν’s is lightest lepton)

I gluon: conservation of colour (g is lightest coloured particle)
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Symmetry

Symmetry: an operation that leaves a system invariant

Static symmetry:

I ie. shape

Dynamical symmetry:

I ie. motion

We are interested in dynamical symmetries manifest in the
equations of motion (or Lagrangian) of a system.

Symmetry allows you to say something about a system even when
it’s full description is not available.

an odd function (ie. f(−x) = −f(x)):

[f(−x)]2 = [f(x)]2 ;

∫ +3

−3
f(x)dx = 0
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Noether’s Theorem

Every symmetry in nature reflects a conservation law;
every conservation law reflects and underlying symmetry.

Symmetry Conservation Law
Translation in Time ↔ Energy
Translation in Space ↔ Momentum
Rotation in Space ↔ Angular Momentum
Gauge Transformation ↔ Charge

Example: space↔momentum with L = 1
2mẋ

2 − V (x)

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0 → dp

dt
= −∂V

∂x

Momentum is conserved if V (and thus L) does not depend on x
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Group Theory

A group is a set of symmetry operations (R) that have:
I Closure: The product of elements, Rk = RiRj , is an element in the set.

I Identity: There is an identity element I such that IRi = RiI = Ri

I Inverse: There is an inverse, R−1
i , such that RiR

−1
i = R−1

i Ri = I

I Associativity: All element are associative, Ri(RjRk) = (RiRj)Rk

If all elements commute, RiRj = RjRi, the group is called
‘Albelian’
Note: the rotation group is non-Albelian.

Groups can be continuous (eg. rotations), or discrete (eg.
reflections). Continuous groups are called ’Lie’ groups.

Dr. Andrew Hamilton Introduction to the Standard Model



Matrix Representation of Groups

Most groups can be represented by matrices.
Example: the Lorentz group is a set of 4× 4 Λ matrices.

Sets of unitary matrices with dimension n× n are labeled ’U’
Sets of real unitary matrices with dimension n× n are labeled ’O’
Sets of special matrices with determinant of 1 are labeled ’S’

Group Name Dimension Matrices in Group

U(n) n× n unitary (U†U = 1)
SU(n) n× n unitary, determinant 1

O(n) n× n orthogonal, (ÕO = 1)
SO(n) n× n orthogonal, determinant 1

Example: Rotational symmetry in 3 dimensional space is described
by the group SO(3).
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Angular Momentum

Rotational symmetry SO(3) ↔ Conservation of angular momentum.

A system’s total angular momentum is conserved: J = L + S

Orbital momentum (L):

I ‘motion’ of quarks

I L2 → `(`+ 1)
` = 0, 1, 2, ...

I Lz → m`

m` = −`,−`+ 1, ..., `

Spin (S):

I intrinsic property

I S2 → s(s+ 1)
s = 0, 12 , 1,

3
2 , 2, ...

I Sz → ms

ms = −s,−s+ 1, ..., s

States of L, S, and J represented by: |`,m`〉, |s,ms〉, and |j,m〉
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Addition of Total Angular Momentum

A meson example: A qq̄ bound state with L = 0 gives:
J = S = 1

2 + 1
2 = 1, the ‘vector’ mesons (ρ,K∗,φ,...)

J = S = 1
2 − 1

2 = 0, the ‘pseudoscalar’ mesons (π,K,η,...)

A baryon example: A qqq bound state with L = 0 gives:
J = S = (12 + 1

2) + 1
2 = 3

2 , the baryon ’decuplet’ (∆,Σ∗,Ω−,...)

J = S = (12 + 1
2)− 1

2 = 1
2 , the baryon ’octet’ (p,n,Λ,...)

J = S = (12 − 1
2) + 1

2 = 1
2 , also the baryon ’octet’

(Note that the 1
2

state can be achieved in two ways.)

Particles classified by spin (S):

Bosons Fermions
Spin 0 Spin 1 Spin 1

2
Spin 3

2

- Mediators Quarks/Leptons -

pseudoscalar mesons vector mesons baryon ’octet’ baryon ’decuplet’
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Adding Components of Angular Momentum

How do J1 = |j1,m1〉 and J2 = |j2,m2〉 add to get J = |j,m〉?
z component just adds:

I m = m1 +m2

magnitude component gives:

I j = |j1 − j2|, ..., |j1 + j2|
You could work out all possible | j,m〉 states yourself...

or look up in the Clebsh-Gordon coefficients, Cj,j1,j2m,m1,m2 :

| j1,m1〉 | j2,m2〉 =

(j1+j2)∑
j=|j1−j2

Cj,j1,j2m,m1,m2
| j,m〉

|Cj,j1,j2m,m1,m2 |2 is the probability of getting the | j,m〉 state from a
system composed of | j1,m1〉 and | j2,m2〉.
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The Clebsh-Gordon Table

Problem: Find the decomposition of the L = 0 mesons (12 × 1
2)

Solution: We found earlier that total angular momentum is 0 or 1.
For decomposition into possible |j,m〉 (or |J,M〉) states, see the
Clebsh-Gordon table (PDG), here is the 1/2× 1/2 entry.

|1, 1〉 = | 1
2
, 1

2
〉 | 1

2
, 1

2
〉

|1, 0〉 = 1√
2

[
| 1
2
, 1

2
〉 | 1

2
,− 1

2
〉+ | 1

2
,− 1

2
〉 | 1

2
, 1

2
〉
]

|1,−1〉 = | 1
2
,− 1

2
〉 | 1

2
,− 1

2
〉

 symmetric(1↔ 2)

|0, 0〉 = 1√
2

[
| 1
2
, 1

2
〉 | 1

2
,− 1

2
〉 − | 1

2
,− 1

2
〉 | 1

2
, 1

2
〉
] }

antisymmetric(1↔ 2)
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Favour Symmetry (Isospin)

Because u and d quarks have almost equal mass, they can be
viewed as two states of the same particle by the strong force.

Let’s call this ‘space’ isospin, I = |I, I3〉, give u and d the values:

u = |12 , 12〉 , d = |12 ,−1
2〉 and ū = |12 ,−1

2〉 , d̄ = |12 , 12〉

Isospin addition is analogous to spin, some possible states include:

π+(ud̄) = | 1
2
, 1

2
〉 | 1

2
, 1

2
〉 = |1, 1〉

π−(dū) = | 1
2
,− 1

2
〉 | 1

2
,− 1

2
〉 = |1,−1〉 π0

{
(uū) = | 1

2
, 1

2
〉 | 1

2
,− 1

2
〉 = |1, 0〉

(dd̄) = | 1
2
,− 1

2
〉 | 1

2
, 1

2
〉 = |1, 0〉

p(uud) = | 1
2
, 1

2
〉 , n(udd) = | 1

2
,− 1

2
〉

∆++(uuu) = | 3
2
, 3

2
〉 , ∆+(uud) = | 3

2
, 1

2
〉 , ∆0(uuu) = | 3

2
,− 1

2
〉 , ∆−(uuu) = | 3

2
,− 3

2
〉

What is the difference between Λ and Σ0?
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Parity

Parity (P): the inversion of the 3 spatial dimensions.

P (x, y, z) ≡ (−x,−y,−z)

Does P (x) always give −x? No!

Name Behaviour
Scalar P (s) = s
Pseudoscalar P (p) = −p
Vector (or polar vector) P (v) = −v
Pseudovector (or axial vector) P (a) = a

Angular momentum (classic and quantum) is one pseudovector.

Lclassical = r× p

P (Lclassical) = P (r× p) = P (r)× P (p) = (−1)2 r× p = Lclassical
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Parity Violation

Is ‘nature’ left/right symmetric? Is parity a conserved quantity?
Wu’s 60Co experiment (recall: L is a pseudovector)

If electron emission is asymmetric, then parity is not conserved.

I Result: electron emission is anti-parallel to nuclear spin

I Conclusion: weak interactions violate parity
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Helicity

Helicity of a spin-12 particle is defined as the value of ms
s when ẑ is

defined as the direction of motion.

I in other words; is the spin parallel or anti-parallel to the
direction of motion

(
ms
s = +1

) (
ms
s = −1

)
Helicity is only Lorentz invariant for massless particles:

I for massive particles, you can always go to a frame which
reverses the velocity, therefore also reverses the helicity
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Neutrino Helicity

We can use the π− → µ− + ν̄µ decay to measure the helicity of
the antineutrino:

if µ right-handed then ν̄ must be right-handed

Observation: all µ’s in π− decays are right handed
Similarly for π+ decays, all ‘observed’ νµ’s are left handed

All ν’s are left handed; All ν̄’s are right handed 3

Neutrino’s violate parity!

3strictly true only if mν = 0
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The Parity Operator

Let P denote the parity operator.

I P 2 = I (acting P twice gets you back where you started)

I P is multiplicative, so eigenvalues of P are ±1

I scalars and pseudovectors have P = +1

I vectors and pseudoscalars have P = −1

Hadrons are eigenstates of parity.

I quarks are defined as parity = +1

I parity of composite system is product of constituent parities

I parity of fermion is opposite its corresponding antifermion

I parity of boson is same as its corresponding antiboson

I excited states carry and extra (−1)` parity contribution
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Charge Conjugation

Charge Conjugation: convert particle antiparticle

C |p〉 = |p̄〉
Most particles are not eigenstates of C:

I only particles who are their own antiparticle are C eigenstates

I for example; π0, η, ψ

Act twice and you get back to where you started:

C2 = I

C is multiplicative, so eigenstates are ±1.
For a qq̄ state, C = (−1)`+s. Photons have C = −1.
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Determining C & P

Particles are often listed with their JPC value.
Work out the JPC for the following:

Orbital Momentum Net Spin JPC Examples
` = 0 s = 0 0−+ π, K, η

s = 1 1−− ρ, φ, ω
` = 1 s = 0 1+−

s = 1 0++

s = 1 1++

s = 1 2++
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CP

Combination of C and P (almost) restores left/right symmetry

Example: act CP on π+ → µ+L + νLµ (I’ve explicitly noted the
handedness)

CP (π+) → CP (µ+L + νLµ )

C(π+) → C(µ+R + νRµ )

π− → µ−R + ν̄Rµ

So, acting C and P together (almost) restores left-right symmetry
if we consider the ‘mirror image’ of a right-handed particle to be
the left-handed antiparticle.
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Neutral Kaons

Neutral Kaons can change from their particle into their
antiparticle: K0 
 K̄0

u

W W

u

d

K0

s

s

K̄0

d

W

u

W

u

d

K0

s

s

K̄0

d

So Kaons are actually a linear combination of K0 and K̄0

Also, K’s are pseudoscalars, so K0 and K̄0 are not CP eigenstates:

CP |K0〉 = − |K̄0〉 , CP |K̄0〉 = − |K0〉

CP is also violated in the Kaon system! (not covered here)
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Time Reversal & TCP

Time reversal symmetry (T ): interactions are equally likely in both
time directions

Quantum field theory predicts the TCP theorem which states that
the combined operation of time reversal, charge conjugation, and
parity is an exact symmetry:

I if true, then T must not be conserved in weak interactions

I T violation has never been experimentally observed
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Natural Units

E2 = p2c2 +m2c4 and α = e2

~c → that’s a lot of c’s and ~’s...

E2 = p2 +m2 and α = e2 → that’s much prettier!

Particle physicists are a clever (or lazy) bunch,
we just say c = ~ = 1 are “Natural Units”.

Implications:

I time is measured in centimeters

I we use electron volts (eV) for mass, energy, and momentum

A handy number is: ~c = 197 MeV · fm
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Special Relativity

Space-time 4-vector xµ:

xµ ≡ (x0, x1, x2, x3) = (t, x, y, z)

In another inertial frame,

xµ
′

=

3∑
ν=0

Λµνx
ν Λ =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1


with

γ ≡ 1√
1− β2

and β ≡ v

so

t′ = γt and L′ =
L

γ
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Einstein Notation

Quantities that have the same value in any inertial system, are
called Lorentz Invariant, for example:

I ≡ t2 − x2 − y2 − z2 = t′ 2 − x′ 2 − y′ 2 − z′ 2

The negative spacial indices are so useful we define the metric:

g ≡


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 so I =

3∑
µ=0

3∑
ν=0

gµνx
µxν

To keep track of −’s, the covariant 4-vector is defined:

xµ ≡ gµνxν (xµ is called contravariant)

So that using Einstein summation notation:

I ≡ xµxµ
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Energy-Momentum 4-vector

The 4-momentum pµ:

pµ ≡ (p0, p1, p2, p3) = (E, px, py, pz) = (E,p)

E = γm and p = γmv

Using Einstein summation notation for pµ:

pµpµ ≡ E2 − p2 = m2

A particle’s mass, m, is a Lorentz Invariant.

For massless particles, E = |p|
Note: I will sometimes use the notation p · p to mean pµpµ.
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Conserved vs. Invariant

Invariant: the same in all inertial reference frames. A particle’s
mass is invariant, so it is sometimes called invariant mass:

pµpµ = m2

Conserved: the same before and after an interaction. In relativistic
collisions4, 4-momentum is conserved in all particle collisions:

pµA + pµB = pµC + pµD

for a collision of A+B → C +D.

4In classical collisions, mass, momentum, and energy are all independently
conserved quantities - this is not true in relativistic collisions.
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Collision Example: π0 decay

A π0 at rest decays to γ + γ, what is Eγ?

pµπ = pµγ1
+ pµγ2

(conservation of 4-momentum)

p2π = p2γ1
+ p2γ2

+ 2 pγ1 · pγ2 (I dropped µ index)

m2
π = m2

γ1
+m2

γ2
+ 2 (Eγ1Eγ2 − pγ1 · pγ2)

→ mγ = 0, Eγ = |pγ |, pγ1 = −pγ2 , Eγ1 = Eγ2

Eγ =
mπ−

2
' 70 MeV

When solving kinematic problems:

I start with conservation of 4-momentum

I use 4-vector notation and exploit pµpµ = m2

I think about where 0’s will be useful
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Collision Example: π− decay

A π− at rest decays to ν̄µ + µ−, what is Eν and Eµ−?

pµ
π− = pµν + pµ

µ−

pν = pπ− − pµ−
m2
ν = m2

π− +m2
µ− − 2EπEµ

Eµ− =
m2
π− +m2

µ−

2mπ

pµ− = pπ− − pν
m2
µ− = m2

π− + 0− 2EπEν

Eν =
m2
π− −m2

µ−

2mπ
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Choose the right frame

Laboratory Frame: one particle is at rest. (also called fixed target)

Center-of-Momentum Frame: total 3-vector momentum is zero.

Example: What is the threshold energy for p+ p→ p+ p+ p+ p̄
in a fixed target experiment?

Evaluate the invariants: pµpµ and kµkµ (p is total 4-momentum in
lab frame, k is total 4-momentum in cm frame)

p = (E +m,p) (before collision)

k = (4m, 0) (after collision)

pµpµ = kµkµ → (E +m)2 − p2 = (4m)2

E = 7m (after using p2 = E2 −m2)
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Mandelstam Variables

Mandelstam variables are Lorentz invariants in 2→ 2 interactions:

B

A

D

C
s ≡ (pA + pB)2

t ≡ (pA − pC)2

u ≡ (pA − pD)2

Examples:
e+e− → e+e− e−e− → e−e−

pγ =
√

s

e

e

e

e

pγ =
√

t

e

e

e

e

pγ =
√

t

e

e

e

e

pγ =
√

u

e

e

e

e

s-channel t-channel t-channel u-channel
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Collider vs. Fixed Target

Example: Find the CM energy (
√
s) for a fixed target vs colliding

proton beam with energy is Eb = 3.5 TeV .

fixed target:
s = (pb + pt)

2

= p2b + p2t + 2 pb · pt
= 2m2

p + 2Emp

√
s =

√
2mp(E +mp)

' 83 GeV

colliding beam:
s = (pb1 + pb2)

2

= p2b1 + p2b2 + 2 pb1 · pb2
= 2m2

p + 2 (E2
b + |pb|2)√

s = 2E

= 7000 GeV
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