Perturbative QCD

from basic principles to current applications

disclaimer:
pQCD is about 40 years old - impossible to review in 3 hrs

topics $\&$ questions to be addressed

we will mainly concentrate on a few basics and their consequences for phenomenology

- What are the foundations of QCD?
keywords: color: SU(3) gauge group; local gauge invariance; Feynman rules
- What are the general features of QCD?
keywords: asymptotic freedom; infrared safety; origin of "singularities"
- How to relate QCD to experiment? keywords: partons; factorization; renormalization group eqs. / evolution
- How reliable is a theoretical QCD calculation? keywords: scale dependence; NLO; small-x; all-order resummations
- What is the status of some non-perturbative inputs keywords: global QCD analysis

bibliography - a personal selection

textbooks:

- the "pink book" on QCD and Collider Physics by R.K. Ellis, W.J. Stirling, and B.R. Webber
- R.D. Field, Applications of PQCD detailed examples
- Y.V. Kovchegov, E. Levin, QCD at High Energy focus on small \times physics
- J. Collins, Foundations of PQCD focus on formal aspects of evolution

lecture notes \& write-ups:

- D. Soper, Basics of QCD Perturbation Theory, hep-ph/9702203
- Collins, Soper, Sterman, Factorization of Hard Processes in QCD, hep-ph/0409313
- G. Salam, Elements of QCD for Hadron Colliders, arXiv:1011.5131
- Particle Data Group, Review of Particle Physics, pdg.lbl.gov

talks \& lectures on the web:

- annual CTEQ summer school, tons of material on www.cteq.org
- annual CERN/FNAL Hadron Collider Physics School hcpss.web.cern.ch/hcpss

tentative outline of the lectures

Part 1: the foundations
SU(3); color algebra; gauge invariance; QCD Lagrangian; Feynman rules

Part 2: the QCD toolbox asymptotic freedom; infrared safety; the QCD final-state; jets; factorization

Part 3: inward bound: "femto spectroscopy" QCD initial-state; DIS process; partons; factorization; renormalization group; scales; hadron-hadron collisions

Part I
the QCD fundamentals all about color
the concept of gauge invariance

QCD - why do we still care (or perhaps more than ever)

hadron colliders inevitably have to deal with QCD
discovering the Higgs or some New Physics requires a sophisticated quantitative understanding of QCD

P.W. Higgs, F. Englert (2013)
achieving that can be quite a challenge

$$
\mathcal{L}_{\mathrm{QCD}}=-\frac{1}{4} F_{\mu \nu}^{A} F_{A}^{\mu \nu}+\sum_{\text {flavors }} \bar{q}_{i}(i \not D-m)_{i j} q_{j}
$$

QCD - the theory of strong interactions

a simple QED-like theory, leading to extremely rich \& complex phenomena

QCD - the theory of strong interactions

a simple QED-like theory, leading to extremely rich \& complex phenomena

QCD - the theory of strong interactions

a simple QED-like theory, leading to extremely rich \& complex phenomena

QCD - the theory of strong interactions

a simple QED-like theory, leading to extremely rich \& complex phenomena

AuAu collision at STAR

QCD - the theory of strong interactions

a simple QED-like theory, leading to extremely rich \& complex phenomena

AuAu collision at STAR

H1 and ZEUS Combined PDF Fit

QCD - the theory of strong interactions

a simple QED-like theory, leading to extremely rich \& complex phenomena

AuAu collision at STAR

QCD - the theory of strong interactions

a simple QED-like theory, leading to extremely rich \& complex phenomena

QCD matter sector: Three Quarks for Muster Mark

existence of light quarks validated in deep-inelastic scattering (DIS) experiments carried out at SLAC in 1968

QCD matter sector: Three Quarks for Muster Mark

existence of light quarks validated in deep-inelastic scattering (DIS) experiments carried out at SLAC in 1968
strange quarks necessary component in quark model to classify the observed slew of mesons/baryons Gell-Mann, Zweig (1964) based on "Eightfold Way" (= SU(3) flavor) Gell-Mann; Ne'eman (1961)

quark model: mesons and baryons

categorizes mesons (baryons) in terms of two (three) constituent quarks in SU(3) flavor multiplets = octets and decuplets
baryon decuplet

spectrum fully classified by assuming:

- quarks have spin $\frac{1}{2}$
- quarks have fractional charges
(but combine into hadrons with integer charges)

quark model: mesons and baryons

categorizes mesons (baryons) in terms of two (three) constituent quarks in SU(3) flavor multiplets = octets and decuplets
baryon decuplet

spectrum fully classified by assuming:

- quarks have spin $\frac{1}{2}$
- quarks have fractional charges
(but combine into hadrons with integer charges)
big success: prediction of Ω^{-}(sss)

quark model: mesons and baryons

categorizes mesons (baryons) in terms of two (three) constituent quarks in SU(3)flavor multiplets = octets and decuplets
baryon decuplet

spectrum fully classified by assuming:

- quarks have spin $\frac{1}{2}$
- quarks have fractional charges (but combine into hadrons with integer charges)
big success: prediction of Ω^{-}(sss) also, first evidence of color
- Δ^{++}wave function |uuu> not anti-sym (violates Pauli principle)
- remedy: color quantum number but hadrons remain colorless/color singlets

QCD matter sector: charm

predicted on strong theoretical grounds (suppression of FCNC) "GIM mechanism" in 1970 Glashow, Iliopolus, Maiani

QCD matter sector: charm

predicted on strong theoretical grounds (suppression of FCNC) "GIM mechanism" in 1970 Glashow, Iliopolus, Maiani
observed during "November revolution" in 1974 both a \dagger SLAC (Richter et al.) and BNL (Ting et al.) discovered meson became known as J/ Ψ; Nobel Prize in 1976

QCD matter sector: bottom

theorized in 1973 in order to accommodate CP violation (requires third generation)
Kobayashi, Maskawa Nobel Prize 2008

QCD matter sector: bottom

theorized in 1973 in order to accommodate CP violation (requires third generation)
Kobayashi, Maskawa Nobel Prize 2008
discovered in 1977 at FNAL (γ meson or "bottomium") Ledermann et al.
L.L. coined also the
term "God particle"

Nobel Prize in 1988 for muon neutrino

QCD matter sector: top

by around 1994 electroweak precision fits point towards mass in range $145-185 \mathrm{GeV}$ (vector boson mass and couplings are sensitive to top mass)

eventually discovered in 1995 by CDF and D \varnothing at FNAL (mass nowadays know to about 1 GeV)

QCD matter sector: 3 generations

- masses of six quarks range from $O(\mathrm{MeV})$ to about 175 GeV why the masses are split by almost six orders of magnitude remains a big mystery

QCD matter sector: 3 generations

- masses of six quarks range from $O(\mathrm{MeV})$ to about 175 GeV why the masses are split by almost six orders of magnitude remains a big mystery
- masses of u, d, s quarks are lighter than 1 GeV (proton mass) in the limit of vanishing u, d, s masses there is an exact $\operatorname{SU}(3)_{\text {flavor }}$ symmetry

further evidence for color quantum number

- color can be probed directly in $e^{+} e^{-}$collisions idea:
production of fermion pairs (leptons or quarks) through a virtual photon sensitive to electric charge and number of degrees of freedom

further evidence for color quantum number

- color can be probed directly in $e^{+} e^{-}$collisions idea:
production of fermion pairs (leptons or quarks) through a virtual photon sensitive to electric charge and number of degrees of freedom

" hence, investigate quarks through "R ratio"

$$
R \equiv \frac{e^{+} e^{-} \rightarrow \text { hadrons }}{e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}} \propto N_{c} \sum_{f} Q_{f}^{2}
$$

further evidence for color quantum number

- color can be probed directly in $e^{+} e^{-}$collisions idea:
production of fermion pairs (leptons or quarks) through a virtual photon sensitive to electric charge and number of degrees of freedom

" hence, investigate quarks through "R ratio"

$$
R \equiv \frac{e^{+} e^{-} \rightarrow \text { hadrons }}{e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}} \propto \underset{\substack{\text { assumed number } \\ \text { of colors of quark }}}{ } N_{c} \sum_{f} Q_{f}^{2}
$$

- in LO described by process $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}}$

further evidence for color quantum number

- color can be probed directly in $e^{+} e^{-}$collisions idea:
production of fermion pairs (leptons or quarks) through a virtual photon sensitive to electric charge and number of degrees of freedom

" hence, investigate quarks through "R ratio"

$$
R \equiv \frac{e^{+} e^{-} \rightarrow \text { hadrons }}{e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}} \propto N_{c}
$$

- in LO described by process $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}}$
- each active quark is produced in one out of N_{c} colors above kinematic threshold

experimental results for \mathbf{R} ratio

$$
\begin{aligned}
R_{u, d, s} & =3 \times\left[\left(\frac{2}{3}\right)^{2}+\left(-\frac{1}{3}\right)^{2}+\left(-\frac{1}{3}\right)^{2}\right] \\
& =2
\end{aligned}
$$

$$
\begin{aligned}
R_{u, d, s, c} & =R_{u, d, s}+3 \times\left(\frac{2}{3}\right)^{2} \\
& =\frac{10}{3}
\end{aligned}
$$

$$
R_{u, d, s, c, b}=R_{u, d, s, c}+3 \times\left(-\frac{1}{3}\right)^{2}
$$

$$
=\frac{11}{3}
$$

caveats:

- higher order corrections
- mass effects near threshold

experimental results for R ratio

QCD color interactions heuristically

- QCD color quantum number is mediated by the gluon analogous to the photon in QED
- gluons are changing quarks from one color to another
 as such they must also carry a color charge (unlike the charge neutral photon in QED)
example:

gluon
(RB)

QCD color interactions heuristically

- QCD color quantum number is mediated by the gluon analogous to the photon in QED
- gluons are changing quarks from one color to another as such they must also carry a color charge (unlike the charge neutral photon in QED) example: \quad red (R)

000000

- color charge of each gluon represented by a 3×3 matrix in color space conventional choice: express $t^{a}(a=1 . . .8)$ in terms of Gell-Mann matrices

QCD color interactions heuristically

- QCD color quantum number is mediated by the gluon analogous to the photon in QED
- gluons are changing quarks from one color to another
 as such they must also carry a color charge (unlike the charge neutral photon in QED) example: red (R)

000000 gluon
(RBB) $\xrightarrow{\text { Bimportant calculational tool }}$

- color charge of each gluon represented by a 3×3 matrix in color space conventional choice: express $t^{a}(a=1 . . .8)$ in terms of Gell-Mann matrices

$$
\begin{array}{ccc}
(1,0,0) & \left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) & \left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \\
\bar{\psi}_{i} & t_{i j}^{1} & \psi_{j}
\end{array}
$$

$\begin{gathered}\text { more formal expression } \\ \text { as Feynman rule } \\ \text { [only color structure here] }\end{gathered}$

QCD: an unbroken SU(3) Quantum Field Theory

guiding principle for all field theories: local gauge invariance of the underlying Lagrangian
i.e., redefining the quark and gluon fields independently at each space-time point has no impact on the physics

QCD: an unbroken SU(3) Quantum Field Theory

guiding principle for all field theories: local gauge invariance of the underlying Lagrangian
i.e., redefining the quark and gluon fields independently at each space-time point has no impact on the physics
here: local SU(3) rotations in color space spin- $\frac{1}{2}$ quark fields come as colors triplets (fundamental representation)

QCD: an unbroken SU(3) Quantum Field Theory

guiding principle for all field theories: local gauge invariance of the underlying Lagrangian
i.e., redefining the quark and gluon fields independently at each space-time point has no impact on the physics
here: local SU(3) rotations in color space spin- $\frac{1}{2}$ quark fields come as colors triplets (fundamental representation)

local SU(3) invariance dictates: . 8 massless spin-1 gluons (adjoint representation)

- all interactions between quarks and gluons (covariant derivative)

QCD: an unbroken SU(3) Quantum Field Theory

guiding principle for all field theories: local gauge invariance of the underlying Lagrangian
i.e., redefining the quark and gluon fields independently at each space-time point has no impact on the physics here: local SU(3) rotations in color space spin- $\frac{1}{2}$ quark fields come as colors triplets (fundamental representation)

local SU(3) invariance dictates: . 8 massless spin-1 gluons (adjoint representation)

- all interactions between quarks and gluons (covariant derivative)
non-Abelian group structure:
- Lie algebra: $\left[T_{a}, T_{b}\right]=i f_{a b c} T_{C}$
- invariants ("color factors") :

$$
T_{F}=1 / 2 \quad C_{F}=4 / 3 \quad C_{A}=3
$$

experimental support for $\mathrm{SU}(3)$

- color factors are not just math assumed group structure has impact on theoretical predictions

experimental support for $\mathbf{S U (3)}$

- color factors are not just math assumed group structure has impact on theoretical predictions

- angular correlations between four jets depend on C_{A} / C_{F} and T_{F} / C_{F}
- sensitivity to non-Abelian three-gluon-vertex
LO: Ellis, Ross, Terrano

QCD Lagrangian \& Feynman rules

$L_{Q C D}$ encodes all physics related to strong interactions for perturbative calculations we simply read off the Feynman rules

$$
\begin{aligned}
\mathcal{L}_{\mathrm{QCD}} & =\bar{\Psi}\left(i \partial_{\mu} \gamma^{\mu}-m\right) \Psi \\
& -\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)^{2} \\
& -g \bar{\Psi} A_{\mu}^{a} T_{a} \gamma^{\mu} \Psi \\
& -\frac{1}{2} g\left(\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}\right) f_{a b c} A^{\mu b} A^{\nu c} \\
& -\frac{1}{4} g^{2} f_{a b c} A_{\mu}^{b} A_{\nu}^{c} f_{a d e} A^{\mu d} A^{\nu e}
\end{aligned}
$$

QCD Lagrangian \& Feynman rules

$L_{Q C D}$ encodes all physics related to strong interactions
for perturbative calculations we simply read off the Feynman rules

$$
\begin{aligned}
\mathcal{L}_{\mathrm{QCD}} & =\bar{\Psi}\left(i \partial_{\mu} \gamma^{\mu}-m\right) \Psi \\
& -\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)^{2} \\
& -g \bar{\Psi} A_{\mu}^{a} T_{a} \gamma^{\mu} \Psi \\
& -\frac{1}{2} g\left(\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}\right) f_{a b c} A^{\mu b} A^{\nu c} \\
& -\frac{1}{4} g^{2} f_{a b c} A_{\mu}^{b} A_{\nu}^{c} f_{a d e} A^{\mu d} A^{\nu e}
\end{aligned}
$$

technical complications due to the gauge-fixing \& ghost terms:
gauge-fixing: needed to define gluon propagator: breaks gauge-invariance but all physical results are independent of the gauge
ghosts: cancel unphysical degrees of freedom \rightarrow unitarity

recall: gauge invariance in QED

$$
\begin{aligned}
\mathcal{L}_{\text {QED }} & =\mathcal{L}_{\text {Dirac }}+\mathcal{L}_{\text {Maxwell }}+\mathcal{L}_{\text {int }} \\
& =\bar{\Psi}(\mathbf{i} \not \partial-\mathbf{m}) \Psi-\frac{1}{4} \mathbf{F}_{\mu \nu} \mathbf{F}^{\mu \nu}-\mathbf{q} \bar{\Psi} \gamma_{\mu} \Psi \mathbf{A}^{\mu} \\
& =\bar{\Psi}(\mathbf{i} \not \boldsymbol{D}-\mathbf{m}) \mathbf{\Psi}-\frac{1}{4} \mathbf{F}_{\mu \nu} \mathbf{F}^{\mu \nu}
\end{aligned}
$$

recall: gauge invariance in QED

$$
\begin{aligned}
\mathcal{L}_{\mathrm{QED}} & =\mathcal{L}_{\text {Dirac }}+\mathcal{L}_{\text {Maxwell }}+\mathcal{L}_{\text {int }} \\
& =\overline{\mathbf{\Psi}}(\mathbf{i} \not \partial-\mathbf{m}) \Psi-\frac{1}{4} \mathbf{F}_{\mu \nu} \mathbf{F}^{\mu \nu}-\mathbf{q} \overline{\mathbf{\Psi}} \gamma_{\mu} \boldsymbol{\Psi} \mathbf{A}^{\mu} \\
& =\overline{\mathbf{\Psi}}(\mathbf{i} D \mathbf{D}-\mathbf{m}) \mathbf{\Psi}-\frac{1}{4} \mathbf{F}_{\mu \nu} \mathbf{F}^{\mu \nu}
\end{aligned}
$$

electromagnetic vector potential \mathbf{A}_{μ}
field strength tensor $\mathbf{F}_{\mu \nu}=\partial_{\mu} \mathbf{A}_{\nu}-\partial_{\nu} \mathbf{A}_{\mu}$
covariant derivative $\mathbf{D}_{\mu}=\partial_{\mu}+\mathbf{i q} \mathbf{A}_{\mu}$

recall: gauge invariance in QED

$$
\begin{aligned}
\mathcal{L}_{\text {QED }} & =\mathcal{L}_{\text {Dirac }}+\mathcal{L}_{\text {Maxwell }}+\mathcal{L}_{\text {int }} \\
& =\overline{\mathbf{\Psi}}(\mathbf{i} \not \partial-\mathbf{m}) \Psi-\frac{1}{4} \mathbf{F}_{\mu \nu} \mathbf{F}^{\mu \nu}-\mathbf{q} \bar{\Psi} \gamma_{\mu} \boldsymbol{\Psi} \mathbf{A}^{\mu} \\
& =\bar{\Psi}(\mathbf{i} D \mathbf{D}-\mathbf{m}) \mathbf{\Psi}-\frac{1}{4} \mathbf{F}_{\mu \nu} \mathbf{F}^{\mu \nu}
\end{aligned}
$$

electromagnetic vector potential \mathbf{A}_{μ}
field strength tensor $\mathbf{F}_{\mu \nu}=\partial_{\mu} \mathbf{A}_{\nu}-\partial_{\nu} \mathbf{A}_{\mu}$
covariant derivative $\mathbf{D}_{\mu}=\partial_{\mu}+\mathbf{i q} \mathbf{A}_{\mu}$
invariant under local gauge (phase) transformation

$$
\begin{aligned}
& \boldsymbol{\Psi}(\mathbf{x}) \rightarrow \boldsymbol{\Psi}^{\prime}(\mathbf{x})=\mathbf{e}^{\mathbf{i} \alpha(\mathbf{x})} \boldsymbol{\Psi}(\mathbf{x}) \\
& \mathbf{A}_{\mu}(\mathbf{x}) \rightarrow \mathbf{A}_{\mu}^{\prime}=\mathbf{A}_{\mu}(\mathbf{x})-\frac{1}{\mathbf{q}} \partial_{\mu} \alpha(\mathbf{x})
\end{aligned}
$$

- dictates interaction term
- photon mass term would violate gauge invariance

$$
\sim \mathrm{m}_{\gamma}^{2} \mathbf{A}_{\mu} \mathbf{A}^{\mu}
$$

recall: gauge invariance in QED

$$
\begin{aligned}
\mathcal{L}_{\text {QED }} & =\mathcal{L}_{\text {Dirac }}+\mathcal{L}_{\text {Maxwell }}+\mathcal{L}_{\text {int }} \\
& =\overline{\mathbf{\Psi}}(\mathbf{i} \not \partial-\mathbf{m}) \Psi-\frac{1}{4} \mathbf{F}_{\mu \nu} \mathbf{F}^{\mu \nu}-\mathbf{q} \bar{\Psi} \gamma_{\mu} \Psi \mathbf{A}^{\mu} \\
& =\overline{\mathbf{\Psi}}(\mathrm{i} D \mathbf{D}-\mathbf{m}) \Psi-\frac{1}{4} \mathbf{F}_{\mu \nu} \mathbf{F}^{\mu \nu}
\end{aligned}
$$

electromagnetic vector potential $\mathbf{A}_{\mu} \begin{gathered}\text { photon field carries } \\ \text { no electric charge }\end{gathered}$ field strength tensor $\mathbf{F}_{\mu \nu}=\partial_{\mu} \mathbf{A}_{\nu}-\partial_{\nu} \mathbf{A}_{\mu} \begin{gathered}\text { field strength itself } \\ \text { gauge invariant }\end{gathered}$ covariant derivative $\mathbf{D}_{\mu}=\partial_{\mu}+\mathbf{i q ~ A} \mathbf{A}_{\mu} \quad \begin{gathered}\text { "covariant" }= \\ D_{\mu} \psi \text { transforms as } \psi\end{gathered}$ invariant under local gauge (phase) transformation

$$
\begin{aligned}
& \Psi(\mathbf{x}) \rightarrow \boldsymbol{\Psi}^{\prime}(\mathbf{x})=\mathbf{e}^{\mathbf{i} \alpha(\mathbf{x})} \boldsymbol{\Psi}(\mathbf{x}) \\
& \mathbf{A}_{\mu}(\mathbf{x}) \rightarrow \mathbf{A}_{\mu}^{\prime}=\mathbf{A}_{\mu}(\mathbf{x})-\frac{1}{\mathbf{q}} \partial_{\mu} \alpha(\mathbf{x})
\end{aligned}
$$

- dictates interaction term
- photon mass term would violate gauge invariance

$$
\sim \mathrm{m}_{\gamma}^{2} \mathbf{A}_{\mu} \mathbf{A}^{\mu}
$$

recall: gauge invariance in QED

$$
\begin{aligned}
\mathcal{L}_{\mathrm{QED}} & =\mathcal{L}_{\text {Dirac }}+\mathcal{L}_{\text {Maxwell }}+\mathcal{L}_{\text {int }} \\
& =\overline{\mathbf{\Psi}}(\mathbf{i} \not \partial-\mathbf{m}) \Psi-\frac{1}{4} \mathbf{F}_{\mu \nu} \mathbf{F}^{\mu \nu}-\mathbf{q} \bar{\Psi} \gamma_{\mu} \Psi \mathbf{A}^{\mu} \\
& =\bar{\Psi}(\mathbf{i} D \mathbf{D}) \mathbf{\Psi}-\frac{1}{4} \mathbf{F}_{\mu \nu} \mathbf{F}^{\mu \nu}
\end{aligned}
$$

electromagnetic ve
field strength tens
more cumbersome to

covariant derivative $D_{\mu}=U_{\mu}+1 \mathcal{A}_{\mu} \quad D_{\mu} \psi$ transforms as ψ
invariant under local gauge (phase) transformation

$$
\begin{aligned}
& \boldsymbol{\Psi}(\mathbf{x}) \rightarrow \boldsymbol{\Psi}^{\prime}(\mathbf{x})=\mathbf{e}^{\mathbf{i} \alpha(\mathbf{x})} \boldsymbol{\Psi}(\mathbf{x}) \\
& \mathbf{A}_{\mu}(\mathbf{x}) \rightarrow \mathbf{A}_{\mu}^{\prime}=\mathbf{A}_{\mu}(\mathbf{x})-\frac{1}{\mathbf{q}} \partial_{\mu} \alpha(\mathbf{x})
\end{aligned}
$$

- dictates interaction term
- photon mass term would violate gauge invariance

$$
\sim \mathrm{m}_{\gamma}^{2} \mathbf{A}_{\mu} \mathbf{A}^{\mu}
$$

one more look at the QCD Lagrangian

- Yang and Mills proposed in 1954 that the local "phase rotation" in QED could be generalized to non Abelian groups such as $\mathrm{SU}(3)$

$$
\mathcal{L}=-\frac{1}{4} \mathbf{F}_{\substack{\mathrm{a} \\ \text { gluon field strength } \\ \mathrm{a}=1, \ldots, 8}}^{\mu \nu} \mathbf{F}_{\mu \nu}^{\mathrm{a}}+\sum_{\substack{\text { color index } \\ \mathrm{i}=1,2,3}} \bar{\Psi}_{\mathbf{i}}^{(\mathrm{f})}\left(\mathbf{i D} \mathbf{D}_{\mathrm{ij}}-\mathbf{m}_{\mathbf{f}} \delta_{\mathrm{ij}}\right) \Psi_{\mathrm{j}}^{(\mathbf{f})}
$$

one more look at the QCD Lagrangian

- Yang and Mills proposed in 1954 that the local "phase rotation" in QED could be generalized to non Abelian groups such as $\mathrm{SU}(3)$

$$
\mathcal{L}=-\frac{1}{4} \mathbf{F}_{\substack{\mathrm{a} \\ \text { gluon field strength } \\ \mathrm{a}=1, \ldots, 8}}^{\mu \nu} \mathbf{F}_{\mu \nu}^{\mathrm{a}}+\sum_{\substack{\text { color index } \\ \mathrm{i}=1,2,3}} \bar{\Psi}_{\mathrm{i}}^{(\mathrm{f})}\left(\mathrm{iD} \mathbf{i}_{\mathrm{ij}}-\mathrm{m}_{\mathrm{f}} \delta_{\mathrm{ij}}\right) \Psi_{\mathrm{j}}^{(\mathrm{f})}
$$

- color plays a crucial role (unlike QCD, field strength not gauge invariant)

$$
\mathbf{F}_{\mu \nu}^{\mathbf{a}}=\partial_{\mu} \mathbf{A}_{\nu}^{\mathbf{a}}-\partial_{\nu} \mathbf{A}_{\mu}^{\mathbf{a}}-\mathbf{g}_{\mathbf{s}} \mathbf{f}^{\text {QED like but field }} \mathbf{A}_{\mu}^{\mathbf{b}} \mathbf{A}_{\mu}^{\mathbf{c}}
$$

one more look at the QCD Lagrangian

- Yang and Mills proposed in 1954 that the local "phase rotation" in QED could be generalized to non Abelian groups such as $\mathrm{SU}(3)$

$$
\mathcal{L}=-\frac{1}{4} \mathbf{F}_{\substack{\mathrm{a} \\ \text { gluon field strength } \\ \mathrm{a}=1, \ldots, 8}}^{\mu \nu} \mathbf{F}_{\mu \nu}^{\mathrm{a}}+\sum_{\substack{\text { color index } \\ \mathrm{i}=1,2,3}} \bar{\Psi}_{\mathrm{i}}^{(\mathrm{f})}\left(\mathbf{i} \mathbf{D}_{\mathrm{ij}}-\mathbf{m}_{\mathbf{f}} \delta_{\mathrm{ij}}\right) \Psi_{\mathrm{j}}^{(\mathbf{f})}
$$

- color plays a crucial role (unlike QCD, field strength not gauge invariant)

$$
\begin{aligned}
\mathbf{F}_{\mu \nu}^{\mathbf{a}}= & \partial_{\mu} \mathbf{A}_{\nu}^{\mathbf{a}}-\partial_{\nu} \mathbf{A}_{\mu}^{\mathbf{a}}
\end{aligned}-\mathrm{g}_{\mathbf{s}} \mathbf{f}^{\mathrm{abc}} \mathbf{A}_{\mu}^{\mathbf{b}} \mathbf{A}_{\mu}^{\mathbf{c}}
$$

one more look at the QCD Lagrangian

- Yang and Mills proposed in 1954 that the local "phase rotation" in QED could be generalized to non Abelian groups such as $\operatorname{SU}(3)$

$$
\mathcal{L}=-\frac{1}{4} \mathbf{F}_{\substack{\mathrm{a} \\ \text { gluon field strength } \\ \mathrm{a}=1, \ldots, 8}}^{\mu \nu} \mathbf{F}_{\mu \nu}^{\mathrm{a}}+\sum_{\substack{\text { color index } \\ i=1,2,3}} \bar{\Psi}_{\mathrm{i}}^{(\mathrm{f})}\left(\mathbf{i D} \mathbf{i j}_{\mathrm{ij}}-\mathbf{m}_{\mathbf{f}} \delta_{\mathbf{i j}}\right) \Psi_{\mathrm{j}}^{(\mathbf{f})}
$$

- color plays a crucial role (unlike QCD, field strength not gauge invariant)

$$
\begin{aligned}
& \mathbf{F}_{\mu \nu}^{\mathbf{a}}= \partial_{\mu} \mathbf{A}_{\nu}^{\mathbf{a}}-\partial_{\nu} \mathbf{A}_{\mu}^{\mathbf{a}} \\
& \text { QED like but field } \mathbf{g}_{\mathbf{s}} \mathrm{f}^{\mathrm{abc}} \mathbf{A}_{\mu}^{\mathbf{b}} \mathbf{A}_{\mu}^{\mathbf{c}} \\
& \begin{array}{c}
\text { non Abelian part gives rise } \\
\text { carries color charge } \\
\text { to gluon self interactions }
\end{array}
\end{aligned}
$$

also in the interaction
"covariant derivative"

$$
\left(\mathbf{D}_{\mu}\right)_{\mathbf{i j}}=\partial_{\mu} \delta_{\mathbf{i j}}+\mathbf{i g}_{\mathbf{s}}\left(\mathbf{t}^{\mathbf{a}}\right)_{\mathbf{i j}} \mathbf{A}_{\mu}^{\mathbf{a}}
$$

8 generators

one more look at the QCD Lagrangian

- Yang and Mills proposed in 1954 that the local "phase rotation" in QED could be generalized to non Abelian groups such as SU(3)

$$
\mathcal{L}=-\frac{1}{4} \mathbf{F}_{\substack{\mathrm{a} \\ \text { gluon field strength } \\ \mathrm{a}=1, \ldots, 8}}^{\mu \nu} \mathbf{F}_{\mu \nu}^{\mathrm{a}}+\sum_{\substack{\text { color index } \\ i=1,2,3}} \bar{\Psi}_{\mathbf{i}}^{(\mathrm{f})}\left(\mathbf{i D} \mathbf{D}_{\mathrm{ij}}-\mathbf{m}_{\mathrm{f}} \delta_{\mathrm{ij}}\right) \Psi_{\mathrm{j}}^{(\mathbf{f})}
$$

- color plays a crucial role (unlike QCD, field strength not gauge invariant)

$$
\begin{array}{r}
\mathbf{F}_{\mu \nu}^{\mathbf{a}}=\partial_{\mu} \mathbf{A}_{\nu}^{\mathbf{a}}-\partial_{\nu} \mathbf{A}_{\mu}^{\mathbf{a}}-g_{\mathbf{s}} \mathbf{f}^{\mathrm{abc}} \mathbf{A}_{\mu}^{\mathbf{b}} \mathbf{A}_{\mu}^{\mathbf{c}} \\
\begin{array}{c}
\text { QED like but field } \\
\text { carries color charge }
\end{array} \text { non Abelian part gives rise } \\
\text { to gluon self interactions }
\end{array}
$$

also in the interaction
"covariant derivative"

$$
\left(\mathbf{D}_{\mu}\right)_{\mathrm{ij}}=\partial_{\mu} \delta_{\mathrm{ij}}+\underset{8 \text { generators }}{\mathbf{i} g_{\mathrm{s}}\left(\mathrm{t}^{\mathrm{a}}\right)_{\mathrm{ij}} \mathbf{A}_{\mu}^{\mathrm{a}} .}
$$

- coupling g_{s} is the only parameter (masses have e-w origin)

take home message for part I the foundations

QCD is based on a simple Lagrangian
 but has a rich phenomenology

QCD is based on the non Abelian gauge group SU(3)

- number of colors and group structure can be tested experimentally
- concept of local gauge invariance dictates interactions
- similarities to QED, yet profound differences (and more to come)
- color leads to self-interactions between "force carrying" gluons
- perturbation theory can be based on a short list of Feynman rules color algebra decouples and can be performed separately
- color factors can be expressed in terms of two Casimirs: C_{A} and C_{F}

Part II
the QCD toolbox
asymptotic freedom, IR safety,
QCD final state, factorization

dichotomy of QCD

the gauge principle is elegant and powerful but any theory must ultimately stand (or fall) by its success (or failure)

QCD is the theory of strong interactions

- how can we make use of perturbative methods?

dichotomy of QCD

the gauge principle is elegant and powerful but any theory must ultimately stand (or fall) by its success (or failure)

QCD is the theory of strong interactions

- how can we make use of perturbative methods?
confinement

non-perturbative
structure of hadrons
e.g. through lattice QCD

asymptotic freedom

hard scattering
cross sections and
renormalization group
with perturbative methods

dichotomy of QCD

the gauge principle is elegant and powerful but any theory must ultimately stand (or fall) by its success (or failure)

QCD is the theory of strong interactions

- how can we make use of perturbative methods?

non-perturbative

asymptotic freedom

hard scattering cross sections and
renormalization group
structure of hadrons
e.g. through lattice QCD
with perturbative methods

dichotomy of QCD

the gauge principle is elegant and powerful but any theory must ultimately stand (or fall) by its success (or failure)

QCD is the theory of strong interactions

- how can we make use of perturbative methods?

non-perturbative
structure of hadrons
e.g. through lattice QCD

asymptotic freedom

hard scattering cross sections and
renormalization group
with perturbative methods interplay
probing hadronic structure with weakly interacting quanta of asymptotic freedom

asymptotic freedom

Gross, Wilczek: Politzer ('73/'74)
Nobel prize 2004
value of strong coupling $\alpha_{s}=g^{2} / 4 \pi$ depends on distance r (i.e., on energy Q)

asymptotic freedom

Gross, Wilczek;
Politzer ('73/'74)
Nobel prize 2004
value of strong coupling $\alpha_{s}=g^{2} / 4 \pi$ depends on distance r (i.e., on energy Q)

asymptotic freedom

Gross, Wilczek:
Politzer ('73/'74)
Nobel prize 2004 value of strong coupling $\alpha_{s}=g^{2} / 4 \pi$ depends on distance r (i.e., on energy Q)

"anti-screening"

asymptotic freedom

value of strong coupling $\alpha_{s}=g^{2} / 4 \pi$ depends on distance r (ie., on energy Q)

"anti-screening"

who wins?

$$
\alpha_{S}\left(Q^{2}\right) \approx \frac{4 \pi}{\left(\frac{11}{3} C_{A}-\frac{4}{3} T_{F} N_{f}\right) \ln \left(Q^{2} / \wedge^{2}\right)} \quad Q \sim 1 / r
$$

asymptotic freedom

value of strong coupling $\alpha_{s}=g^{2} / 4 \pi$ depends on distance r (ie., on energy Q)

"anti-screening"

who wins?

$Q \sim 1 / r$

asymptotic freedom

value of strong coupling $\alpha_{s}=g^{2} / 4 \pi$ depends on distance r (ie., on energy Q)

"anti-screening"

who wins?

$$
\alpha_{S}\left(Q^{2}\right) \approx \frac{4 \pi}{\left(\frac{11}{3} C_{A}-\frac{4}{3} T_{F} N_{f}\right) \ln \left(Q^{2} / \Lambda^{2}\right)}
$$

$Q \sim 1 / r$

asymptotic freedom

value of strong coupling $\alpha_{s}=g^{2} / 4 \pi$ depends on distance r (i.e., on energy Q)

"anti-screening"

who wins?

more formally: the QCD beta function

van Ritbergen, Vermaseren, Larin

$$
Q^{2} \frac{\partial a_{s}}{\partial Q^{2}}=\beta\left(a_{s}\right)=-\begin{gathered}
{ }^{(71), ~ ' 73} \\
-\beta_{0} a_{s}^{2}-\beta_{1} a_{s}^{3}-\beta_{2} a_{s}^{4}-\beta_{3} a_{s}^{5}+\ldots \quad \text { NLO }_{s}^{\prime 27} \quad a_{s} \equiv \frac{\alpha_{s}}{4 \pi} \\
\text { NO }
\end{gathered}
$$

$$
\begin{aligned}
& \beta_{0}=\frac{11}{3} C_{A}-\frac{4}{3} T_{P n_{f}} . \quad \beta_{1}=\frac{34}{3} C_{A}^{2}-4 C_{F} T_{F} n_{f}-\frac{20}{3} C_{A} T_{P n_{f}} \\
& \beta_{2}=\frac{2857}{54} C_{A}^{3}+2 C_{F}^{2} T_{F n_{f}}-\frac{205}{9} C_{F} C_{A} T_{F n_{f}} \\
& -\frac{1415}{27} C_{A}^{2} T_{F} n_{f}+\frac{44}{9} C_{F} T_{F}^{2} n_{f}^{2}+\frac{158}{27} C_{A} T_{F}^{2} n_{f}^{2} \\
& \beta_{s}=O_{A}^{4}\left(\frac{150653}{486}-\frac{44}{9} G_{3}\right)+O_{A}^{3} T_{p} n_{f}\left(-\frac{39143}{81}+\frac{136}{3} G_{3}\right) \\
& +C_{A}^{2} C_{F} T_{P n_{f}}\left(\frac{7073}{243}-\frac{656}{9} C_{3}\right)+C_{A} C_{F}^{2} T_{P n_{f}}\left(-\frac{4204}{27}+\frac{352}{9} C_{3}\right) \\
& +46 C_{F}^{3} T_{F} n_{f}+C_{A}^{2} T_{F}^{2} n_{f}^{2}\left(\frac{7930}{81}+\frac{224}{9} \zeta_{3}\right)+C_{F}^{2} T_{F}^{2} n_{f}^{2}\left(\frac{1352}{27}-\frac{704}{9} \zeta_{3}\right) \\
& +C_{A} C_{F} T_{F}^{2} n_{f}^{2}\left(\frac{17152}{243}+\frac{448}{9} \zeta_{3}\right)+\frac{424}{243} C_{A} T_{F}^{3} n_{f}^{3}+\frac{1232}{243} C_{F} T_{F}^{3} n_{f}^{3}
\end{aligned}
$$

more formally: the QCD beta function

van Ritbergen, Vermaseren, Larin

$$
\begin{aligned}
& \beta_{0}=\frac{11}{3} C_{A}-\frac{4}{3} T_{P n_{f}} . \quad \beta_{1}=\frac{34}{3} C_{A}^{2}-4 C_{F} T_{F n_{f}}-\frac{20}{3} C_{A} T_{P n_{f}} \\
& \beta_{2}=\frac{2857}{54} C_{A}^{3}+2 C_{F}^{2} T_{F n_{f}}-\frac{205}{9} C_{F} C_{A} T_{F n_{f}} \\
& -\frac{1415}{27} C_{A}^{2} T_{F} n_{f}+\frac{44}{9} C_{F} T_{F}^{2} n_{f}^{2}+\frac{158}{27} C_{A} T_{F}^{2} n_{f}^{2} \\
& \beta_{3}=C_{A}^{A}\left(\frac{150653}{486}-\frac{44}{9} G_{3}\right)+C_{A}^{3} T_{p} n_{f}\left(-\frac{39143}{81}+\frac{136}{3} G_{3}\right) \\
& +C_{A}^{2} C_{F} T_{P n_{f}}\left(\frac{7073}{243}-\frac{656}{9} C_{3}\right)+C_{A} C_{F}^{2} T_{P n_{f}}\left(-\frac{4204}{27}+\frac{352}{9} C_{3}\right) \\
& +46 C_{F}^{3} T_{F} n_{f}+C_{A}^{2} T_{F}^{2} n_{f}^{2}\left(\frac{7930}{81}+\frac{224}{9} \zeta_{3}\right)+C_{F}^{2} T_{F}^{2} n_{f}^{2}\left(\frac{1352}{27}-\frac{704}{9} \zeta_{3}\right) \\
& +C_{A} C_{F} T_{F}^{2} n_{f}^{2}\left(\frac{17152}{243}+\frac{448}{9} \zeta_{3}\right)+\frac{424}{243} C_{A} T_{F}^{3} n_{f}^{3}+\frac{1232}{243} C_{F} T_{F}^{3} n_{f}^{3}
\end{aligned}
$$

solve LO equation: $\int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d a_{s}}{a_{s}^{2}}=-\beta_{0} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d Q^{2}}{Q^{2}}$

more formally: the QCD beta function

van Ritbergen, Vermaseren, Larin

$$
\begin{aligned}
& \beta_{0}=\frac{11}{3} C_{A}-\frac{4}{3} T_{P n_{f}} . \quad \beta_{1}=\frac{34}{3} C_{A}^{2}-4 C_{F} T_{P} n_{f}-\frac{20}{3} C_{A} T_{P} n_{f} \\
& \beta_{2}=\frac{2857}{54} C_{A}^{3}+2 C_{F}^{2} T_{F} n_{f}-\frac{205}{9} C_{F} C_{A} T_{F} n_{f} \\
& -\frac{1415}{27} C_{A}^{2} T_{F} n_{f}+\frac{44}{9} C_{F} T_{F}^{2} n_{f}^{2}+\frac{158}{27} C_{A} T_{F}^{2} n_{f}^{2} \\
& \beta_{3}=C_{A}^{4}\left(\frac{150653}{486}-\frac{44}{9} G_{3}\right)+C_{A}^{3} T_{p} n_{f}\left(-\frac{39143}{81}+\frac{136}{3} G_{3}\right) \\
& +C_{A}^{2} C_{F} T_{P n_{f}}\left(\frac{7073}{243}-\frac{656}{9} C_{3}\right)+C_{A} C_{F}^{2} T_{P n_{f}}\left(-\frac{4204}{27}+\frac{352}{9} C_{3}\right) \\
& +46 C_{F}^{3} T_{F} n_{f}+C_{A}^{2} T_{F}^{2} n_{f}^{2}\left(\frac{7930}{81}+\frac{224}{9} \zeta_{3}\right)+C_{F}^{2} T_{F}^{2} n_{f}^{2}\left(\frac{1352}{27}-\frac{704}{9} \zeta_{3}\right) \\
& +C_{A} C_{F} T_{F}^{2} n_{f}^{2}\left(\frac{17152}{243}+\frac{448}{9} \zeta_{3}\right)+\frac{424}{243} C_{A} T_{F}^{3} n_{f}^{3}+\frac{1232}{243} C_{F} T_{F}^{3} n_{f}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& +n_{f}^{2} \frac{d_{F}^{201} d_{d_{k}}^{201}}{N_{A}}\left(-\frac{704}{9}+\frac{512}{3} G_{3}\right) \quad O(50000) \text { diagrams! }
\end{aligned}
$$

solve $L O$ equation: $\int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d a_{s}}{a_{s}^{2}}=-\beta_{0} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d Q^{2}}{Q^{2}}$

$$
\begin{aligned}
& \Leftrightarrow a_{s}\left(\mu^{2}\right)=\frac{a_{s}\left(\mu_{0}^{2}\right)}{1+a_{s}\left(\mu_{0}^{2}\right) \beta_{0} \log \left(\mu^{2} / \mu_{0}^{2}\right)} \\
& a_{s}\left(\Lambda^{2}\right)=\infty \\
& \Leftrightarrow a_{s}\left(\mu^{2}\right)=\frac{1}{\beta_{0} \log \left(\mu^{2} / \Lambda^{2}\right)}
\end{aligned}
$$

more formally: the QCD beta function

van Ritbergen, Vermaseren, Larin

$$
\begin{aligned}
& \beta_{0}=\frac{11}{3} C_{A}-\frac{4}{3} T_{P} n_{f}, \quad \beta_{1}=\frac{34}{3} C_{A}^{2}-4 C_{F} T_{F} n_{f}-\frac{20}{3} C_{A} T_{F} n_{f} \\
& \beta_{2}=\frac{2857}{54} C_{A}^{3}+2 C_{F}^{2} T_{F n_{f}}-\frac{205}{9} C_{F} C_{A} T_{F n_{f}} \\
& -\frac{1415}{27} C_{A}^{2} T_{F} n_{f}+\frac{44}{9} C_{F} T_{F}^{2} n_{f}^{2}+\frac{158}{27} C_{A} T_{F}^{2} n_{f}^{2} \\
& \beta_{3}=C_{A}^{4}\left(\frac{150653}{486}-\frac{44}{9} G_{3}\right)+C_{A}^{3} T_{F n_{f}}\left(-\frac{39143}{81}+\frac{136}{3} G_{3}\right) \\
& +C_{A}^{2} C_{F} T_{P n_{f}}\left(\frac{7073}{243}-\frac{656}{9} C_{3}\right)+C_{A} C_{F}^{2} T_{F n_{f}}\left(-\frac{4204}{27}+\frac{352}{9}<_{3}\right) \\
& +46 C_{F}^{3} T_{F} n_{f}+C_{A}^{2} T_{F}^{2} n_{f}^{2}\left(\frac{7930}{81}+\frac{224}{9} \zeta_{3}\right)+C_{F}^{2} T_{F}^{2} n_{f}^{2}\left(\frac{1352}{27}-\frac{704}{9} \zeta_{3}\right) \\
& +C_{A} C_{F} T_{F}^{2} n_{f}^{2}\left(\frac{17152}{243}+\frac{448}{9} \zeta_{3}\right)+\frac{424}{243} C_{A} T_{F}^{3} n_{f}^{3}+\frac{1232}{243} C_{F} T_{F}^{3} n_{f}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& +n_{f}^{2} \frac{d_{F}^{201} d_{d_{F}}^{201}}{N_{A}}\left(-\frac{704}{9}+\frac{512}{3} G_{3}\right) \quad O(50000) \text { diagrams! }
\end{aligned}
$$

solve LO equation: $\int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d a_{s}}{a_{s}^{2}}=-\beta_{0} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d Q^{2}}{Q^{2}}$

$$
\Leftrightarrow a_{s}\left(\mu^{2}\right)=\frac{a_{s}\left(\mu_{0}^{2}\right)}{1+a_{s}\left(\mu_{0}^{2}\right) \beta_{0} \log \left(\mu^{2} / \mu_{0}^{2}\right)}
$$

tells us how a_{s} varies with scale but not its absolute value at μ_{0}

$$
\begin{aligned}
& a_{s}\left(\Lambda^{2}\right)=\infty \\
& \quad \Leftrightarrow a_{s}\left(\mu^{2}\right)=\frac{1}{\beta_{0} \log \left(\mu^{2} / \Lambda^{2}\right)}
\end{aligned}
$$

consistent picture from many observables

confinement
asymp. freedom
exp. evidence for $\log \left(Q^{2}\right)$
fall-off is persuasive

upshot: a strongly interacting theory at long-distance can become weakly interacting at short-distance

Is this enough to explain the success of the parton model and PQCD ?
upshot: a strongly interacting theory at long-distance can become weakly interacting at short-distance

Is this enough to explain the success of the parton model and PQCD ?

asymptotic freedom "only" enables us to compute interactions of quarks and gluons at short-distance

- detectors are a long-distance away
- experiments only see hadrons not free partons
upshot: a strongly interacting theory at long-distance can become weakly interacting at short-distance

Is this enough to explain the success of the parton model and $p Q C D$?

NO!

asymptotic freedom "only" enables us to compute interactions of quarks and gluons at short-distance

- detectors are a long-distance away
- experiments only see hadrons not free partons
to establish the crucial connection between theory and experiment we need two more things:
- infrared safety
- factorization
upshot: a strongly interacting theory at long-distance can become weakly interacting at short-distance

Is this enough to explain the success of the parton model and $p Q C D$?

NO!

asymptotic freedom "only" enables us to compute interactions of quarks and gluons at short-distance

- detectors are a long-distance away
- experiments only see hadrons not free partons
to establish the crucial connection between theory and experiment we need two more things:
- infrared safety
- factorization
let's study electron-positron annihilation to see what this is all about ...

$\mathbf{e}^{+} \mathbf{e}^{-}$annihilation: the QCD guinea pig

most of the hadronic events at CERN-LEP had two back-to-back jets

jet: pencil-like collection of hadrons

- jets resemble features of underlying 2->2 hard process $e^{+} e^{-} \rightarrow q \bar{q}$

- angular distribution of jet axis w.r.t. beam axis as predicted for spin- $\frac{1}{2}$ quarks

$\mathbf{e}^{+} \mathbf{e}^{-}$annihilation: the QCD guinea pig

most of the hadronic events at CERN-LEP had two back-to-back jets

jet: pencil-like collection of hadrons

- jets resemble features of underlying 2->2 hard process $e^{+} e^{-} \rightarrow q \bar{q}$

- angular distribution of jet axis w.r.t. beam axis as predicted for spin- $\frac{1}{2}$ quarks

jets play major role in hadron-hadron collisions at TeVatron, RHIC, LHC

$\mathbf{e}^{+} \mathbf{e}^{-}$annihilation: three-jet events

 about 10% of the events had a third jetfirst discovered at
DESY-PETRA in 1979

- jets resemble features of underlying 2->3 hard process $e^{+} e^{-} \rightarrow q \bar{q} g$
- 10% rate consistent with $\alpha_{s} \simeq 0.1$ (determination of a_{s})
- angular distribution of jets w.r.t. beam axis as expected for spin-1 gluons

recipe for quantitative calculations

(1) identify the final-state of interest and draw all relevant Feynman diagrams
(2) use $\operatorname{SU}(3)$ algebra to take care of $Q C D$ color factors
(3) compute the rest of the diagram using "Diracology" traces of gamma matrices, spinors, ...
(4) to turn squared matrix elements into a cross section we need to

- account for the available phase space (momentum d.o.f. in final-state)
- integrate out not observed d.o.f.
- normalize by incoming flux

recipe for quantitative calculations

(1) identify the final-state of interest and draw all relevant Feynman diagrams
(2) use $\operatorname{SU}(3)$ algebra to take care of $Q C D$ color factors
(3) compute the rest of the diagram using "Diracology"
traces of gamma matrices, spinors, ...
(4) to turn squared matrix elements into a cross section we need to

- account for the available phase space (momentum d.o.f. in final-state)
- integrate out not observed d.o.f.
- normalize by incoming flux
but wait ... experiments do not see free quarks and gluons

hadronization

recipe for quantitative calculations

(1) identify the final-state of interest and draw all relevant Feynman diagrams
(2) use $\operatorname{SU}(3)$ algebra to take care of $Q C D$ color factors
(3) compute the rest of the diagram using "Diracology" traces of gamma matrices, spinors, ...
(4) to turn squared matrix elements into a cross section we need to

- account for the available phase space (momentum d.o.f. in final-state)
- integrate out not observed d.o.f.
- normalize by incoming flux
but wait ... experiments do not see free quarks and gluons

energetic partons

hadronization

will find that most "stuff" is observed in the directions of produced quarks \& gluons parton-hadron duality

bunch of automated LO tools

- LO estimates of cross sections are practically a solved problem
- many useful fully automated tools available (limitations for high multiplicities)

ALPGEN
 M. L. Mangano et al.
 http://alpgen.web.cern.ch/alpgen/

AMEGIC++

CompHEP

HELAC

F. Krauss et al.

http://projects.hepforge.org/sherpa/dokuwiki/doku.php
E. Boos et al.
http://comphep.sinp.msu.ru/
C. Papadopoulos, M. Worek
http://helac-phegas.web.cern.ch/helac-phegas/helac-phegas.html
Madgraph
F. Maltoni, T. Stelzer
http://madgraph.hep.uiuc.edu/
let's have a closer look at the R-ratio already encountered in Part I

$$
R \equiv \frac{e^{+} e^{-} \rightarrow \text { hadrons }}{e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}} \propto N_{c} \sum_{f} Q_{f}^{2}
$$

let's have a closer look at the R-ratio already encountered in Part I

$$
R \equiv \frac{e^{+} e^{-} \rightarrow \text { hadrons }}{e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}} \propto N_{c} \sum_{f} Q_{f}^{2}
$$

at LO described by:

"read against the arrow"
spinors for
external lines

exploring the QCD final-state: $\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{3}$ partons

simplest process in pQCD: $\begin{gathered}e^{+} e^{-} \rightarrow q \bar{q} g \\ \text { (all partons massless) }\end{gathered}$

$$
q^{2}=s
$$

exploring the QCD final-state: $\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{3}$ partons

simplest process in PQCD: $e^{+} e^{-} \rightarrow q \bar{q} g$
(all partons massless)

some kinematics first:

- energy fractions \& conservation:

$$
x_{i} \equiv \frac{2 p_{i} \cdot q}{s}=\frac{E_{i}}{\sqrt{s} / 2}
$$

$$
\sum x_{i}=\frac{2\left(\sum p_{i}\right) \cdot q}{s}=2
$$

exploring the QCD final-state: $\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{3}$ partons

simplest process in PQCD: $e^{+} e^{-} \rightarrow q \bar{q} g$ (all partons massless)

some kinematics first:

- energy fractions \& conservation:

$$
x_{i} \equiv \frac{2 p_{i} \cdot q}{s}=\frac{E_{i}}{\sqrt{s} / 2} \quad \sum x_{i}=\frac{2\left(\sum p_{i}\right) \cdot q}{s}=2
$$

- angles:

$$
\begin{aligned}
2 p_{1} \cdot p_{3}= & \left(p_{1}+p_{3}\right)^{2}=\left(q-p_{2}\right)^{2}=s-2 q \cdot p_{2} \\
\Leftrightarrow \quad & x_{1} x_{3}\left(1-\cos \theta_{13}\right)=2\left(1-x_{2}\right) \\
& \text { (other angles by cycl. permutation) }
\end{aligned}
$$

exploring the QCD final-state: $\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{3}$ partons

simplest process in PQCD: $e^{+} e^{-} \rightarrow q \bar{q} g$ (all partons massless)

some kinematics first:

- energy fractions \& conservation:

$$
x_{i} \equiv \frac{2 p_{i} \cdot q}{s}=\frac{E_{i}}{\sqrt{s} / 2} \quad \sum x_{i}=\frac{2\left(\sum p_{i}\right) \cdot q}{s}=2
$$

- angles:

$$
\begin{aligned}
2 p_{1} \cdot p_{3}= & \left(p_{1}+p_{3}\right)^{2}=\left(q-p_{2}\right)^{2}=s-2 q \cdot p_{2} \\
\Leftrightarrow & x_{1} x_{3}\left(1-\cos \theta_{13}\right)=2\left(1-x_{2}\right)
\end{aligned}
$$

$$
\Rightarrow 0 \leq x_{i} \leq 1
$$

allowed values for x_{i} lie within a triangle

collinear and soft configurations

at the boundaries of phase space we encounter special kinematic configurations:

- "edges": two partons collinear

$$
\text { e.g. } \theta_{13} \rightarrow 0 \Leftrightarrow x_{2} \rightarrow 1
$$

- "corners": one parton soft

$$
p_{i}^{\mu} \rightarrow 0 \Leftrightarrow x_{i} \rightarrow 0
$$

collinear and soft configurations

at the boundaries of phase space we encounter special kinematic configurations:

collinear and soft configurations

at the boundaries of phase space we encounter special kinematic configurations:

> collinear singularities:
> $x_{1} \rightarrow 1$: gluon $|\mid$ antiquark
> $x_{2} \rightarrow 1$: gluon $|\mid$ quark

collinear and soft configurations

at the boundaries of phase space we encounter special kinematic configurations:

soft gluon singularity: collinear singularities:

$$
\begin{array}{ll}
x_{3} \rightarrow 0: p_{3} \rightarrow 0 & x_{1} \rightarrow 1: \text { gluon } \| \text { antiquark } \\
\leftrightarrow x_{1} \rightarrow 1 \& x_{2} \rightarrow 1 & x_{2} \rightarrow 1: \text { gluon } \| \text { quark }
\end{array}
$$

general nature of these singularities

soft/collinear limit:
internal propagator goes on-shell
here: $\frac{1}{\left(p_{1}+p_{3}\right)^{2}}=\frac{1}{2 E_{1} E_{3}\left(1-\cos \theta_{13}\right)}$

general nature of these singularities

soft/collinear limit:
internal propagator goes on-shell
here: $\frac{1}{\left(p_{1}+p_{3}\right)^{2}}=\frac{1}{2 E_{1} E_{3}\left(1-\cos \theta_{13}\right)}$

explicit calculation yields:

$$
d \sigma \propto \int \underset{\substack{\text { phase space } \\
\text { factor }}}{E_{3} d E_{3} d \theta_{13}^{2}}\left[\frac{\theta_{13}}{E_{3} \theta_{13}^{2}}\right]^{2}=\int \frac{d E_{3}}{E_{3}} \frac{d \theta_{13}^{2}}{\theta_{13}^{2}}| |^{2} \text { logarithmically } \begin{gathered}
\text { divergent }
\end{gathered}
$$

note: "soft quarks" (here $E_{1} \rightarrow 0$) never lead to singularities (canceled by numerator)

general nature of these singularities

soft/collinear limit:
internal propagator goes on-shell
here: $\frac{1}{\left(p_{1}+p_{3}\right)^{2}}=\frac{1}{2 E_{1} E_{3}\left(1-\cos \theta_{13}\right)}$
explicit calculation yields:

$$
d \sigma \propto \int \underset{\substack{\text { phase space } \\ \text { factor }}}{E_{3} d E_{3} d \theta_{13}^{2}}\left[\frac{\theta_{13}}{E_{3} \theta_{13}^{2}}\right]^{\text {from } \mid M^{2}}<\int \frac{d E_{3}}{E_{3}} \frac{d \theta_{13}^{2}}{\theta_{13}^{2}} \underset{\text { logarithmically }}{\text { divergent }}
$$

note: "soft quarks" (here $E_{1} \rightarrow 0$) never lead to singularities (canceled by numerator)
this structure is generic for QCD tree graphs:

Do we observe a breakdown of pQCD already here?

Do we observe a breakdown of pQCD already here?

NO! Perturbative QCD only tries to tell us that we are not doing the right thing!
Our cross section is not defined properly, it is not infrared safe!

Do we observe a breakdown of pQCD already here?

NO! Perturbative QCD only tries to tell us that we are not doing the right thing!
Our cross section is not defined properly, it is not infrared safe!
the lesson is:
whenever the $2->(n+1)$ kinematics collapses to an effective 2->n parton kinematics due to

- the emission of a soft gluon
- a collinear splitting of a parton into two partons
we have to be much more careful and work a bit harder!
this applies to all pQCD calculations

towards a space-time picture of the singularities

interlude: light-cone coordinates

$$
\begin{aligned}
p^{ \pm} & \equiv\left(p^{0} \pm p^{3}\right) / \sqrt{2} \\
p^{2} & =2 p^{+} p^{-}-\vec{p}_{T}^{2} \\
p^{-} & =\left(p_{T}^{2}+m^{2}\right) / 2 p^{+}
\end{aligned}
$$

towards a space-time picture of the singularities
interlude: light-cone coordinates

$$
\begin{aligned}
p^{ \pm} & \equiv\left(p^{0} \pm p^{3}\right) / \sqrt{2} \\
p^{2} & =2 p^{+} p^{-}-\vec{p}_{T}^{2} \\
p^{-} & =\left(p_{T}^{2}+m^{2}\right) / 2 p^{+}
\end{aligned}
$$

particle with large momentum in
$+p^{3}$ direction has large p^{+}and small p^{-}

towards a space-time picture of the singularities
interlude: light-cone coordinates

$$
\begin{aligned}
p^{ \pm} & \equiv\left(p^{0} \pm p^{3}\right) / \sqrt{2} \\
p^{2} & =2 p^{+} p^{-}-\vec{p}_{T}^{2} \\
p^{-} & =\left(p_{T}^{2}+m^{2}\right) / 2 p^{+}
\end{aligned}
$$

particle with large momentum in $+p^{3}$ direction has large p^{+}and small p^{-}

Fourier transform
momentum space $\longleftrightarrow e^{i p \cdot x}$ coordinate space

$$
\begin{gathered}
p \cdot x=p^{+} x^{-}+p^{-} x^{+}-\vec{p}_{T} \cdot \vec{x}_{T} \\
-->x^{-} \text {is conjugate to } \mathrm{p}^{+} \text {and } x^{+} \text {is conjugate to } \mathrm{p}^{-}
\end{gathered}
$$

space-time picture of the singularities

What does this imply for our propagator going on-shell?

space-time picture of the singularities

What does this imply for our propagator going on-shell?

- define $k \equiv p_{1}+p_{3}$
- use coordinates with k^{+}large and $\mathrm{k}_{\mathrm{T}}=0$
- $k^{2}=2 k^{+} k^{-} \simeq 0$ corresponds to soft/collinear limit $\rightarrow k^{-}$small

space-time picture of the singularities

What does this imply for our propagator going on-shell?

- define $k \equiv p_{1}+p_{3}$
- use coordinates with k^{+}large and $\mathrm{k}_{\mathrm{T}}=0$
- $k^{2}=2 k^{+} k^{-} \simeq 0$ corresponds to soft/collinear limit $\rightarrow k^{-}$small

How far does the internal on-shell parton travel in space-time?

space-time picture of the singularities

What does this imply for our propagator going on-shell?

- define $k \equiv p_{1}+p_{3}$
- use coordinates with k^{+}large and $\mathrm{k}_{\mathrm{T}}=0$
- $k^{2}=2 k^{+} k^{-} \simeq 0$ corresponds to soft/collinear limit $\rightarrow k^{-}$small

How far does the internal on-shell parton travel in space-time?

$$
\begin{array}{rlr}
k^{+} & \simeq \sqrt{s} / 2 & \text { large } \\
k^{-} & \simeq\left(\vec{k}_{T}^{2}+k^{2}\right) / \sqrt{s} & \text { small } \\
& \not \text { Fourier } & \\
x^{+} & \simeq 1 / k^{-} \text {large } & \\
x^{-} \simeq 1 / k^{+} \text {small }
\end{array}
$$

space-time picture of the singularities

What does this imply for our propagator going on-shell?

- define $k \equiv p_{1}+p_{3}$
- use coordinates with k^{+}large and $\mathrm{k}_{\mathrm{T}}=0$
- $k^{2}=2 k^{+} k^{-} \simeq 0$ corresponds to soft/collinear limit $\rightarrow k^{-}$small

How far does the internal on-shell parton travel in space-time?

$$
\begin{array}{rlr}
k^{+} & \simeq \sqrt{s} / 2 & \text { large } \\
k^{-} & \simeq\left(\vec{k}_{T}^{2}+k^{2}\right) / \sqrt{s} & \text { small } \\
& \text { Fourier } & \\
x^{+} & \simeq 1 / k^{-} \text {large } & \\
x^{-} \simeq 1 / k^{+} \text {small }
\end{array}
$$

upshot: soft/collinear singularities arise from interactions that happen a long time after the creation of the quark/antiquark pair

upshot: soft/collinear singularities arise from interactions that happen a long time after the creation of the quark/antiquark pair

 pQCD is not applicable at long-distanceupshot: soft/collinear singularities arise from interactions that happen a long time after the creation of the quark/antiquark pair

pQCD is not applicable at long-distance

SO What to do with the long-distance physics associated with these soft/collinear singularities?
Is there any hope that we can predict some reliable numbers to compare with experiment?
upshot: soft/collinear singularities arise from interactions that happen a long time after the creation of the quark/antiquark pair

pQCD is not applicable at long-distance

SO What to do with the long-distance physics associated with these soft/collinear singularities?
Is there any hope that we can predict some reliable numbers to compare with experiment?
to answer this, we have to formulate the concept of infrared safety

infrared-safe observables

formal definition of infrared safety:
study inclusive observables which do not distinguish between
$(n+1)$ partons and n partons in the soft/collinear limit, i.e., are insensitive to what happens at long-distance

infrared-safe observables

formal definition of infrared safety:
study inclusive observables which do not distinguish between $(n+1)$ parton and n parton in the soft/collinear limit, i.e., are insensitive to what happens at long-distance

infrared-safe observables

formal definition of infrared safety:
study inclusive observables which do not distinguish between $(n+1)$ partons and n partons in the soft/collinear limit, i.e., are insensitive to what happens at long-distance

$$
\begin{aligned}
\mathcal{I} & =\frac{1}{2!} \int d \Omega_{2} \frac{d \sigma[2]}{d \Omega_{2}} \mathcal{S}_{2}\left(p_{1}, p_{2}\right)
\end{aligned}
$$

infrared safe iff [for $\lambda=0$ (soft) and $0<\lambda<1$ (collinear)]

$$
\mathcal{S}_{n+1}\left(p_{1}, \ldots,(1-\lambda) p_{n}, \lambda p_{n}\right)=\mathcal{S}_{n}\left(p_{1}, \ldots, p_{n}\right)
$$

physics behind formal IR safety requirement

cannot resolve soft and collinear partons experimentally
\rightarrow intuitively reasonable that a theoretical calculation can be infrared safe as long as it is insensitive to long-distance physics (not a priori guaranteed though)

physics behind formal IR safety requirement

cannot resolve soft and collinear partons experimentally
\rightarrow intuitively reasonable that a theoretical calculation can be infrared safe as long as it is insensitive to long-distance physics (not a priori guaranteed though)
at a level of a PQCD calculation (e.g. $e^{+} e^{-}$at $O\left(\alpha_{s}\right)$, i.e., $n=2$)

$$
\mathcal{S}_{n+1}\left(p_{1}, \ldots,(1-\lambda) p_{n}, \lambda p_{n}\right)=\mathcal{S}_{n}\left(p_{1}, \ldots, p_{n}\right)
$$

\rightarrow singularities of real gluon emission and virtual corrections cancel in the sum

example I: total cross section $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons

simplest case:

$$
\mathcal{S}_{n}\left(p_{1}, \ldots, p_{n}\right)=1
$$

fully inclusive quantity \longleftrightarrow we don't care what happens at long-distance

- the produced partons will all hadronize with probability one
- we do not observe a specific type of hadron (i.e. sum over a complete set of states)
- we sum over all degenerate kinematic regions

example I: total cross section $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons

simplest case:

$$
\mathcal{S}_{n}\left(p_{1}, \ldots, p_{n}\right)=1
$$

fully inclusive quantity \leftrightarrow we don't care what happens at long-distance

- the produced partons will all hadronize with probability one
- we do not observe a specific type of hadron (i.e. sum over a complete set of states)
- we sum over all degenerate kinematic regions

infrared safe by definition

R ratio:
$R=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}=N_{c} \sum e_{q}^{2}\left(1+\triangle_{\mathrm{QCD}}\right) \quad$ need to add up real and

example I: total cross section $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons

simplest case:

$$
\mathcal{S}_{n}\left(p_{1}, \ldots, p_{n}\right)=1
$$

fully inclusive quantity \leftrightarrow we don't care what happens at long-distance

- the produced partons will all hadronize with probability one
- we do not observe a specific type of hadron (i.e. sum over a complete set of states)
- we sum over all degenerate kinematic regions

infrared safe by definition

R ratio:

$$
\begin{aligned}
& \text { Rratio: } \\
& R=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}=N_{c} \sum e_{q}^{2}\left(1+\triangle_{\mathrm{QCD}}\right)
\end{aligned}
$$

need to add up real and virtual corrections
not IR safe:

- energy of hardest gluon in event
- multiplicity of gluons or 1-gluon cross section

example II: n-jet cross section

experiment
QCD theory

jets are the central link between theory and experiment
example II: n-jet cross section
experiment
QCD theory

jets are the central link between theory and experiment

But what is a jet exactly?

example II: n-jet cross section

$$
\underset{\text { infrared safety }}{\stackrel{\text { approx. equivalent }}{\rightleftarrows}}
$$

real physical event with 3 hadron-jets
theor. jet event
with 3 parton-jets
jets are the central link between theory and experiment

But what is a jet exactly?

jet "measure"/"algorithm": classify the final-state of hadrons (exp.) or partons (th.) according to the number of jets
well inside: 3-jets near edges: 2-jets

example II: n-jet cross section

$$
\underset{\text { infrared safety }}{\stackrel{\text { approx. equivalent }}{\longrightarrow}}
$$

real physical event with 3 hadron-jets
theor. jet event
with 3 parton-jets
jets are the central link between theory and experiment

But what is a jet exactly?

seeing vs. defining jets

clearly (?) a 2-jet event

seeing vs. defining jets

clearly (?) a 2-jet event

how many jets do you count?

seeing vs. defining jets

clearly (?) a 2-jet event

how many jets do you count?

seeing vs. defining jets

clearly (?) a 2-jet event

how many jets do you count?

seeing vs. defining jets

clearly (?) a 2-jet event

how many jets do you count?
the "best" jet definition does not exist - construction is unavoidably ambiguous basically two issues:

- which particles/partons get put together in a jet \rightarrow jet algorithm
- how to combine their momenta
\rightarrow recombination scheme

basic requirements for a jet definition

projection to jets should be resilient to QCD \& detector effects

basic requirements for a jet definition

projection to jets should be resilient to QCD \& detector effects

- adding an infinit. soft parton should not change the number of jets

basic requirements for a jet definition

projection to jets should be resilient to QCD \& detector effects

- adding an infinit. soft parton should not change the number of jets

- replacing a parton by a collinear pair of partons should not change the number of jets

basic requirements for a jet definition

projection to jets should be resilient to QCD \& detector effects

- adding an infinit. soft \dagger parton should not change the number of jets

磈

- replacing a parton by a collinear pair of partons should not change the number of jets

basic requirements for a jet definition

projection to jets should be resilient to QCD \& detector effects

- adding an infinit. sof \dagger parton should not change the number of jets

- replacing a parton by a collinear pair of partons should not change the number of jets

(anti-) k_{T} algorithms are the method of choice these days

idea behind parton shower MC programs

- we have seen that emission of soft/collinear partons is favored
- we know exactly how and when it occurs (process-independent)

this will provide the basis for a "parton shower"

- main idea: seek for an approx. result such that soft/collinear enhanced terms are included to all orders emissions are probabilistic (needed to set up an event generator)

popular parton shower programs

T. Sjöstrand et al.
 http://home.thep.lu.se/~torbjorn/Pythia.html

G. Corcella et al.
http://hepwww.rl.ac.uk/theory/seymour/herwig/
HERWIG++

SHERPA

S. Gieseke et al.
http://projects.hepforge.org/herwig/
F. Krauss et al.
http://projects.hepforge.org/sherpa/dokuwiki/doku.php

ISAJET

H. Baer et al.
http://www.nhn.ou.edu/~isajet/

- fail in high-multiplicity events or when large-angle emissions are relevant
- do better than fixed order calculations at lowish scales
- matching with NLO matrix elements well advanced: MC@NLO, POWHEG, ...

summary so far

pQCD cannot give all the answers but it does cover a lot of ground despite the "long-distance problem"

summary so far

pQCD cannot give all the answers but it does cover a lot of ground despite the "long-distance problem"
the concept of factorization will allow us to compute cross sections for a much wider class of processes than considered so far (involving hadrons in the initial and/or final state) HERA, TeVatron, JLab, RHIC, LHC, ..., EIC

hadrons: a new "long distance problem"

consider the one-particle inclusive cross section:

$$
\frac{d \sigma\left(e^{+} e^{-} \rightarrow \pi+X\right)}{d E_{\pi}}
$$

not infrared safe by itself!

hadrons: a new "long distance problem"

consider the one-particle inclusive cross section:

$$
\frac{d \sigma\left(e^{+} e^{-} \rightarrow \pi+X\right)}{d E_{\pi}}
$$

not infrared safe by itself!
problem: sensitivity to long-distance physics related to particle emission along with identified/observed hadrons (leads to uncanceled singularities -> meaningless)

hadrons: a new "long distance problem"

consider the one-particle inclusive cross section:

$$
\frac{d \sigma\left(e^{+} e^{-} \rightarrow \pi+X\right)}{d E_{\pi}}
$$

not infrared safe by itself!
problem: sensitivity to long-distance physics related to particle emission along with identified/observed hadrons (leads to uncanceled singularities -> meaningless)
general feature of QCD processes with observed (=identified) hadrons in the initial and/or final state

factorization

strategy: try to factorize the physical observable into a calculable infrared safe and a non-calculable but universal piece
how does it work?

$$
d \sigma=\frac{4 \alpha^{2}}{s Q^{2}} \frac{d^{3} \vec{p}}{2|\vec{p}|} L^{\substack{\text { Ieptonic } \\ \text { Tensor }}}{ }_{\substack{\text { hadronic } \\ \text { tensor }}} W_{\mu \nu}
$$

factorization

strategy: try to factorize the physical observable into a calculable infrared safe and a non-calculable but universal piece
how does it work?

$$
d \sigma=\frac{4 \alpha^{2}}{s Q^{2}} \frac{d^{3} \vec{p}}{2|\vec{p}|} L^{\substack{\text { leppenonic } \\ \text { tenor }}}{ }_{c}^{\mu \nu} W_{\mu \nu}
$$

hadronic tensor $\mathbf{W}_{\mu v}$:

square of the hadronic scattering amplitude summed over all final-states X except $A(p)$

factorization

strategy: try to factorize the physical observable into a calculable infrared safe and a non-calculable but universal piece
how does it work?

hadronic tensor $\mathrm{W}_{\mu \nu}$: square of the hadronic scattering amplitude summed over all final-states X except $A(p)$

need to factorize long-distance physics

concept of factorization - pictorial sketch

factorization = isolating and absorbing infrared singularities accompanying observed hadrons

concept of factorization - pictorial sketch

factorization = isolating and absorbing infrared singularities accompanying observed hadrons

pictorial sketch:
fragmentation functions D_{a}^{h}
contains all long-distance interactions hence not calculable but universal physical interpretation: probability to find a hadron carrying a certain momentum of parent parton hard scattering \widehat{F}_{a}
contains only short-distance physics amenable to PQCD calculations

concept of factorization - pictorial sketch

factorization = isolating and absorbing infrared singularities accompanying observed hadrons

pictorial sketch: fragmentation functions D_{a}^{h}
contains all long-distance interactions
hence not calculable but universal
physical interpretation:
probability to find a hadron carrying
a certain momentum of parent parton
scattering \widehat{F}_{a}
tains only short-distance physics
nable to pQCD calculations
aside: fragmentation fcts. play an important role in learning about nucleon (spin) structure from semi-inclusive DIS data by COMPASS \& HERMES or from hadron production at RHIC

factorization - detailed picture

more explicitly

$$
\begin{aligned}
& \frac{d \sigma}{d z d \cos \theta}=\frac{\pi \alpha^{2}}{2 s}\left[F_{A}^{T}(z, Q)\left(1+\cos ^{2} \theta\right)+F_{A}^{L}(z, Q) \sin ^{2} \theta\right]
\end{aligned}
$$

where

$$
F_{A}^{T, L}(z, Q)=\sum_{a} \widehat{F}_{a}^{T, L}\left(z, \frac{Q}{\mu_{f}}\right) \otimes D_{a}^{h}\left(z, \mu_{f}\right)
$$

factorization - detailed picture

more explicitly

$$
\lambda=L, T\left(\text { pol. of } \gamma^{\star}\right)
$$

$$
\frac{d \sigma}{d z d \cos \theta}=\frac{\pi \alpha^{2}}{2 s}\left[F_{A}^{T}(z, Q)\left(1+\cos ^{2} \theta\right)+F_{A}^{L}(z, Q) \sin ^{2} \theta\right]
$$

where

$$
F_{A}^{T, L}(z, Q)=\sum_{a} \hat{F}_{a}^{T, L}\left(z, \frac{Q}{\mu_{f}}\right) \otimes D_{a}^{h}\left(z, \mu_{f}\right)
$$

factorization scale (arbitrary!)
characterizes the boundary between short and long-distance physics physics indep. of $\mu_{f} \rightarrow$ renormalization group

factorization - detailed picture

"convolution"
$f(x) \otimes g(x) \equiv \int_{x}^{1} \frac{d y}{y} f\left(\frac{x}{y}\right) g(y)$
factorization scale (arbitrary!)
characterizes the boundary between short and long-distance physics physics indep. of $\mu_{f} \rightarrow$ renormalization group

factorization - detailed picture

take home message for part II the QCD toolbox

- QCD is a non-Abelian gauge theory: gluons are self-interacting \rightarrow asymptotic freedom (large Q), confinement (small Q)
- QCD calculations are singular when any two partons become collinear or a gluon becomes soft; basis for parton shower MCs
- choose infrared/collinear safe observables for comparison between experiment and perturbative QCD
- jets (= cluster of partons): best link between theory and exp.; needs a proper IR safe jet definition in theory and experiment
- factorization allows to deal with hadronic processes introduces arbitrary scale -> leads to RGEs

early microscopes

the World's most powerful microscopes

Part III

inward bound: "femto-spectroscopy"

QCD initial state, partons, DIS, factorization, renormalization group, hadron-hadron collisions

partons in the initial state: the DIS process

start with the simplest process: deep-inelastic scattering

relevant kinematics:

$$
x=\frac{Q^{2}}{2 p \cdot q} \quad y=\frac{p \cdot q}{p \cdot k} \quad Q^{2}=x y s
$$

- Q^{2} : photon virtuality \leftrightarrow resolution $r \sim 1 / Q$ at which the proton is probed
- x : long. momentum fraction of struck parton in the proton
- y : momentum fraction lost by electron in the proton rest frame

partons in the initial state: the DIS process

start with the simplest process: deep-inelastic scattering

relevant kinematics:

$$
x=\frac{Q^{2}}{2 p \cdot q} \quad y=\frac{p \cdot q}{p \cdot k} \quad Q^{2}=x y s
$$

- Q^{2} : photon virtuality \leftrightarrow resolution $r \sim 1 / Q$ at which the proton is probed
- x : long. momentum fraction of struck parton in the proton
- y : momentum fraction lost by electron in the proton rest frame

> "deep-inelastic": $Q^{2} \gg 1 \mathrm{GeV}^{2}$
> "scaling limit": $Q^{2} \rightarrow \infty, x$ fixed
a typical DIS event
(Hil)

$$
\mathrm{Q}^{2}=25030 \mathrm{GeV}^{2} ; \quad \mathrm{y}=0: 56 ; \quad \mathrm{x}=0.50
$$

analysis of DIS: $1^{\text {st }}$ steps

electroweak theory tells us how the virtual vector boson (here γ^{*}) couples:

analysis of DIS: $1^{\text {st }}$ steps

electroweak theory tells us how the virtual vector boson (here γ^{*}) couples:

spin S

$$
d \sigma=\frac{4 \alpha^{2}}{s} \frac{d^{3} \vec{k}^{\prime}}{2\left|\vec{k}^{\prime}\right|} \frac{1}{Q^{4}} L^{\mu \nu}(k, q, s) W_{\mu \nu}(p, q, S)
$$

leptonic tensor from QED
hadronic tensor contains information about hadronic structure
parity \& Lorentz inv., hermiticity $W_{v u}^{v}=W_{\mu v}{ }^{*}$, current conservation $q_{\mu} W_{\mu v}=0$ dictate:

$$
\begin{aligned}
& \mathcal{W}^{\mu \nu}(P, q, S)=\frac{1}{4 \pi} \int d^{4} z \mathrm{e}^{i q \cdot z}\langle P, S| J_{\mu}(z) J_{\nu}(0)|P, S\rangle \\
&=\left(-g^{\mu \nu}+\frac{q^{\mu} q^{\nu}}{q^{2}}\right) F_{1}\left(x, Q^{2}\right)+\left(P^{\mu}-\frac{P \cdot q}{q^{2}} q^{\mu}\right)\left(P^{\nu}-\frac{P \cdot q}{q^{2}} q^{\nu}\right) F_{2}\left(x, Q^{2}\right) \\
&+i M \varepsilon^{\mu \nu \rho \sigma} q_{\rho}\left[\frac{S_{\sigma}}{P \cdot q} g_{1}\left(x, Q^{2}\right)+\frac{S_{\sigma}(P \cdot q)-P_{\sigma}(S \cdot q)}{(P \cdot q)^{2}} g_{2}\left(x, Q^{2}\right)\right]
\end{aligned}
$$

analysis of DIS: $1^{\text {st }}$ steps

electroweak theory tells us how the virtual vector boson (here γ^{*}) couples:

spin S

$$
d \sigma=\frac{4 \alpha^{2}}{s} \frac{d^{3} \vec{k}^{\prime}}{2\left|\overrightarrow{k^{\prime}}\right|} \frac{1}{Q^{4}} L^{\mu \nu}(k, q, s) W_{\mu \nu}(p, q, S)
$$

leptonic tensor from QED
hadronic tensor contains information about hadronic structure
parity \& Lorentz inv., hermiticity $W^{v u}=W_{\mu v}{ }^{*}$, current conservation $q_{\mu} W_{\mu v}=0$ dictate:

$$
\begin{aligned}
\mathcal{W}^{\mu \nu}(P, q, S)= & \frac{1}{4 \pi} \int d^{4} z \mathrm{e}^{i q \cdot z}\langle P, S| J_{\mu}(z) J_{\nu}(0)|P, S\rangle \\
= & \left(-g^{\mu \nu}+\frac{q^{\mu} q^{\nu}}{q^{2}}\right) F_{1}\left(x, Q^{2}\right)^{\circ}+\left(P^{\mu}-\frac{P \cdot q}{q^{2}} q^{\mu}\right)\left(P^{\nu}-\frac{P \cdot q}{q^{2}} q^{\nu}\right) F_{2}\left(x, Q^{2}\right)^{\prime} \\
& +i M \varepsilon^{\mu \nu \rho \sigma} q_{\rho}\left[\frac{S_{\sigma}}{P \cdot q} g_{1}\left(x, Q^{2}\right)+\frac{S_{\sigma}(P \cdot q)-P_{\sigma}(S \cdot q)}{(P \cdot q)^{2}} g_{2}\left(x, Q^{2}\right)\right]
\end{aligned}
$$

analysis of DIS: $1^{\text {st }}$ steps

electroweak theory tells us how the virtual vector boson (here γ^{*}) couples:

spin S

leptonic tensor from QED
hadronic tensor contains information about hadronic structure
parity \& Lorentz inv., hermiticity $W^{v \mu}=W_{\mu v}{ }^{*}$, current conservation $q_{\mu} W^{\mu v}=0$ dictate:

$$
\begin{aligned}
& \mathcal{W}^{\mu \nu}(P, q, S)=\frac{1}{4 \pi} \int d^{4} z \mathrm{e}^{i q \cdot z}\langle P, S| J_{\mu}(z) J_{\nu}(0)|P, S\rangle \\
& =\left(-g^{\mu \nu}+\frac{q^{\mu} q^{\nu}}{q^{2}}\right) F_{1}\left(x, Q^{2}\right)^{2}+\left(P^{\mu}-\frac{P \cdot q}{q^{2}} q^{\mu}\right)\left(P^{\nu}-\frac{P \cdot q}{q^{2}} q^{\nu}\right) F_{2}\left(x, Q^{2}\right)^{\prime} \\
& \quad+i M \varepsilon^{\mu \nu \rho \sigma} q_{\rho}\left[\frac{S_{\sigma}}{P \cdot q^{\prime}}\left(x, Q^{2}\right)+\frac{S_{\sigma}(P \cdot q)-P_{\sigma}(S \cdot q)}{(P \cdot q)^{2}}\right. \\
& \text { pol. structure fcts. } g_{1,2}-\text { measure } \mathbf{W}(P, \mathbf{q}, \mathbf{S})-\mathbf{W}(P, q,-\mathbf{S})!
\end{aligned}
$$

DIS in the naïve parton model

let's do a quick calculation: consider electron-quark scattering

DIS in the naïve parton model

let's do a quick calculation: consider electron-quark scattering
find $\bar{\sum}|\mathcal{M}|^{2}=2 \mathrm{e}_{\mathrm{q}}^{2} \mathrm{e}^{4} \frac{\hat{\mathrm{~s}}^{2}+\hat{\mathrm{u}}^{2}}{\hat{\mathrm{t}}^{2}}$

DIS in the naïve parton model

let's do a quick calculation: consider electron-quark scattering
find $\bar{\sum}|\mathcal{M}|^{2}=2 \mathrm{e}_{\mathrm{q}}^{2} \mathrm{e}^{4} \frac{\hat{\mathrm{~s}}^{2}+\hat{\mathrm{u}}^{2}}{\hat{\mathrm{t}}^{2}}$
with the usual
$\hat{\mathbf{s}}=\left(\mathbf{k}+\mathbf{p}_{\mathbf{q}}\right)^{2}$
$\hat{\mathbf{t}}=\left(\mathbf{k}-\mathbf{k}^{\prime}\right)^{2}$

$$
\hat{\mathrm{u}}=\left(\mathrm{p}_{\mathrm{q}}-\mathrm{k}^{\prime}\right)^{2}
$$

DIS in the naïve parton model

let's do a quick calculation: consider electron-quark scattering
find $\bar{\sum}|\mathcal{M}|^{2}=2 \mathrm{e}_{\mathrm{q}}^{2} \mathrm{e}^{4} \frac{\hat{\mathrm{~s}}^{2}+\hat{\mathrm{u}}^{2}}{\hat{\mathrm{t}}^{2}}$
next: express by usual DIS variables

$$
x=\frac{Q^{2}}{2 p \cdot q} \quad y=\frac{p \cdot q}{p \cdot k} \quad Q^{2}=x y s
$$

DIS in the naïve parton model

let's do a quick calculation: consider electron-quark scattering
find $\bar{\sum}|\mathcal{M}|^{2}=2 \mathrm{e}_{\mathrm{q}}^{2} \mathrm{e}^{4} \frac{\hat{\mathrm{~s}}^{2}+\hat{\mathrm{u}}^{2}}{\hat{\mathrm{t}}^{2}}$ next: express by usual DIS variables

$$
x=\frac{Q^{2}}{2 p \cdot q} \quad y=\frac{p \cdot q}{p \cdot k} \quad Q^{2}=x y s
$$

with the usual
$\hat{\mathbf{s}}=\left(\mathbf{k}+\mathbf{p}_{\mathbf{q}}\right)^{2}$
$\hat{\mathbf{t}}=\left(\mathbf{k}-\mathbf{k}^{\prime}\right)^{2}$

$$
\hat{\mathrm{u}}=\left(\mathrm{p}_{\mathrm{q}}-\mathrm{k}^{\prime}\right)^{2}
$$

find

$$
\begin{aligned}
& \hat{\mathbf{s}}=\xi \mathbf{Q}^{2} /(\mathbf{x} \mathbf{y})=\xi \mathbf{s} \\
& \hat{\mathbf{t}}=\mathbf{q}^{2}=-\mathbf{Q}^{2} \\
& \hat{\mathbf{u}}=\hat{\mathbf{s}}(\mathbf{y}-\mathbf{1})
\end{aligned}
$$

DIS in the naïve parton model

let's do a quick calculation: consider electron-quark scattering
find $\bar{\sum}|\mathcal{M}|^{2}=2 \mathrm{e}_{\mathrm{q}}^{2} \mathrm{e}^{4} \frac{\hat{\mathrm{~s}}^{2}+\hat{\mathrm{u}}^{2}}{\hat{\mathrm{t}}^{2}}$ next: express by usual DIS variables

$$
x=\frac{Q^{2}}{2 p \cdot q} \quad y=\frac{p \cdot q}{p \cdot k} \quad Q^{2}=x y s \quad \text { find }
$$

and use the massless $2->2$ cross section

$$
\frac{\mathrm{d} \sigma}{\mathrm{dt}}=\frac{1}{16 \pi \hat{\mathrm{~s}}^{2}} \bar{\sum}|\mathcal{M}|^{2}
$$

with the usual
$\hat{\mathrm{s}}=\left(\mathrm{k}+\mathrm{p}_{\mathrm{q}}\right)^{2}$
$\hat{\mathbf{t}}=\left(\mathbf{k}-\mathbf{k}^{\prime}\right)^{2}$
$\hat{\mathrm{u}}=\left(\mathrm{p}_{\mathrm{q}}-\mathrm{k}^{\prime}\right)^{2}$
$\hat{\mathbf{s}}=\xi \mathbf{Q}^{2} /(\mathbf{x y})=\xi \mathrm{s}$
$\hat{\mathbf{t}}=\mathrm{q}^{2}=-\mathrm{Q}^{2}$
$\hat{\mathbf{u}}=\hat{\mathbf{s}}(\mathbf{y}-\mathbf{1})$

DIS in the naïve parton model

let's do a quick calculation: consider electron-quark scattering
find $\bar{\sum}|\mathcal{M}|^{2}=2 \mathrm{e}_{\mathrm{q}}^{2} \mathrm{e}^{4} \frac{\hat{\mathrm{~s}}^{2}+\hat{\mathrm{u}}^{2}}{\hat{\mathrm{t}}^{2}}$ next: express by usual DIS variables

$$
x=\frac{Q^{2}}{2 p \cdot q} \quad y=\frac{p \cdot q}{p \cdot k} \quad Q^{2}=x y s \quad \text { find }
$$

$$
\begin{aligned}
& \hat{\mathbf{s}}=\left(\mathbf{k}+\mathbf{p}_{\mathbf{q}}\right)^{2} \\
& \hat{\mathbf{t}}=\left(\mathbf{k}-\mathbf{k}^{\prime}\right)^{2} \\
& \hat{\mathbf{u}}=\left(\mathbf{p}_{\mathbf{q}}-\mathbf{k}^{\prime}\right)^{2}
\end{aligned}
$$

$$
\hat{\mathbf{s}}=\xi \mathbf{Q}^{2} /(\mathbf{x y})=\xi \mathbf{s}
$$

$$
\hat{\mathbf{t}}=\mathbf{q}^{2}=-\mathbf{Q}^{2}
$$

$$
\hat{\mathbf{u}}=\hat{\mathbf{s}}(\mathbf{y}-\mathbf{1})
$$

and use the massless 2->2 cross section

$$
\frac{\mathrm{d} \sigma}{\mathrm{dt}}=\frac{1}{16 \pi \hat{\mathrm{~s}}^{2}} \bar{\sum}|\mathcal{M}|^{2} \quad \text { to obtain } \quad \frac{\mathrm{d} \sigma}{\mathrm{~d} \mathrm{Q}^{2}}=\frac{2 \pi \alpha^{2} \mathrm{e}_{\mathrm{q}}^{2}}{\mathrm{Q}^{4}}\left[1+(1-\mathrm{y})^{2}\right]
$$

DIS in the naïve parton model

let's do a quick calculation: consider electron-quark scattering

find $\bar{\sum}|\mathcal{M}|^{2}=2 \mathrm{e}_{\mathrm{q}}^{2} \mathrm{e}^{4} \frac{\hat{\mathrm{~s}}^{2}+\hat{\mathrm{u}}^{2}}{\hat{\mathrm{t}}^{2}}$
with the usual
Mandelstam's

$$
\begin{aligned}
& \hat{\mathbf{s}}=\left(\mathbf{k}+\mathbf{p}_{\mathbf{q}}\right)^{2} \\
& \hat{\mathbf{t}}=\left(\mathbf{k}-\mathbf{k}^{\prime}\right)^{2}
\end{aligned}
$$

next: express by usual DIS variables

$$
\hat{\mathbf{u}}=\left(\mathbf{p}_{\mathbf{q}}-\mathbf{k}^{\prime}\right)^{\mathbf{2}}
$$

$$
x=\frac{Q^{2}}{2 p \cdot q} \quad y=\frac{p \cdot q}{p \cdot k} \quad Q^{2}=x y s \quad \text { find }
$$

$$
\text { and use the massless } 2->2 \text { cross section }
$$

$$
\frac{\mathrm{d} \sigma}{\mathrm{dt}}=\frac{1}{16 \pi \hat{\mathbf{s}}^{2}} \bar{\sum}|\mathcal{M}|^{2} \quad \text { to obtain } \quad \frac{\mathrm{d} \sigma}{\mathrm{dQ}^{2}}=\frac{2 \pi \alpha^{2} \mathrm{e}_{\mathbf{q}}^{2}}{\mathrm{Q}^{4}}\left[1+(1-\mathrm{y})^{2}\right]
$$

next: use on-mass shell constraint

$$
\mathbf{p}_{\mathbf{q}}^{\prime 2}=\left(\mathbf{p}_{\mathbf{q}}+\mathbf{q}\right)^{2}=\mathbf{q}^{2}+2 \mathbf{p}_{\mathbf{q}} \cdot \mathbf{q} \quad=-2 \mathbf{p} \cdot \mathbf{q}(\mathbf{x}-\xi)=\mathbf{0}
$$

this implies that ξ is equal to Bjorken x

DIS in the naïve parton model

let's do a quick calculation: consider electron-quark scattering
find $\bar{\sum}|\mathcal{M}|^{2}=2 \mathrm{e}_{\mathrm{q}}^{2} \mathrm{e}^{4} \frac{\hat{\mathrm{~s}}^{2}+\hat{\mathrm{u}}^{2}}{\hat{\mathrm{t}}^{2}}$ next: express by usual DIS variables

$$
x=\frac{Q^{2}}{2 p \cdot q} \quad y=\frac{p \cdot q}{p \cdot k} \quad Q^{2}=x y s \quad \text { find }
$$

and use the massless $2->2$ cross section

$$
\frac{\mathrm{d} \sigma}{\mathrm{dt}}=\frac{1}{16 \pi \hat{\mathbf{s}}^{2}} \bar{\sum}|\mathcal{M}|^{2} \quad \text { to obtain } \quad \frac{\mathrm{d} \sigma}{\mathrm{dQ}^{2}}=\frac{2 \pi \alpha^{2} \mathrm{e}_{\mathbf{q}}^{2}}{\mathbf{Q}^{4}}\left[1+(1-\mathrm{y})^{2}\right]
$$

next: use on-mass shell constraint

$$
\mathbf{p}_{\mathbf{q}}^{\prime 2}=\left(\mathbf{p}_{\mathbf{q}}+\mathbf{q}\right)^{2}=\mathbf{q}^{2}+2 \mathbf{p}_{\mathbf{q}} \cdot \mathbf{q} \quad=-2 \mathbf{p} \cdot \mathbf{q}(\mathbf{x}-\xi)=\mathbf{0}
$$

this implies that ξ is equal to Bjorken x
to obtain

$$
\frac{\mathrm{d} \sigma}{\mathrm{dxd} \mathbf{Q}^{2}}=\frac{4 \pi \alpha^{2}}{\mathbf{Q}^{4}}\left[1+(1-y)^{2}\right] \frac{1}{2} \mathrm{e}_{\mathbf{q}}^{2} \delta(\mathrm{x}-\xi)
$$

DIS in the naïve parton model cont'd

compare our result

$$
\frac{\mathbf{d} \sigma}{\mathbf{d x d} \mathbf{Q}^{2}}=\frac{4 \pi \alpha^{2}}{\mathbf{Q}^{4}}\left[1+(1-\mathbf{y})^{2}\right] \frac{1}{2} \mathbf{e}_{\mathbf{q}}^{2} \delta(\mathbf{x}-\xi)
$$

to what one obtains with the hadronic tensor (on the quark level)

$$
\frac{\mathrm{d}^{2} \sigma}{\mathrm{dxdQ}}=\frac{4 \pi \alpha^{2}}{\mathrm{Q}^{4}}\left[\left[1+(1-y)^{2}\right] \mathrm{F}_{1}(\mathrm{x})+\frac{(1-\mathrm{y})}{\mathrm{x}}\left(\mathrm{~F}_{2}(\mathrm{x})-2 \mathrm{xF}_{1}(\mathrm{x})\right)\right]
$$

DIS in the naïve parton model cont'd

compare our result

$$
\frac{\mathbf{d} \sigma}{\mathrm{dxd} \mathbf{Q}^{2}}=\frac{\mathbf{4} \pi \alpha^{2}}{\mathbf{Q}^{4}}\left[1+(1-\mathbf{y})^{2}\right] \frac{1}{2} \mathbf{e}_{\mathbf{q}}^{2} \delta(\mathbf{x}-\xi)
$$

to what one obtains with the hadronic tensor (on the quark level)

$$
\frac{\mathrm{d}^{2} \sigma}{\mathrm{dxdQ}}=\frac{4 \pi \alpha^{2}}{\mathrm{Q}^{4}}\left[\left[1+(1-y)^{2}\right] \mathrm{F}_{1}(\mathrm{x})+\frac{(1-\mathrm{y})}{\mathrm{x}}\left(\mathrm{~F}_{2}(\mathrm{x})-2 \mathrm{x} \mathrm{~F}_{1}(\mathrm{x})\right)\right]
$$

and read off

$$
\mathbf{F}_{2}=\mathbf{2} \mathbf{x F}_{\mathbf{1}}=\mathbf{x e}_{\mathbf{q}}^{\mathbf{2}} \delta(\mathbf{x}-\xi)
$$

DIS in the naïve parton model cont'd

compare our result \dagger

$$
\frac{\mathbf{d} \sigma}{\mathbf{d x d Q}}{ }^{2}=\frac{4 \pi \alpha^{2}}{\mathbf{Q}^{4}}\left[1+(1-\mathbf{y})^{2}\right] \frac{1}{2} \mathbf{e}_{\mathbf{q}}^{2} \delta(\mathbf{x}-\xi)
$$

to what one obtains with the hadronic tensor (on the quark level)

$$
\frac{\mathrm{d}^{2} \sigma}{\mathrm{dxdQ}}=\frac{4 \pi \alpha^{2}}{\mathrm{Q}^{4}}\left[\left[1+(1-y)^{2}\right] \mathrm{F}_{1}(\mathrm{x})+\frac{(1-\mathrm{y})}{\mathrm{x}}\left(\mathrm{~F}_{2}(\mathrm{x})-2 \mathrm{x} \mathrm{~F}_{1}(\mathrm{x})\right)\right]
$$

and read off

$$
\mathbf{F}_{2}=\mathbf{2} \mathbf{x F}_{1}=\mathbf{x} \mathbf{e}_{\mathbf{q}}^{2} \delta(\mathbf{x}-\xi)
$$

proton structure functions then obtained by weighting the quark str. fct. with the parton distribution functions (probability to find a quark with momentum ξ)

$$
\begin{aligned}
\mathbf{F}_{2}=2 \times \mathbf{F}_{1} & =\sum_{\mathbf{q}, \mathbf{q}^{\prime}} \int_{0}^{1} \stackrel{\searrow}{\mathrm{~d} \xi} \mathrm{q}(\xi) \mathrm{xe}_{\mathbf{q}}^{2} \delta(\mathrm{x}-\xi) \\
& =\sum_{\mathbf{q}, \mathbf{q}^{\prime}} \mathbf{e}_{\mathbf{q}}^{2} \mathbf{x} \mathbf{q}(\mathbf{x}) \quad \begin{array}{r}
\text { DIS measures the charged-weighted } \\
\text { sum of quarks and antiquarks } \\
\text { "scaling" - no dependence on scale } \mathbf{Q}
\end{array}
\end{aligned}
$$

space-time picture of DIS

this can be best understood in a reference frame where the proton moves very fast and $Q \gg m_{h}$ is big
(recall light-cone kinematics from part II)

4-vector	hadron rest frame	Breit frame
$\left(p^{+}, p^{-}, \vec{p}_{T}\right)$	$\frac{1}{\sqrt{2}}\left(m_{h}, m_{h}, \overrightarrow{0}\right)$	$\frac{1}{\sqrt{2}}\left(\frac{Q}{x}, \frac{x m_{h}^{2}}{Q}, \overrightarrow{0}\right)$
$\left(q^{+}, q^{-}, \vec{q}_{T}\right)$	$\frac{1}{\sqrt{2}}\left(-m_{h} x, \frac{Q^{2}}{m_{h} x}, \overrightarrow{0}\right)$	$\frac{1}{\sqrt{2}}(-Q, Q, \overrightarrow{0})$

space-time picture of DIS

this can be best understood in a reference frame where the proton moves very fast and $Q \gg m_{h}$ is big
(recall light-cone kinematics from part II)

4-vector	hadron rest frame	Breit frame
$\left(p^{+}, p^{-}, \vec{p}_{T}\right)$	$\frac{1}{\sqrt{2}}\left(m_{h}, m_{h}, \overrightarrow{0}\right)$	$\frac{1}{\sqrt{2}}\left(\frac{Q}{x}, \frac{x m_{h}^{2}}{Q}, \overrightarrow{0}\right)$
$\left(q^{+}, q^{-}, \vec{q}_{T}\right)$	$\frac{1}{\sqrt{2}}\left(-m_{h} x, \frac{Q^{2}}{m_{h} x}, \overrightarrow{0}\right)$	$\frac{1}{\sqrt{2}}(-Q, Q, \overrightarrow{0})$

Lorentz boost
in general $\quad\left(a^{+}, a^{-}, \vec{a}_{T}\right) \rightarrow\left(e^{\omega} a^{+}, e^{-\omega_{a}}, \vec{a}_{T}\right)=\left(a^{\prime+}, a^{\prime-}, \vec{a}^{\prime}\right)$
here: $e^{\omega}=Q /\left(x m_{h}\right)$

space-time picture of DIS - cont'd

simple estimate for typical time-scale of interactions among the partons inside a fast-moving hadron:
rest frame: $\Delta x^{+} \sim \Delta x^{-} \sim \frac{1}{m}$
Breit frame: $\quad \Delta x^{+} \sim \frac{1}{m} \frac{Q}{m}=\frac{Q}{m^{2}}$ large

$$
\Delta x^{-} \sim \frac{1}{m} \frac{m}{Q}=\frac{1}{Q} \quad \text { small }
$$

space-time picture of DIS - cont'd

simple estimate for typical time-scale of interactions among the partons inside a fast-moving hadron:
rest frame: $\Delta x^{+} \sim \Delta x^{-} \sim \frac{1}{m}$
Breit frame: $\quad \Delta x^{+} \sim \frac{1}{m} \frac{Q}{m}=\frac{Q}{m^{2}} \quad$ large

$$
\Delta x^{-} \sim \frac{1}{m} \frac{m}{Q}=\frac{1}{Q} \quad \text { small }
$$

> interactions between partons are spread out inside a fast moving hadron
world-lines
of partons

space-time picture of DIS - cont'd

simple estimate for typical time-scale of interactions among the partons inside a fast-moving hadron:
rest frame: $\Delta x^{+} \sim \Delta x^{-} \sim \frac{1}{m}$
Breit frame: $\quad \Delta x^{+} \sim \frac{1}{m} \frac{Q}{m}=\frac{Q}{m^{2}} \quad$ large

$$
\Delta x^{-} \sim \frac{1}{m} \frac{m}{Q}=\frac{1}{Q} \quad \text { small }
$$

> interactions between partons are spread out inside a fast moving hadron
world-lines
of partons

How does this compare with the time-scale of the hard scattering?

foundation of naïve Parton Model

Feynman:
Bjorken, Paschos

Breit frame:
proton moves very fast and $Q \gg m_{h}$ is big

$$
\left(p^{+}, p^{-}, \vec{p}_{T}\right)=\frac{1}{\sqrt{2}}\left(\frac{Q}{x}, \frac{x m_{h}^{2}}{Q}, \overrightarrow{0}\right) \quad\left(q^{+}, q^{-}, \vec{q}_{T}\right)=\frac{1}{\sqrt{2}}(-Q, Q, \overrightarrow{0})
$$

struck quark on-shell

$$
\xi \mathrm{p}^{+}+\mathrm{q}^{+}=0 \leftrightarrow \xi=x
$$

foundation of naïve Parton Model

Feynman:
Bjorken, Paschos

Breit frame:
proton moves very fast and $Q \gg m_{h}$ is big
$\left(p^{+}, p^{-}, \vec{p}_{T}\right)=\frac{1}{\sqrt{2}}\left(\frac{Q}{x}, \frac{x m_{h}^{2}}{Q}, \overrightarrow{0}\right) \quad\left(q^{+}, q^{-}, \vec{q}_{T}\right)=\frac{1}{\sqrt{2}}(-Q, Q, \overrightarrow{0})$
space-time picture:

$$
\xi \mathrm{p}^{+}+\mathrm{q}^{+}=0 \leftrightarrow \xi=x
$$

foundation of naïve Parton Model

Feynman:
Bjorken, Paschos

Breit frame:

proton moves very fast and $Q \gg m_{h}$ is big
$\left(p^{+}, p^{-}, \vec{p}_{T}\right)=\frac{1}{\sqrt{2}}\left(\frac{Q}{x}, \frac{x m_{h}^{2}}{Q}, \overrightarrow{0}\right) \quad\left(q^{+}, q^{-}, \vec{q}_{T}\right)=\frac{1}{\sqrt{2}}(-Q, Q, \overrightarrow{0})$

space-time picture:

$$
\xi \mathrm{p}^{+}+\mathrm{q}^{+}=0 \leftrightarrow \xi=x
$$

foundation of naïve Parton Model

Feynman:
Bjorken, Paschos

Breit frame:

proton moves very fast and $Q \gg m_{h}$ is big
$\left(p^{+}, p^{-}, \vec{p}_{T}\right)=\frac{1}{\sqrt{2}}\left(\frac{Q}{x}, \frac{x m_{h}^{2}}{Q}, \overrightarrow{0}\right) \quad\left(q^{+}, q^{-}, \vec{q}_{T}\right)=\frac{1}{\sqrt{2}}(-Q, Q, \overrightarrow{0})$

space-time picture:

$$
\xi \mathrm{p}^{+}+\mathrm{q}^{+}=0 \leftrightarrow \xi=x
$$

foundation of naïve Parton Model

Feynman:
Bjorken, Paschos

Breit frame:

proton moves very fast and $Q \gg m_{h}$ is big

$$
\left(p^{+}, p^{-}, \vec{p}_{T}\right)=\frac{1}{\sqrt{2}}\left(\frac{Q}{x}, \frac{x m_{h}^{2}}{Q}, \overrightarrow{0}\right) \quad\left(q^{+}, q^{-}, \vec{q}_{T}\right)=\frac{1}{\sqrt{2}}(-Q, Q, \overrightarrow{0})
$$

space-time picture:

foundation of naïve Parton Model

Feynman:

Breit frame:

proton moves very fast and $Q \gg m_{h}$ is big

$$
\left(p^{+}, p^{-}, \vec{p}_{T}\right)=\frac{1}{\sqrt{2}}\left(\frac{Q}{x}, \frac{x m_{h}^{2}}{Q}, \overrightarrow{0}\right) \quad\left(q^{+}, q^{-}, \vec{q}_{T}\right)=\frac{1}{\sqrt{2}}(-Q, Q, \overrightarrow{0})
$$

struck quark on-shell

space-time picture:

upshot:

- partons are free during the hard interaction
- lepton scatters off free partons incoherently
- convenient to introduce momentum fractions

$$
0<\xi_{i} \equiv p_{i}^{+} / p^{+}<1
$$

sum rules and isospin

for the quark distributions in a proton there are several sum rules to obey

$$
\int_{0}^{1} d x \sum_{i} x f_{i}^{(p)}(x)=1
$$

$$
\int_{0}^{1} d x\left(f_{u}^{(p)}(x)-f_{u}^{(p)}(x)\right)=2
$$

$$
\int_{0}^{1} d x\left(f_{d}^{(p)}(x)-f_{d}^{(p)}(x)\right)=1
$$

momentum sum rule quarks share proton momentum
flavor sum rules conservation of quantum numbers

$$
\int_{0}^{1} d x\left(f_{s}^{(p)}(x)-f_{s}^{(p)}(x)\right)=0
$$

sum rules and isospin

for the quark distributions in a proton there are several sum rules to obey

$$
\begin{array}{cc}
\int_{0}^{1} d x \sum_{i} x f_{i}^{(p)}(x)=1 & \begin{array}{c}
\text { momentum sum rule } \\
\text { quarks share proton momentum }
\end{array} \\
\int_{0}^{1} d x\left(f_{u}^{(p)}(x)-f_{u}^{(p)}(x)\right)=2 & \\
\int_{0}^{1} d x\left(f_{d}^{(p)}(x)-f_{d}^{(p)}(x)\right)=1 & \text { flavor sum rules } \\
\int_{0}^{1} d x\left(f_{s}^{(p)}(x)-f_{s}^{(p)}(x)\right)=0 &
\end{array}
$$

isospin symmetry relates a neutron to a proton (just u and d interchanged)

$$
F_{2}^{n}(x)=x\left(\frac{1}{9} d_{n}(x)+\frac{4}{9} u_{n}(x)\right)=x\left(\frac{4}{9} d_{p}(x)+\frac{1}{9} u_{p}(x)\right)
$$

- measuring both allows to determine up and d^{p} separately
- note: CC DIS couples to weak charges and separates quarks and antiquarks

momentum sum rule in the naïve parton model

u_{v}	0.267
$\mathrm{~d}_{\mathrm{v}}$	0.111
u_{s}	0.066
$\mathrm{~d}_{\mathrm{s}}$	0.053
$\mathrm{~s}_{\mathrm{s}}$	0.033
c_{c}	0.016
total	0.546

momentum sum rule in the naïve parton model

u_{v}	0.267
$\mathrm{~d}_{\mathrm{v}}$	0.111
u_{s}	0.066
$\mathrm{~d}_{\mathrm{s}}$	0.053
$\mathrm{~s}_{\mathrm{s}}$	0.033
c_{c}	0.016
total	0.546

half of the momentum is missing
gluons!

momentum sum rule in the naïve parton model

$$
\iint_{0} \Delta \sum_{x} \cdot p^{(1)}(\theta)=1
$$

u_{v}	0.267
$\mathrm{~d}_{\mathrm{v}}$	0.111
u_{s}	0.066
$\mathrm{~d}_{\mathrm{s}}$	0.053
$\mathrm{~s}_{\mathrm{s}}$	0.033
c_{c}	0.016
total	0.546

half of the momentum is missing

gluons!

but they don't carry electric/weak charge how can they couple?

momentum sum rule in the naïve parton model

u_{v}	0.267
$\mathrm{~d}_{\mathrm{v}}$	0.111
u_{s}	0.066
$\mathrm{~d}_{\mathrm{s}}$	0.053
$\mathrm{~s}_{\mathrm{s}}$	0.033
c_{c}	0.016
total	0.546

-> we need to discuss QCD radiative corrections to the naïve picture

momentum sum rule in the naïve parton model

u_{v}	0.267
$\mathrm{~d}_{\mathrm{v}}$	0.111
u_{s}	0.066
$\mathrm{~d}_{\mathrm{s}}$	0.053
$\mathrm{~s}_{\mathrm{s}}$	0.033
c_{c}	0.016
total	0.546

-> we need to discuss QCD radiative corrections to the naïve picture gluons will enter the game and everything will become scale dependent

Naïve parton model vs. experiment
HERA F_{2}

find strong scaling violations

Naïve parton model vs. experiment
HERA F_{2}

Naïve parton model vs. experiment
HERA F_{2}

Naïve parton model vs. experiment
HERA F_{2}

DIS in the QCD improved parton model

we got a long way (parton model) without invoking QCD now we have to study QCD dynamics in DIS

- this leads to similar problems already encountered in $e^{+} e^{-}$

DIS in the QCD improved parton model

we got a long way (parton model) without invoking QCD now we have to study QCD dynamics in DIS

- this leads to similar problems already encountered in $e^{+} e^{-}$ let's try to compute the $O\left(\alpha_{s}\right)$ QCD corrections to the naive picture

α_{s} corrections to the LO process

photon-gluon fusion

DIS in the QCD improved parton model

we got a long way (parton model) without invoking QCD now we have to study QCD dynamics in DIS

- this leads to similar problems already encountered in $e^{+} e^{-}$ let's try to compute the $O\left(\alpha_{s}\right)$ QCD corrections to the naive picture

α_{s} corrections to the LO process

photon-gluon fusion
caveat: have to expect divergencies (recall $2^{\text {nd }}$ part) related to soft/collinear emission or from loops we cannot calculate with infinities \rightarrow introduce a "regulator" and remove it in the end

general structure of the $O\left(\alpha_{s}\right)$ corrections

using small (artificial) quark/gluon masses as regulator we obtain:

$$
\begin{aligned}
\left.\frac{d^{2} \widehat{\sigma}}{d x d Q^{2}}\right|_{F_{2}} & \equiv \hat{F}_{2}^{q} \\
& =e_{q}^{2} x\left[\delta(1-x)+\frac{\alpha_{s}\left(\mu_{r}\right)}{4 \pi}\left[P_{q q}(x) \ln \frac{Q^{2}}{m_{g}^{2}}+C_{2}^{q}(x)\right]\right]
\end{aligned}
$$

$$
\begin{aligned}
\left.\frac{d^{2} \hat{\sigma}}{d x d Q^{2}}\right|_{F_{2}} & \equiv \hat{F}_{2}^{g} \\
& =\sum_{q} e_{q}^{2} x\left[0+\frac{\alpha_{s}\left(\mu_{r}\right)}{4 \pi}\left[P_{q g}(x) \ln \frac{Q^{2}}{m_{q}^{2}}+C_{2}^{g}(x)\right]\right]
\end{aligned}
$$

general structure of the $O\left(\alpha_{s}\right)$ corrections

using small (artificial) quark/gluon masses as regulator we obtain:

$$
\begin{aligned}
\left.\frac{d^{2} \widehat{\sigma}}{d x d Q^{2}}\right|_{F_{2}} & \equiv \hat{F}_{2}^{q} \\
& =e_{q}^{2} x\left[\delta(1-x)+\frac{\alpha_{s}\left(\mu_{r}\right)}{4 \pi}\left[P_{q q}(x) \ln \frac{Q^{2}}{m_{g}^{2}}+C_{2}^{q}(x)\right]\right]
\end{aligned}
$$

$$
\left.\frac{d^{2} \widehat{\sigma}}{d x d Q^{2}}\right|_{F_{2}} \equiv \hat{F}_{2}^{g}
$$

$$
=\sum_{q} e_{q}^{2} x\left[0+\frac{\alpha_{s}\left(\mu_{r}\right)}{4 \pi}\left[P_{q g}(x) \ln \frac{Q^{2}}{m_{q}^{2}}+C_{2}^{g}(x)\right]\right]
$$

general structure of the $O\left(\alpha_{s}\right)$ corrections

using small (artificial) quark/gluon masses as regulator we obtain:

$$
\begin{aligned}
&\left.\frac{d^{2} \hat{\sigma}}{d x d Q^{2}}\right|_{F_{2}} \equiv \hat{F}_{2}^{q} \\
&= e_{q}^{2} x\left[\delta(1-x)+\frac{\alpha_{s}\left(\mu_{r}\right)}{4 \pi}\left[P_{q q}(x)\left(\ln \frac{Q^{2}}{m_{g}^{2}}+C_{2}^{q}(x)\right]\right]\right. \\
& \begin{array}{l}
\text { large logarithms } \\
\text { (collinear emission) }
\end{array} \\
&\left.\frac{d^{2} \hat{\sigma}}{d x d Q^{2}}\right|_{F_{2}} \equiv \hat{F}_{2}^{g} \\
& \sum_{q} e_{q}^{2} x\left[0+\frac{\alpha_{s}\left(\mu_{r}\right)}{4 \pi}\left[P_{q g}(x)\left(\ln \frac{Q^{2}}{m_{q}^{2}}+C_{2}^{g}(x)\right]\right]\right.
\end{aligned}
$$

general structure of the $O\left(\alpha_{s}\right)$ corrections

using small (artificial) quark/gluon masses as regulator we obtain:

$$
\begin{aligned}
& \left.\frac{d^{2}}{d x d Q^{2}}\right|_{F_{2}} \equiv \hat{F}_{2}^{q} \\
& \left.=e_{q}^{2} x\left[\begin{array}{l}
\delta(1-x)+\frac{\alpha_{s}\left(\mu_{r}\right)}{4 \pi}\left[P_{q q}(x) \ln ^{2} m_{2}^{2}\right. \\
m_{9}^{q}\left(C_{2}(x)\right.
\end{array}\right]\right] \\
& \text { large logarithms } \\
& \text { (collinear emission) } \\
& \text { finite } \\
& \text { coefficients } \\
& \left.\frac{d^{2} \hat{\sigma}}{d x d Q^{2}}\right|_{F_{2}} \equiv \hat{F}_{2}^{g} \\
& =\sum_{q} e_{q}^{2} x\left[0+\frac{\alpha_{s}\left(\mu_{r}\right)}{4 \pi}\left[P_{q g}(x)\left(\ln ^{\frac{Q^{2}}{m_{q}^{2}}}\right)+C_{2}^{g}(x)\right]\right]
\end{aligned}
$$

general structure of the $O\left(\alpha_{s}\right)$ corrections

using small (artificial) quark/gluon masses as regulator we obtain:

$$
\begin{aligned}
\left.\frac{d^{2} \hat{\sigma}}{d x d Q^{2}}\right|_{F_{2}} \equiv & \hat{F}_{2}^{q} \\
= & e_{q}^{2} x\left[\begin{array} { l }
{ \delta (1 - x) + \frac { \alpha _ { s } (\mu _ { r }) } { 4 \pi } [P _ { q q } (x) (\operatorname { l n } \frac { Q ^ { 2 } } { m _ { g } ^ { 2 } } + C _ { 2 } ^ { q } (x))] } \\
{ } \\
{ } \\
{ } \\
{ \text { large logarithms } } \\
{ \frac { d ^ { 2 } \hat { \sigma } } { d x d Q ^ { 2 } } | _ { F _ { 2 } } \equiv } \\
{ = }
\end{array} \hat { F } _ { 2 } ^ { g } e _ { q } ^ { 2 } x \left[0+\frac{\alpha_{s}\left(\mu_{r}\right)}{4 \pi}\left[P_{q g}(x)\left(\ln \frac{Q^{2}}{m_{q}^{2}}++C_{2}^{g}(x)\right]\right]\right.\right.
\end{aligned}
$$

to see what happens to the logs we have to convolute our results with the PDFs

factorization of collinear singularities

for the quark part we obtain:

$$
\begin{gathered}
F_{2}\left(x, Q^{2}\right)=x \sum_{a=q, \bar{q}} e_{q}^{2}\left[f_{a, 0}(x)+\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d \xi}{\xi}\right. \\
\left.f_{a, 0}(x)\left[P_{q q}\left(\frac{x}{\xi}\right) \ln \frac{Q^{2}}{m_{g}^{2}}+C_{2}^{q}\left(\frac{x}{\xi}\right)\right]\right] \\
\text { from }
\end{gathered}
$$

similarly for
the gluonic part

factorization of collinear singularities

for the quark part we obtain:

similarly for the gluonic part
$f_{a, 0}(x)$: unmeasurable "bare" (= infinite) parton densities; need to be re-defined (= renormalized) to make them physical

factorization of collinear singularities

for the quark part we obtain:

$$
\begin{aligned}
F_{2}\left(x, Q^{2}\right)=x \sum_{a=q, \bar{q}} e_{q}^{2}\left[f_{a, 0}(x)+\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d \xi}{\xi}\right. \\
\left.f_{a, 0}(x)\left[P_{q q}\left(\frac{x}{\xi}\right) \ln \frac{Q^{2}}{m_{g}^{2}}+C_{2}^{q}\left(\frac{x}{\xi}\right)\right]\right] \begin{array}{l}
\text { similarly for } \\
\text { the gluonic part }
\end{array} \\
\text { from }
\end{aligned}
$$

$f_{a, 0}(x)$: unmeasurable "bare" (= infinite) parton densities; need to be re-defined (= renormalized) to make them physical at order α_{s} : (can be generalized to all orders)
$f_{a}\left(x, \mu_{f}^{2}\right) \equiv f_{a, 0}(x)+\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d \xi}{\xi} f_{a, 0}(\xi) P_{q q}\left(\frac{x}{\xi}\right) \ln \left(\frac{\mu_{f}^{2}}{m_{g}^{2}}\right)+z_{q q}$

factorization of collinear singularities

for the quark part we obtain:

$$
\begin{aligned}
F_{2}\left(x, Q^{2}\right)=x \sum_{a=q, \bar{q}} e_{q}^{2}\left[f_{a, 0}(x)+\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d \xi}{\xi}\right. \\
\left.f_{a, 0}(x)\left[P_{q q}\left(\frac{x}{\xi}\right) \ln \frac{Q^{2}}{m_{g}^{2}}+C_{2}^{q}\left(\frac{x}{\xi}\right)\right]\right] \begin{array}{l}
\text { similarly for } \\
\text { the gluonic part }
\end{array} \\
\text { from }
\end{aligned}
$$

$f_{a, 0}(x)$: unmeasurable "bare" (= infinite) parton densities; need to be re-defined (= renormalized) to make them physical at order α_{s} : (can be generalized to all orders)
$f_{a}\left(x, \mu_{f}^{2}\right) \equiv f_{a, 0}(x)+\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d \xi}{\xi} f_{a, 0}(\xi) P_{q q}\left(\frac{x}{\xi}\right) \ln \left(\frac{\mu_{f}^{2}}{m_{g}^{2}}\right)+z_{q q}$
absorbs all long-distance singularities at a factorization scale μ_{f} into $f_{a, 0}$

factorization of collinear singularities

for the quark part we obtain:
$f_{a, 0}(x)$: unmeasurable "bare" (= infinite) parton densities; need to be re-defined (= renormalized) to make them physical at order α_{s} : (can be generalized to all orders)

$$
f_{a}\left(x, \mu_{f}^{2}\right) \equiv f_{a, 0}(x)+\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d \xi}{\xi} f_{a, 0}(\xi) P_{q q}\left(\frac{x}{\xi}\right) \ln \left(\frac{\mu_{f}^{2}}{m_{g}^{2}}\right)+z_{q q}
$$

absorbs all long-distance singularities at a factorization scale μ_{f} into $f_{\mathrm{a}, 0}$
physical/renormalized densities: not calculable in pQCD but universal

general structure of a factorized cross section

putting everything together, keeping only terms up to α_{s} :

$$
\begin{aligned}
F_{2}\left(x, Q^{2}\right)= & x \sum_{a=q, \bar{q}} e_{q}^{2} \int_{x}^{1} \frac{d \xi}{\xi} f_{a}\left(\xi, \mu_{f}^{2}\right) \\
& {\left[\delta\left(1-\frac{x}{\xi}\right)+\frac{\alpha_{s}\left(\mu_{r}\right)}{2 \pi}\left[P_{q q}\left(\frac{x}{\xi}\right) \ln \frac{Q^{2}}{\mu_{f}^{2}}+\left(C_{2}^{q}-z_{q q}\right)\left(\frac{x}{\xi}\right)\right]\right] }
\end{aligned}
$$

short-distance "Wilson coefficient"

general structure of a factorized cross section

putting everything together, keeping only terms up to α_{s} :
both, pdf's and the short-dist. coefficient depend on μ_{f} (choice of μ_{f} : shifting terms between long- and short-distance parts)

$$
\begin{aligned}
F_{2}\left(x, Q^{2}\right)= & x \sum_{a=q, \bar{q}} e_{q}^{2} \int_{x}^{1} \frac{d \xi}{\xi} f_{a}\left(\xi\left(\mu_{f}^{2}\right)\right. \\
& {\left[\delta\left(1-\frac{x}{\xi}\right)+\frac{\alpha_{s}\left(\mu_{r}\right)}{2 \pi}\left[P_{q q}\left(\frac{x}{\xi}\right) \ln \frac{Q^{2}}{\mu_{f}^{2}}+\left(C_{2}^{q}-z_{q q}\right)\left(\frac{x}{\xi}\right)\right]\right] }
\end{aligned}
$$

short-distance "Wilson coefficient"

general structure of a factorized cross section

putting everything together, keeping only terms up to α_{s} :
the physical structure fct. is independent of μ_{f} (this will lead to the concept of renormalization group eqs.)
both, pdf's and the short-dist. coefficient depend on μ_{f} (choice of μ_{f} : shifting terms between long- and short-distance parts)

$$
\begin{aligned}
F_{2}\left(x, Q^{2}\right)= & x \sum_{a=q, \bar{q}} e_{q}^{2} \int_{x}^{1} \frac{d \xi}{\xi} f_{a}\left(\xi\left(\mu_{f}^{2}\right)\right. \\
& {\left[\delta\left(1-\frac{x}{\xi}\right)+\frac{\alpha_{s}\left(\mu_{r}\right)}{2 \pi}\left[P_{q q}\left(\frac{x}{\xi}\right) \ln Q^{2}+\left(C_{2}^{q}-z_{q q}\right)\left(\frac{x}{\xi}\right)\right]\right] }
\end{aligned}
$$

short-distance "Wilson coefficient"

general structure of a factorized cross section

putting everything together, keeping only terms up to α_{s} :
the physical structure fct. is independent of μ_{f} (this will lead to the concept of renormalization group eqs.)

choice of the factorization scheme

general structure of a factorized cross section

putting everything together, keeping only terms up to α_{s} :
the physical structure fct. is independent of μ_{f} (this will lead to the concept of renormalization group eqs.)
both, pdf's and the short-dist. coefficient depend on μ_{f} (choice of μ_{f} : shifting terms between long-and short-distance parts)

choice of the factorization scheme

general structure of a factorized cross section

putting everything together, keeping only terms up to α_{s} :
the physical structure fct. is independent of μ_{f} (this will lead to the concept of renormalization group eqs.)
both, pdf's and the short-dist. coefficient depend on μ_{f} (choice of μ_{f} : shifting terms between long- and short-distance parts)

choice of the factorization scheme
this result is readily extended to hadron-hadron collisions

lesson: theorists are not afraid of infinities

universal PDFs \rightarrow key to predictive power of pQCD

 once PDFs are extracted from one set of experiments, e.g. DIS, we can use them to predict cross sections in, say, hadron-hadron collisionsparton densities are universal
\rightarrow there must be a process-independent precise definition

universal PDFs \rightarrow key to predictive power of pQCD

once PDFs are extracted from one set of experiments, e.g. DIS, we can use them to predict cross sections in, say, hadron-hadron collisions
parton densities are universal
\rightarrow there must be a process-independent precise definition
small print: we need to specify a common factorization scheme for short- and long-distance physics ($=$ choice of $z_{i j}$ in our result for F_{2}) standard choice: modified minimal subtraction ($\overline{M S}$) scheme (closely linked to dim. regularization; used in all PDF fits)
less often used: DIS scheme = "maximal" subtraction where all O $\left(\alpha_{s}\right)$ corrections in DIS are absorbed into PDFs (nice for DIS but a bit awkward for other processes)

universal PDFs \rightarrow key to predictive power of pQCD

once PDFs are extracted from one set of experiments, e.g. DIS, we can use them to predict cross sections in, say, hadron-hadron collisions
parton densities are universal
\rightarrow there must be a process-independent precise definition
small print: we need to specify a common factorization scheme for short- and long-distance physics ($=$ choice of z_{ij} in our result for F_{2}) standard choice: modified minimal subtraction ($\overline{M S}$) scheme (closely linked to dim. regularization; used in all PDF fits)
less often used: DIS scheme = "maximal" subtraction where all $O\left(\alpha_{s}\right)$ corrections in DIS are absorbed into PDFs (nice for DIS but a bit awkward for other processes)
classic (but old-fashioned) definition of PDFs through their

PDFs as bi-local operators

more physical formulation in Bjorken-x space: matrix elements of bi-local operators on the light-cone
for quarks: (similar for gluons; easy to include spin $\gamma^{+} \rightarrow \gamma^{+} \gamma_{5}$)

$$
f_{a}\left(\xi, \mu_{f}\right)=\frac{1}{2} \int \frac{d y^{-}}{2 \pi} e^{-i \xi p^{+} y^{-}}\langle p| \bar{\Psi}_{a}\left(0, y^{-}, \overrightarrow{0}\right) \gamma^{+} \mathcal{F} \Psi_{a}(0)|p\rangle_{\overline{\mathrm{MS}}}
$$

PDFs as bi-local operators

more physical formulation in Bjorken-x space: matrix elements of bi-local operators on the light-cone
for quarks: (similar for gluons; easy to include spin $\gamma^{+} \rightarrow \gamma^{+} \gamma_{5}$)

$$
f_{a}\left(\xi, \mu_{f}\right)=\frac{1}{2} \int \frac{d y^{-}}{2 \pi} e^{-i \xi p^{+} y^{-}}\langle p| \bar{\Psi}_{a}\left(0, y^{-}, \overrightarrow{0}\right) \gamma^{+} \mathcal{F} \Psi_{a}(0)|p\rangle_{\overline{\mathrm{MS}}}
$$

PDFs as bi-local operators

more physical formulation in Bjorken-x space: matrix elements of bi-local operators on the light-cone
for quarks: (similar for gluons; easy to include spin $\gamma^{+} \rightarrow \gamma^{+} \gamma_{5}$)

PDFs as bi-local operators

more physical formulation in Bjorken-x space:
Curci, Furmanski,
Petronzio: Collins, Soper see, e.g., D. Soper, hep-lat/9609018 matrix elements of bi-local operators on the light-cone
for quarks: (similar for gluons; easy to include spin $\gamma^{+} \rightarrow \gamma^{+} \gamma_{5}$)

Fourier transform
\rightarrow momentum $\xi \mathrm{p}^{+}$
recreates quark at $x^{+}=0$ and $x^{-}=y^{-}$
annihilates quark at $x^{\mu}=0$

PDFs as bi-local operators

more physical formulation in Bjorken-x space:
Curci, Furmanski, Petronzio: Collins, Soper see, e.g., D. Soper, hep-lat/9609018 matrix elements of bi-local operators on the light-cone
for quarks: (similar for gluons; easy to include spin $\gamma^{+} \rightarrow \gamma^{+} \gamma_{5}$)

$$
f_{a}\left(\xi, \mu_{f}\right)=\frac{1}{2} \int \frac{d y^{-}}{2 \pi} e^{-i \xi p^{+} y^{-}}\langle p| \bar{\Psi}_{a}\left(0, y^{-}, \overrightarrow{0}\right) \gamma^{+} \mathcal{F} \Psi_{a}(0)|p\rangle_{\overline{\mathrm{MS}}}
$$

Fourier transform recreates quark annihilates
\rightarrow momentum $\xi \mathrm{p}^{+}$at $x^{+}=0$ and $x^{-}=y^{-}$quark at $x^{\mu}=0$

- in general we need a "gauge link" for a gauge invariant definition:

$$
\mathcal{F}=\mathcal{P} \exp \left(-i g \int_{0}^{y^{-}} d z^{-} A_{c}^{+}\left(0, z^{-}, \overrightarrow{0}\right) T_{c}\right)
$$

crucial role for a special class of "transverse-momentum dep. PDFs" describing phenomena with transverse polarization ("Sivers function", ...)

PDFs as bi-local operators

Curci, Furmanski, Petronzio: Collins, Soper see, e.g., D. Soper, hep-lat/9609018 more physical formulation in Bjorken-x space: matrix elements of bi-local operators on the light-cone
for quarks: (similar for gluons; easy to include spin $\gamma^{+} \rightarrow \gamma^{+} \gamma_{5}$)

$$
f_{a}\left(\xi, \mu_{f}\right)=\frac{1}{2} \int \frac{d y^{-}}{2 \pi} e^{-i \xi p^{+} y^{-}}\langle p| \bar{\Psi}_{a}\left(0, y^{-}, \overrightarrow{0}\right) \gamma^{+} \mathcal{F} \Psi_{a}(0)|p\rangle_{\overline{\mathrm{MS}}}
$$

Fourier transform recreates quark annihilates \rightarrow momentum $\xi \mathrm{p}^{+}$at $x^{+}=0$ and $x^{-}=y^{-}$quark at $x^{\mu}=0$

- in general we need a "gauge link" for a gauge invariant definition:

$$
\mathcal{F}=\mathcal{P} \exp \left(-i g \int_{0}^{y^{-}} d z^{-} A_{c}^{+}\left(0, z^{-}, \overrightarrow{0}\right) T_{c}\right)
$$

crucial role for a special class of "transverse-momentum dep. PDFs" describing phenomena with transverse polarization ("Sivers function", ...)

- interpretation as number operator only in " $\mathrm{A}^{+}=0$ gauge"

PDFs as bi-local operators

Curci, Furmanski, Petronzio: Collins, Soper see, e.g., D. Soper, more physical formulation in Bjorken-x space: matrix elements of bi-local operators on the light-cone
for quarks: (similar for gluons; easy to include spin $\gamma^{+} \rightarrow \gamma^{+} \gamma_{5}$)

$$
f_{a}\left(\xi, \mu_{f}\right)=\frac{1}{2} \int \frac{d y^{-}}{2 \pi} e^{-i \xi p^{+} y^{-}}\langle p| \bar{\Psi}_{a}\left(0, y^{-}, \overrightarrow{0}\right) \gamma^{+} \mathcal{F} \Psi_{a}(0)|p\rangle_{\overline{\mathrm{MS}}}
$$

Fourier transform recreates quark annihilates \rightarrow momentum $\xi \mathrm{p}^{+}$at $x^{+}=0$ and $x^{-}=y^{-}$quark at $x^{\mu}=0$

- in general we need a "gauge link" for a gauge invariant definition:

$$
\mathcal{F}=\mathcal{P} \exp \left(-i g \int_{0}^{y^{-}} d z^{-} A_{c}^{+}\left(0, z^{-}, \overrightarrow{0}\right) T_{c}\right)
$$

crucial role for a special class of "transverse-momentum dep. PDFs" describing phenomena with transverse polarization ("Sivers function", ...)

- interpretation as number operator only in " $\mathrm{A}^{+}=0$ gauge"
- turn into local operators $\left(\rightarrow\right.$ lattice QCD) if taking moments $\int_{0}^{1} d \xi \xi^{n}$

pictorial representation of PDFs

suppose we could take a snapshot of a nucleon with positive helicity

question: how many constituents
(quark, anti-quarks, gluons) have momenta between $x P$ and $(x+d x) P$ and how many have the same/opposite helicity?

pictorial representation of PDFs

suppose we could take a snapshot of a nucleon with positive helicity

question: how many constituents (quark, anti-quarks, gluons) have momenta between $x P$ and $(x+d x) P$ and how many have the same/opposite helicity?

pictorial representation of PDFs

suppose we could take a snapshot of a nucleon with positive helicity

question: how many constituents (quark, anti-quarks, gluons) have momenta between $x P$ and $(x+d x) P$ and how many have the same/opposite helicity?

$$
\begin{aligned}
& \Delta q(x) \equiv \\
& \mid \stackrel{P++}{\Rightarrow} \stackrel{N}{x p}+_{=}^{=}\left\langle\left. X\right|^{2}\right.
\end{aligned}
$$

helicity-dep. PDFs
\rightarrow spin of the nucleon

towards renormalization group equations

so far: infinities related to long-time/distance physics (soft/collinear emissions) these singularities cancel for infrared safe observables or can be systematically removed (factorization) by "hiding" them in some non-perturbative parton or fragmentation functions

towards renormalization group equations

so far: infinities related to long-time/distance physics (soft/collinear emissions)

> these singularities cancel for infrared safe observables or can be systematically removed (factorization) by "hiding" them in some non-perturbative parton or fragmentation functions
but: class of ultraviolet infinities related to the smallest time scales/distances:

towards renormalization group equations

so far: infinities related to long-time/distance physics (soft/collinear emissions)

$$
\begin{aligned}
& \text { these singularities cancel for infrared safe observables } \\
& \text { or can be systematically removed (factorization) by "hiding" them } \\
& \text { in some non-perturbative parton or fragmentation functions }
\end{aligned}
$$

but: class of ultraviolet infinities related to the smallest time scales/distances:
we can insert perturbative corrections to vertices and propagators ("loops")
loop momenta can be very large (=infinite) leading to virtual fluctuations on very short time scales/distances

towards renormalization group equations

so far: infinities related to long-time/distance physics (soft/collinear emissions)

$$
\begin{aligned}
& \text { these singularities cancel for infrared safe observables } \\
& \text { or can be systematically removed (factorization) by "hiding" them } \\
& \text { in some non-perturbative parton or fragmentation functions }
\end{aligned}
$$

but: class of ultraviolet infinities related to the smallest time scales/distances:
we can insert perturbative corrections to vertices and propagators ("loops")
loop momenta can be very large (=infinite) leading to virtual fluctuations on very short time scales/distances
again, we need a suitable regulator for divergent loop integrations:
UV cut-off vs. dim. regularization intuitive; involved;
 not beyond NLO works to all orders

the importance of scales

factorization and renormalization play similar roles at opposite ends of the energy range of pQCD

the importance of scales

factorization and renormalization play similar roles at opposite ends of the energy range of pQCD

the importance of scales

factorization and renormalization play similar roles at opposite ends of the energy range of pQCD

the importance of scales

factorization and renormalization play similar roles at opposite ends of the energy range of pQCD

the importance of scales

factorization and renormalization play similar roles at opposite ends of the energy range of pQCD

renormalization group equations (RGE) relate physics at diff. scales

the importance of scales

factorization and renormalization play similar roles at opposite ends of the energy range of PQCD

renormalization group equations (RGE) relate physics at diff. scales

UV renormalization

hides our ignorance of physics at huge scales in $\alpha_{s}\left(\mu_{r}\right), m\left(\mu_{r}\right), \ldots$

the importance of scales

factorization and renormalization play similar roles at opposite ends of the energy range of PQCD

renormalization group equations (RGE) relate physics at diff. scales

UV renormalization hides our ignorance of physics at huge scales in $\alpha_{s}\left(\mu_{r}\right), m\left(\mu_{r}\right), \ldots$

IR/collinear factorization

hides non-perturbative QCD at confinement scale in $f_{a}\left(x, u_{f}\right), \Delta f_{a}\left(x, u_{f}\right), D_{a}^{H}\left(z, u_{f}\right), \ldots$

RGE: the swiss army knife of pQCD

we use α_{s} (and $f_{a}, D_{c}{ }^{H}$) to absorb UV (IR) divergencies
\rightarrow we cannot predict their values within PQCD

RGE: the swiss army knife of pQCD

we use α_{s} (and $f_{a}, D_{c}{ }^{H}$) to absorb UV (IR) divergencies
\rightarrow we cannot predict their values within PQCD
however, a key prediction of PQCD is their scale variation

RGE: the swiss army knife of pQCD

we use α_{s} (and f_{a}, D_{c}^{H}) to absorb UV (IR) divergencies
\rightarrow we cannot predict their values within PQCD
however, a key prediction of PQCD is their scale variation
the physical idea behind this is beautiful \& simple:
both scale parameters μ_{f} and μ_{r} are not intrinsic to QCD \rightarrow a measurable cross section do must be independent of μ_{r} and μ_{f}

$$
\mu_{r, f} \frac{d \sigma}{d \mu_{r, f}}=\frac{d \sigma}{d \ln \mu_{r, f}}=0
$$

RGE: the swiss army knife of pQCD

we use α_{s} (and f_{a}, D_{c}^{H}) to absorb UV (IR) divergencies
\rightarrow we cannot predict their values within PQCD
however, a key prediction of PQCD is their scale variation
the physical idea behind this is beautiful \& simple:
both scale parameters μ_{f} and μ_{r} are not intrinsic to QCD \rightarrow a measurable cross section do must be independent of μ_{r} and μ_{f}

$$
\mu_{r, f} \frac{d \sigma}{d \mu_{r, f}}=\frac{d \sigma}{d \ln \mu_{r, f}}=0
$$

renormalization group equations
all we need is a reference measurement at some scale μ_{0}

scale evolution of α_{s} and parton densities

simplest example of RGE: running coupling α_{s} derived from $\frac{d \sigma}{d \ln \mu_{r}}=0$
$\rightarrow \underset{\text { part II }}{\text { recall }} \frac{d a_{s}}{d \ln \mu^{2}}=-\beta_{0} a_{s}^{2}-\beta_{1} a_{s}^{3}-\beta_{2} a_{s}^{4}-\beta_{3} a_{s}^{5}+\ldots \quad a_{s} \equiv \frac{\alpha_{s}}{4 \pi}$

scale evolution of α_{s} and parton densities

simplest example of RGE: running coupling α_{s} derived from $\frac{d \sigma}{d \ln \mu_{r}}=0$ $\rightarrow \underset{\text { part II }}{\text { recall }} \frac{d a_{s}}{d \ln \mu^{2}}=-\beta_{0} a_{s}^{2}-\beta_{1} a_{s}^{3}-\beta_{2} a_{s}^{4}-\beta_{3} a_{s}^{5}+\ldots \quad a_{s} \equiv \frac{\alpha_{s}}{4 \pi}$
scale dependence of PDFs: more complicated
simplified example:
F_{2} for one quark flavor

$$
F_{2}\left(x, Q^{2}\right)=q\left(x, \mu_{f}\right) \otimes \widehat{F}_{2}\left(x, \frac{Q}{\mu_{f}}\right)
$$

physical quark pdf hard cross section

scale evolution of α_{s} and parton densities

simplest example of RGE: running coupling α_{s} derived from $\frac{d \sigma}{d \ln \mu_{r}}=0$ $\rightarrow \underset{\text { part II }}{\substack{\text { recall }}} \frac{d a_{s}}{d \ln \mu^{2}}=-\beta_{0} a_{s}^{2}-\beta_{1} a_{s}^{3}-\beta_{2} a_{s}^{4}-\beta_{3} a_{s}^{5}+\ldots \quad a_{s} \equiv \frac{\alpha_{s}}{4 \pi}$
scale dependence of PDFs: more complicated
simplified example:
F_{2} for one quark flavor

$$
F_{2}\left(x, Q^{2}\right)=q\left(x, \mu_{f}\right) \otimes \hat{F}_{2}\left(x, \frac{Q}{\mu_{f}}\right)
$$

physical quark pdf hard cross section
versatile tool: Mellin moments $f(n) \equiv \int_{0}^{1} d x x^{n-1} f(x)$ turns nasty convolution \otimes into ordinary product

scale evolution of α_{s} and parton densities

simplest example of RGE: running coupling α_{s} derived from $\frac{d \sigma}{d \ln \mu_{r}}=0$ $\rightarrow \underset{\text { recall II }}{\text { part }} \frac{d a_{s}}{d \ln \mu^{2}}=-\beta_{0} a_{s}^{2}-\beta_{1} a_{s}^{3}-\beta_{2} a_{s}^{4}-\beta_{3} a_{s}^{5}+\ldots \quad a_{s} \equiv \frac{\alpha_{s}}{4 \pi}$
scale dependence of PDFs: more complicated
simplified example:
F_{2} for one quark flavor

$$
F_{2}\left(x, Q^{2}\right)=q\left(x, \mu_{f}\right) \otimes \hat{F}_{2}\left(x, \frac{Q}{\mu_{f}}\right)
$$

physical quark pdf hard cross section
versatile tool: Mellin moments $f(n) \equiv \int_{0}^{1} d x x^{n-1} f(x)$

$$
\begin{aligned}
& \text { turns nasty convolution } \otimes \text { into ordinary product } \\
& \int_{0}^{1} d x x^{n-1}\left[\int_{x}^{1} \frac{d y}{y} f(y) g\left(\frac{x}{y}\right)\right]= \\
& \quad \int_{0}^{1} d x x^{n-1} \int_{0}^{1} d y \int_{0}^{1} d z \delta(x-z y) f(y) g(z)=f(n) g(n)
\end{aligned}
$$

simplest example of DGLAP evolution

now we can compute $\frac{d F_{2}\left(x, Q^{2}\right)}{d \ln \mu_{f}}=0$

$$
\frac{d q\left(n, \mu_{f}\right)}{d \ln \mu_{f}} \hat{F}_{2}\left(n, \frac{Q}{\mu_{f}}\right)+q\left(n, \mu_{f}\right) \frac{d \hat{F}_{2}\left(n, \frac{Q}{\mu_{f}}\right)}{d \ln \mu_{f}}=0
$$

simplest example of DGLAP evolution

now we can compute $\frac{d F_{2}\left(x, Q^{2}\right)}{d \ln \mu_{f}}=0$

Dokshitzer: Gribov, Lipatov; Altarelli, Parisi

$\longleftrightarrow \quad \frac{d q\left(n, \mu_{f}\right)}{d \ln \mu_{f}} \hat{F}_{2}\left(n, \frac{Q}{\mu_{f}}\right)+q\left(n, \mu_{f}\right) \frac{d \hat{F}_{2}\left(n, \frac{Q}{\mu_{f}}\right)}{d \ln \mu_{f}}=0$
$\longleftrightarrow \quad-\frac{d \ln \hat{F}_{2}\left(n, \frac{Q}{\mu_{f}}\right)}{d \ln \mu_{f}}=\frac{d \ln q\left(n, \mu_{f}\right)}{d \ln \mu_{f}}=\frac{\alpha_{s}}{2 \pi} P_{q q}(n)$
DGLAP evolution equation

simplest example of DGLAP evolution

now we can compute $\frac{d F_{2}\left(x, Q^{2}\right)}{d \ln \mu_{f}}=0$

Dokshitzer: Gribov, Lipatov; Altarelli, Parisi

$$
\begin{aligned}
& \longleftrightarrow \quad \frac{d q\left(n, \mu_{f}\right)}{d \ln \mu_{f}} \hat{F}_{2}\left(n, \frac{Q}{\mu_{f}}\right)+q\left(n, \mu_{f}\right) \frac{d \hat{F}_{2}\left(n, \frac{Q}{\mu_{f}}\right)}{d \ln \mu_{f}}=0 \\
& \longleftrightarrow \quad-\frac{d \ln \hat{F}_{2}\left(n, \frac{Q}{\mu_{f}}\right)}{d \ln \mu_{f}}=\frac{d \ln q\left(n, \mu_{f}\right)}{d \ln \mu_{f}}=\frac{\alpha_{s}}{2 \pi} P_{q q}(n)
\end{aligned}
$$

DGLAP evolution equation

disclaimer: kept α_{s} constant for simplicity

simplest example of DGLAP evolution

now we can compute $\frac{d F_{2}\left(x, Q^{2}\right)}{d \ln \mu_{f}}=0$
Dokshitzer: Gribov, Lipatov; Altarelli, Parisi
$\longleftrightarrow \quad \frac{d q\left(n, \mu_{f}\right)}{d \ln \mu_{f}} \hat{F}_{2}\left(n, \frac{Q}{\mu_{f}}\right)+q\left(n, \mu_{f}\right) \frac{d \hat{F}_{2}\left(n, \frac{Q}{\mu_{f}}\right)}{d \ln \mu_{f}}=0$
$\longleftrightarrow \quad-\frac{d \ln \hat{F}_{2}\left(n, \frac{Q}{\mu_{f}}\right)}{d \ln \mu_{f}}=\frac{d \ln q\left(n, \mu_{f}\right)}{d \ln \mu_{f}}=\frac{\alpha_{s}}{2 \pi} P_{q q}(n)$
DGLAP evolution equation
solve it

$$
q\left(n, \mu_{f}\right)=q\left(n, \mu_{0}\right) \exp \left[\frac{\alpha_{s}}{2 \pi} P_{q q}(n) \ln \left(\frac{\mu_{f}}{\mu_{0}}\right)\right]
$$

disclaimer: kept α_{s} constant for simplicity
\rightarrow once we know the PDF at a scale μ_{0} we can predict them at $\mu>\mu_{0}$

factorization \rightarrow evolution \rightarrow resummation

physical interpretation of the evolution eqs.:
RGE resums collinear emissions to all orders

factorization \rightarrow evolution \rightarrow resummation

physical interpretation of the evolution eqs.:

RGE resums collinear emissions to all orders

- to see this expand the solution in α_{s} :

$$
\exp [\ldots]=1+\frac{\alpha_{s}}{2 \pi} P_{q q}(n) \ln \frac{\mu_{f}}{\mu_{0}}+\frac{1}{2}\left[\frac{\alpha_{s}}{2 \pi} P_{q q}(n) \ln \frac{\mu_{f}}{\mu_{0}}\right]^{2}+\ldots
$$

factorization \rightarrow evolution \rightarrow resummation

physical interpretation of the evolution eqs.:

RGE resums collinear emissions to all orders

- to see this expand the solution in α_{s} :

$$
\exp [\ldots]=1+\frac{\alpha_{s}}{2 \pi} P_{q q}(n) \ln \frac{\mu_{f}}{\mu_{0}}+\frac{1}{2}\left[\frac{\alpha_{s}}{2 \pi} P_{q q}(n) \ln \frac{\mu_{f}}{\mu_{0}}\right]^{2}+\ldots
$$

- the splitting functions $P_{i j}(n)$ or $P_{i j}(x)$ multiplying the log's are universal and calculable in PQCD order by order in α_{s}

factorization \rightarrow evolution \rightarrow resummation

physical interpretation of the evolution eqs.:

RGE resums collinear emissions to all orders

- to see this expand the solution in α_{s} :

$$
\exp [\ldots]=1+\frac{\alpha_{s}}{2 \pi} P_{q q}(n) \ln \frac{\mu_{f}}{\mu_{0}}+\frac{1}{2}\left[\frac{\alpha_{s}}{2 \pi} P_{q q}(n) \ln \frac{\mu_{f}}{\mu_{0}}\right]^{2}+\ldots
$$

- the splitting functions $P_{i j}(n)$ or $P_{i j}(x)$ multiplying the log's are universal and calculable in PQCD order by order in α_{s}
- the physical meaning of the splitting functions is easy:

factorization recap: final-state vs initial-state

recall what we learned for final-state radiation

$$
\sigma_{h+g} \simeq \sigma_{h} \frac{\alpha_{\mathrm{s}} C_{F}}{\pi} \frac{d E}{E} \frac{d \theta^{2}}{\theta^{2}}
$$

factorization recap: final-state vs initial-state

recall what we learned for final-state radiation

$$
\sigma_{h+g} \simeq \sigma_{h} \frac{\alpha_{\mathrm{s}} C_{F}}{\pi} \frac{d E}{E} \frac{d \theta^{2}}{\theta^{2}}
$$

and rewrite in terms of new variable k_{T}

$$
\sigma_{h+g} \simeq \sigma_{h} \frac{\alpha_{\mathrm{s}} C_{F}}{\pi} \frac{d z}{1-z} \frac{d k_{t}^{2}}{k_{t}^{2}} \quad \text { where we have used } \quad \begin{gathered}
\mathrm{E}=(1-\mathrm{z}) \mathrm{p} \\
\mathrm{k}_{\mathrm{T}}=\mathrm{E} \sin \theta \simeq \mathrm{E} \theta
\end{gathered}
$$

factorization recap: final-state vs initial-state

recall what we learned for final-state radiation

$$
\sigma_{h+g} \simeq \sigma_{h} \frac{\alpha_{\mathrm{s}} C_{F}}{\pi} \frac{d E}{E} \frac{d \theta^{2}}{\theta^{2}}
$$

and rewrite in terms of new variable k_{T}

$$
\sigma_{h+g} \simeq \sigma_{h} \frac{\alpha_{\mathrm{s}} C_{F}}{\pi} \frac{d z}{1-z} \frac{d k_{t}^{2}}{k_{t}^{2}} \quad \text { where we have used } \quad \begin{gathered}
\mathrm{E}=(1-\mathrm{z}) \mathrm{p} \\
\mathrm{k}_{\mathrm{T}}=\mathrm{E} \sin \theta \simeq \mathrm{E} \theta
\end{gathered}
$$

KLN: if we avoid distinguishing quark and collinear quark-gluon final-states (like for jets) divergencies cancel against virtual corrections

$$
\sigma_{h+V} \simeq-\sigma_{h} \frac{\alpha_{\mathrm{s}} C_{F}}{\pi} \frac{d z}{1-z} \frac{d k_{t}^{2}}{k_{t}^{2}}
$$

factorization recap: initial-state peculiarities

initial-state radiation: crucial difference - hard scattering happens after splitting

$$
\sigma_{g+h}(p) \simeq \sigma_{h}(z p) \frac{\alpha_{\mathrm{s}} C_{F}}{\pi} \frac{d z}{1-z} \frac{d k_{t}^{2}}{k_{t}^{2}}
$$

factorization recap: initial-state peculiarities

initial-state radiation: crucial difference - hard scattering happens after splitting

$$
\sigma_{g+h}(p) \simeq \sigma_{h}(z p) \frac{\alpha_{s} C_{F}}{\pi} \frac{d z}{1-z} \frac{d k_{t}^{2}}{k_{t}^{2}}
$$

but for the virtual piece the momentum is unchanged

$$
\sigma_{V+h}(p) \simeq-\sigma_{h}(p) \frac{\alpha_{\mathrm{s}} C_{F}}{\pi} \frac{d z}{1-z} \frac{d k_{t}^{2}}{k_{t}^{2}}
$$

factorization recap: initial-state peculiarities

initial-state radiation: crucial difference - hard scattering happens after splitting

$$
\sigma_{g+h}(p) \simeq \sigma_{h}(z p) \frac{\alpha_{\mathrm{s}} C_{F}}{\pi} \frac{d z}{1-z} \frac{d k_{t}^{2}}{k_{t}^{2}}
$$

but for the virtual piece the momentum is unchanged

$$
\sigma_{V+h}(p) \simeq-\sigma_{h}(p) \frac{\alpha_{\mathrm{s}} C_{F}}{\pi} \frac{d z}{1-z} \frac{d k_{t}^{2}}{k_{t}^{2}}
$$

hence, the sum receives two contributions with different momenta

$$
\sigma_{g+h}+\sigma_{V+h} \simeq \frac{\alpha_{\mathrm{s}} C_{F}}{\pi} \int \frac{d k_{t}^{2}}{k_{t}^{2}} \frac{d z}{1-z}\left[\sigma_{h}(z p)-\sigma_{h}(p)\right]
$$

disclaimer: we assume that $k_{T} \ll Q$ (large) to ignore other transverse momenta

factorization recap: initial-state peculiarities

initial-state radiation: crucial difference - hard scattering happens after splitting

$$
\sigma_{g+h}(p) \simeq \sigma_{h}(z p) \frac{\alpha_{\mathrm{s}} C_{F}}{\pi} \frac{d z}{1-z} \frac{d k_{t}^{2}}{k_{t}^{2}}
$$

but for the virtual piece the momentum is unchanged

$$
\sigma_{V+h}(p) \simeq-\sigma_{h}(p) \frac{\alpha_{\mathrm{s}} C_{F}}{\pi} \frac{d z}{1-z} \frac{d k_{t}^{2}}{k_{t}^{2}}
$$

hence, the sum receives two contributions with different momenta

$$
\sigma_{g+h}+\sigma_{V+h} \simeq \frac{\alpha_{\mathrm{s}} C_{F}}{\pi} \int \frac{d k_{t}^{2}}{k_{t}^{2}} \frac{d z}{1-z}\left[\sigma_{h}(z p)-\sigma_{h}(p)\right]
$$

disclaimer: we assume that $k_{T} \ll Q$ (large) to ignore other transverse momenta

factorization revisited: collinear singularity

$$
\sigma_{g+h}+\sigma_{V+h} \simeq \frac{\alpha_{\mathbf{s}} C_{F}}{\pi} \underbrace{\int_{0}^{Q^{2}} \frac{d k_{t}^{2}}{k_{t}^{2}}}_{\text {infinite }} \underbrace{\int \frac{d z}{1-z}\left[\sigma_{h}(z p)-\sigma_{h}(p)\right]}_{\text {finite }}
$$

- $\mathrm{z}=1$: soft divergence cancels (KLN) as $\sigma_{\mathrm{h}}(\mathrm{zp})-\sigma_{\mathrm{h}}(\mathbf{p}) \rightarrow 0$
- arbitrary z: $\sigma_{\mathrm{h}}(\mathrm{zp})-\sigma_{\mathrm{h}}(\mathrm{p}) \neq 0$ but z integration is finite
- but k_{T} integration always diverges (at lower limit)

factorization revisited: collinear singularity

$$
\sigma_{g+h}+\sigma_{V+h} \simeq \frac{\alpha_{\mathbf{s}} C_{F}}{\pi} \underbrace{\int_{0}^{Q^{2}} \frac{d k_{t}^{2}}{k_{t}^{2}}}_{\text {infinite }} \underbrace{\int \frac{d z}{1-z}\left[\sigma_{h}(z p)-\sigma_{h}(p)\right]}_{\text {finite }}
$$

- $\mathbf{z = 1}$: soft divergence cancels (KLN) as $\sigma_{\mathbf{h}}(\mathbf{z p})-\sigma_{\mathbf{h}}(\mathbf{p}) \rightarrow 0$
- arbitrary z: $\sigma_{\mathrm{h}}(\mathrm{zp})-\sigma_{\mathrm{h}}(\mathrm{p}) \neq 0$ but z integration is finite
- but k_{T} integration always diverges (at lower limit)
reflects collinear singularity
cross sections with incoming partons not collinear safe

factorization revisited: collinear singularity

$$
\sigma_{g+h}+\sigma_{V+h} \simeq \frac{\alpha_{\mathbf{s}} C_{F}}{\pi} \underbrace{\int_{0}^{Q^{2}} \frac{d k_{t}^{2}}{k_{t}^{2}}}_{\text {infinite }} \underbrace{\int \frac{d z}{1-z}\left[\sigma_{h}(z p)-\sigma_{h}(p)\right]}_{\text {finite }}
$$

- $\mathbf{z = 1}$: soft divergence cancels (KLN) as $\sigma_{\mathbf{h}}(\mathrm{zp})-\sigma_{\mathbf{h}}(\mathbf{p}) \rightarrow 0$
- arbitrary z: $\sigma_{\mathrm{h}}(\mathrm{zp})-\sigma_{\mathrm{h}}(\mathrm{p}) \neq 0$ but z integration is finite
- but k_{T} integration always diverges (at lower limit)

reflects collinear singularity

cross sections with incoming partons not collinear safe
factorization = collinear "cut-off"

- absorb divergent small k_{T} region in non-perturbative PDFs
$\sigma_{1} \simeq \frac{\alpha_{\mathbf{s}} C_{F}}{\pi} \underbrace{\int_{\mu^{2}}^{Q^{2}} \frac{d k_{t}^{2}}{k_{t}^{2}}}_{\text {finite (large) }} \underbrace{\int \frac{d x d z}{1-z}\left[\sigma_{h}(z \times p)-\sigma_{h}(x p)\right] q\left(x, \mu^{2}\right)}_{\text {finite }}$

anatomy of splitting functions

splitting functions may receive two kinds of contributions:

anatomy of splitting functions

splitting functions may receive two kinds of contributions:

> real emission
"something happens"

$$
\frac{d q\left(x, \mu^{2}\right)}{d \ln \mu^{2}}=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} d z P_{q q}(z) \frac{q\left(x / z, \mu^{2}\right)}{z}
$$

anatomy of splitting functions

splitting functions may receive two kinds of contributions:

real emission
"something happens"

$$
\frac{d q\left(x, \mu^{2}\right)}{d \ln \mu^{2}}=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} d z P_{q q}(z) \frac{q\left(x / z, \mu^{2}\right)}{z}-\frac{\alpha_{s}}{2 \pi} \int_{0}^{1} d z P_{q q}(z) q\left(x, \mu^{2}\right)
$$

anatomy of splitting functions

splitting functions may receive two kinds of contributions:

real emission
"something happens"
$\frac{d q\left(x, \mu^{2}\right)}{d \ln \mu^{2}}=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} d z P_{q q}(z) \frac{q\left(x / z, \mu^{2}\right)}{z}-\frac{\alpha_{s}}{2 \pi} \int_{0}^{1} d z P_{q q}(z) q\left(x, \mu^{2}\right)$
combine ! $\quad \frac{d q\left(x, \mu^{2}\right)}{d \ln \mu^{2}}=\frac{\alpha_{s}}{2 \pi} \underbrace{\int_{x}^{1} d z P_{q q}(z) \frac{q\left(x / z, \mu^{2}\right)}{z}}_{P_{q q} \otimes q} \quad P_{q q}(z)=C_{F}\left(\frac{1+z^{2}}{1-z}\right)+$

anatomy of splitting functions

splitting functions may receive two kinds of contributions:

real emission
"something happens"
$\frac{d q\left(x, \mu^{2}\right)}{d \ln \mu^{2}}=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} d z P_{q q}(z) \frac{q\left(x / z, \mu^{2}\right)}{z}-\frac{\alpha_{s}}{2 \pi} \int_{0}^{1} d z P_{q q}(z) q\left(x, \mu^{2}\right)$
combine ! $\quad \frac{d q\left(x, \mu^{2}\right)}{d \ln \mu^{2}}=\frac{\alpha_{s}}{2 \pi} \underbrace{\int_{x}^{1} d z P_{q q}(z) \frac{q\left(x / z, \mu^{2}\right)}{z}} \quad P_{q q}(z)=C_{F}\left(\frac{1+z^{2}}{1-z}\right)+$
involves "plus distribution" $\int_{0}^{1} d z[g(z)]_{+} f(z) \equiv \int_{0}^{1} d z g(z)[f(z)-f(1)]$
condition: $f(z)$ sufficiently smooth for $z \rightarrow 1$

properties of LO splitting functions

in general, quarks and gluons can split into quarks and gluons -> 4 functions

$$
\begin{array}{ll}
P_{q q}^{(0)}=P_{\bar{q} \bar{q}}^{(0)}=C_{F}\left[\frac{\mathbf{1}+\mathbf{z}^{2}}{(\mathbf{1}-\mathbf{z})_{+}}+\frac{3}{2} \delta(1-z)\right] \\
P_{q g}^{(0)}=P_{\bar{q} g}^{(0)}=T_{R}\left(z^{2}+(1-z)\right) \\
P_{g q}^{(0)}=P_{g \bar{q}}^{(0)}=C_{F} \frac{1+(1-z)^{2}}{z} \\
P_{g g}^{(0)}=2 C_{A}\left[z\left(\frac{1}{1-z}\right)_{+}+\frac{1-z}{z}+z(1-z)+b_{0} \delta(1-z)\right]
\end{array}
$$

in higher orders more complicated, as $\mathrm{P}_{\mathrm{q}_{\mathrm{i}} \mathrm{q}_{j}} \neq 0$ arise

properties of LO splitting functions

in general, quarks and gluons can split into quarks and gluons -> 4 functions

$$
\begin{aligned}
& \begin{array}{c}
\text { soft gluon divergence }(z=1) \\
\text { regulated by plus distribution }
\end{array} \\
& P_{q q}^{(0)}=P_{\bar{q} \bar{q}}^{(0)}=C_{F}\left[\frac{\mathbf{1}+\mathbf{z}^{2}}{(\mathbf{1}-\mathbf{z})_{+}}+\frac{3}{2} \delta(1-z)\right] \\
& P_{q g}^{(0)}=P_{\bar{q} g}^{(0)}=T_{R}\left(z^{2}+(1-z)\right) \\
& P_{g q}^{(0)}=P_{g \bar{q}}^{(0)}=C_{F} \frac{1+(1-z)^{2}}{z} \\
& P_{g g}^{(0)}=2 C_{A}\left[z\left(\frac{1}{1-z}\right)_{+}+\frac{1-z}{z}+z(1-z)+b_{0} \delta(1-z)\right] \\
& \text { soft gluon divergence (} z=1 \text {) } \\
& \text { regulated by plus distribution }
\end{aligned}
$$

in higher orders more complicated, as $\mathrm{P}_{\mathrm{q}_{i} \mathrm{q}_{j}} \neq 0$ arise

properties of LO splitting functions

in general, quarks and gluons can split into quarks and gluons -> 4 functions

$$
\begin{aligned}
& P_{q q}^{(0)}=P_{\bar{q} \bar{q}}^{(0)}=C_{F}\left[\frac{1+\mathbf{z}^{2}}{(\mathbf{1 - z}} \begin{array}{c}
\text { soft gluon divergence (z=1) } \\
\text { regulated by plus distribution }
\end{array}+\frac{3}{2} \delta(1-z)\right] \\
& P_{q g}^{(0)}=P_{\bar{q} g}^{(0)}=T_{R}\left(z^{2}+(1-z)\right) \\
& P_{g q}^{(0)}=P_{g \bar{q}}^{(0)}=C_{F} \frac{1+(1-z)^{2}}{z} \\
& P_{g g}^{(0)}=2 C_{A}\left[z\left(\frac{1}{1-z}\right)_{+}+\frac{1-z}{z}+z(1-z)+b_{0} \delta(1-z)\right]
\end{aligned}
$$

in higher orders more complicated, as $\mathrm{P}_{\mathrm{q}_{i} \mathrm{q}_{j}} \neq 0$ arise

reaching for precision

$$
\begin{aligned}
& P_{s i}^{(0)}(x)=C_{F}\left(2 p_{\mathrm{pq}}(x)+3 \delta(1-x)\right) \\
& P_{p}^{(0)}(x)=0 \\
& P_{\mathrm{s}}^{(0)}(x)=2 n_{f} p_{\mathrm{ss}}(x) \\
& P_{\mathrm{kR}}^{(0)}(x)=2 C_{F} p_{\mathrm{ng}}(x) \\
& P_{\mathrm{gi}}^{(0)}(x)=C_{A}\left(4 p_{\mathrm{gz}}(x)+\frac{11}{3} \delta(1-x)\right)-\frac{2}{3} n_{f} \delta(1-x) \\
&
\end{aligned}
$$

reaching for precision

$$
\begin{aligned}
& P_{\mathrm{zi}}^{(0)}(x)=C_{F}\left(2 p_{\mathrm{en}}(x)+3 \delta(1-x)\right) \\
& P_{p t}^{(0)}(x)=0 \\
& P_{s}^{(0)}(x)=2 n_{f} p_{\mathrm{e}}(x) \\
& P_{\mathrm{vi}}^{(0)}(x)=2 C_{F} p_{\mathrm{xs}}(x) \\
& P_{\text {EI }}^{(0)}(x)=C_{A}\left(4 p_{\mathrm{Er}}(x)+\frac{11}{3} \delta(1-x)\right)-\frac{2}{3} n_{f} \delta(1-x)
\end{aligned}
$$

LO: 1973

Curci, Furmanski, Petronzio; Floratos et al., ...

$$
\begin{aligned}
& P_{\mathrm{ms}}^{(1)+}(x)=4 C_{A} C_{F}\left(p_{49}(x)\left[\frac{67}{18}-\zeta_{2}+\frac{11}{6} \mathrm{H}_{0}+\mathrm{H}_{0,0}\right]+p_{99}(-x)\left[\zeta_{2}+2 \mathrm{H}_{-1,0}-\mathrm{H}_{0,0}\right]\right. \\
& \left.\quad+\frac{14}{3}(1-x)+\delta(1-x)\left[\frac{17}{24}+\frac{11}{3} \zeta_{2}-3 \zeta_{3}\right]\right)-4 C_{F} n_{f}\left(p_{\mathrm{QQ}}(x)\left[\frac{5}{9}+\frac{1}{3} \mathrm{H}_{0}\right]+\frac{2}{3}(1-x)\right. \\
& \left.\quad+\delta(1-x)\left[\frac{1}{12}+\frac{2}{3} \zeta_{2}\right]\right)+4 C_{F}^{2}\left(2 p_{49}(x)\left[\mathrm{H}_{1,0}-\frac{3}{4} \mathrm{H}_{0}+\mathrm{H}_{2}\right]-2 p_{99}(-x)\left[\zeta_{2}+2 \mathrm{H}_{-1,0}\right.\right. \\
& \left.\left.\quad-\mathrm{H}_{0,0}\right]-(1-x)\left[1-\frac{3}{2} \mathrm{H}_{0}\right]-\mathrm{H}_{0}-(1+x) \mathrm{H}_{0,0}+\delta(1-x)\left[\frac{3}{8}-3 \zeta_{2}+6 \zeta_{3}\right]\right) \\
& P_{\mathrm{as}}^{(1)-}(x)=P_{\mathrm{as}}^{(1)+}(x)+16 C_{F}\left(C_{F}-\frac{C_{A}}{2}\right)\left(p_{09}(-x)\left[\zeta_{22}+2 \mathrm{H}_{-1,0}-\mathrm{H}_{0,0}\right]-2(1-x)\right. \\
& \left.\quad-(1+x) \mathrm{H}_{0}\right)
\end{aligned}
$$

$$
P_{\mathrm{pi}}^{(1)}(x)=4 C_{F} n_{f}\left(\frac{20}{9} \frac{1}{x}-2+6 x-4 \mathrm{H}_{0}+x^{2}\left[\frac{8}{3} \mathrm{H}_{0}-\frac{56}{9}\right]+(1+x)\left[5 \mathrm{H}_{0}-2 \mathrm{H}_{0,0}\right]\right)
$$

$$
P_{\mathrm{at}}^{(1)}(x)=4 C_{A} n_{f}\left(\frac{20}{9} \frac{1}{x}-2+25 x-2 p_{\mathrm{ag}}(-x) \mathrm{H}_{-1,0}-2 p_{\mathrm{ag}}(x) \mathrm{H}_{1,1}+x^{2}\left[\frac{44}{3} \mathrm{H}_{5}-\frac{218}{9}\right]\right.
$$

$$
\left.+4(1-x)\left[\mathrm{H}_{0,0}-2 \mathrm{H}_{0}+x \mathrm{H}_{1}\right]-4 K_{3,2} x-6 \mathrm{H}_{0,0}+9 \mathrm{H}_{0}\right)+4 C_{F} n_{f}\left(2 p _ { \mathrm { ct } } (x) \left[\mathrm{H}_{1,0}+\mathrm{H}_{1,1}+\mathrm{H}_{2}\right.\right.
$$

$$
\left.\left.-\zeta_{2}\right]+4 x^{2}\left[\mathrm{H}_{0}+\mathrm{H}_{0,0}+\frac{5}{2}\right]+2(1-x)\left[\mathrm{H}_{0}+\mathrm{H}_{0,0}-2 x \mathrm{H}_{1}+\frac{29}{4}\right]-\frac{15}{2}-\mathrm{H}_{0,0}-\frac{1}{2} \mathrm{H}_{0}\right)
$$

$$
P_{54}^{(1)}(x)=4 C_{A} C_{F}\left(\frac{1}{x}+2 p_{\mathrm{Bq}}(x)\left[\mathrm{H}_{1,0}+\mathrm{H}_{1,1}+\mathrm{H}_{2}-\frac{11}{6} \mathrm{H}_{2}\right]-x^{2}\left[\frac{8}{3} \mathrm{H}_{0}-\frac{44}{9}\right]+4 \zeta_{2}-2\right.
$$

$$
\left.-7 \mathrm{H}_{0}+2 \mathrm{H}_{0,0}-2 \mathrm{H}_{1} x+(1+x)\left[2 \mathrm{H}_{0,0}-5 \mathrm{H}_{0}+\frac{37}{9}\right]-2 p_{58}(-x) \mathrm{H}_{1,0}\right)-4 C_{F} n_{f}\left(\frac{2}{3} x\right.
$$

$$
\left.-p_{\mathrm{Dq}}(x)\left[\frac{2}{3} \mathrm{H}_{1}-\frac{10}{9}\right]\right)+4 C_{F}^{2}\left(p_{0 \mathrm{~s}}(x)\left[3 \mathrm{H}_{1}-2 \mathrm{H}_{1,1}\right]+(1+x)\left[\mathrm{H}_{0,0}-\frac{7}{2}+\frac{7}{2} \mathrm{H}_{0}\right]-3 \mathrm{H}_{0,0}\right.
$$

$$
\left.+1-\frac{3}{2} \mathrm{H}_{0}+2 \mathrm{H}_{2} x\right)
$$

$$
P_{\mathrm{EF}}^{(1)}(x)=4 C_{A} n_{f}\left(1-x-\frac{10}{9} p_{\mathrm{Eg}}(x)-\frac{13}{9}\left(\frac{1}{x}-x^{2}\right)-\frac{2}{3}(1+x) \mathrm{H}_{0}-\frac{2}{3} \delta(1-x)\right)+4 C_{A}^{2}(27
$$

$$
+(1+x)\left[\frac{11}{3} \mathrm{H}_{0}+8 \mathrm{H}_{0,0}-\frac{27}{2}\right]+2 p_{\mathrm{xs}}(-x)\left[\mathrm{H}_{0,0}-2 \mathrm{H}_{-1,0}-\zeta_{2}\right]-\frac{67}{9}\left(\frac{1}{x}-x^{2}\right)-12 \mathrm{H}_{0}
$$

$$
\left.-\frac{44}{3} x^{2} \mathrm{H}_{0}+2 p_{z s}(x)\left[\frac{67}{18}-\zeta_{2}+\mathrm{H}_{0,0}+2 \mathrm{H}_{1,0}+2 \mathrm{H}_{2}\right]+\delta(1-x)\left[\frac{8}{3}+3 \zeta_{3}\right]\right)+4 C_{F} h_{f}\left(2 \mathrm{H}_{0}\right.
$$

$$
+\frac{2}{3} \frac{1}{x}+\frac{10}{3} x^{2}-12+(1+x)\left[4-5 \mathrm{H}_{0}-2 \mathrm{H}_{0,0}\right]-\frac{1}{2} \delta(1-
$$

$\mathrm{P}_{\mathrm{ij}} @$ NNLO: a landmark calculation

10000 diagrams, 10^{5} integrals, 10 man years, and several CPU years later:

$\mathrm{P}_{\mathrm{ij}} @$ NNLO: a landmark calculation

10000 diagrams, 10^{5} integrals, 10 man years, and several CPU years later:

 +

Moch, Vermaseren, Vog†
2004

$\mathrm{P}_{\mathrm{ij}} @$ NNLO: a landmark calculation

10000 diagrams, 10^{5} integrals, 10 man years, and several CPU years later:

NNLO the new emerging standard in QCD - essential for precision physics

DGLAP evolution in full glory

taking quarks and gluons together: coupled integro-differential equations

best solved in Mellin moment space: set of ordinary differential eqs.; no closed solution in exp. form beyond LO (commutators of P matrices!)

DGLAP evolution in full glory

taking quarks and gluons together: coupled integro-differential equations

best solved in Mellin moment space: set of ordinary differential eqs.; no closed solution in exp. form beyond LO (commutators of P matrices!) main effect/prediction of evolution: partons loose energy by evolution!

- large x depletion
- small x increase

DGLAP evolution in full glory

taking quarks and gluons together: coupled integro-differential equations

best solved in Mellin moment space: set of ordinary differential eqs.; no closed solution in exp. form beyond LO (commutators of P matrices!) main effect/prediction of evolution: partons loose energy by evolution!

- large x depletion
- small x increase
exactly as observed in experiment huge success of $P Q C D$

DGLAP evolution at work: toy example

start off from just quarks, no gluons

- quarks reduced at large x
- gluons rise quickly at small x (which, btw, also generates sea quarks)

DGLAP evolution at work: toy example

start off from just quarks, no gluons

- quarks reduced at large x
- gluons rise quickly at small x (which, btw, also generates sea quarks)
taken from G. Salam

DGLAP evolution at work: toy example

start off from just quarks, no gluons

- quarks reduced at large x
- gluons rise quickly at small x (which, btw, also generates sea quarks)
taken from G. Salam

DGLAP evolution at work: toy example

start off from just quarks, no gluons

- quarks reduced at large x
- gluons rise quickly at small x (which, btw, also generates sea quarks)
taken from G. Salam

DGLAP evolution at work: toy example

start off from just quarks, no gluons

- quarks reduced at large x
- gluons rise quickly at small x (which, btw, also generates sea quarks)
taken from G. Salam

DGLAP evolution seen in DIS data

$$
F_{2}^{p}\left(x, Q^{2}\right)
$$

- use one of the global fits of PDFs to data by CTEQ
- steep rise of F_{2} at small x (due to gluon evolution)

DGLAP evolution seen in DIS data

$F_{2}^{p}\left(x, Q^{2}\right)$

- use one of the global fits of PDFs to data by CTEQ
- steep rise of F_{2} at small x (due to gluon evolution)

DGLAP evolution seen in DIS data

$F_{2}^{p}\left(x, Q^{2}\right)$

- use one of the global fits of PDFs to data by CTEQ
- steep rise of F_{2} at small x (due to gluon evolution)

DGLAP evolution seen in DIS data
$F_{2}^{p}\left(x, Q^{2}\right)$

- use one of the global fits of PDFs to data by CTEQ
- steep rise of F_{2} at small x (due to gluon evolution)

DGLAP evolution seen in DIS data

- use one of the global fits of PDFs to data by CTEQ
- steep rise of F_{2} at small x (due to gluon evolution)

DGLAP evolution seen in DIS data

- use one of the global fits of PDFs to data by CTEQ
- steep rise of F_{2} at small x (due to gluon evolution)

DGLAP evolution seen in DIS data

- use one of the global fits of PDFs to data by CTEQ
- steep rise of F_{2} at small x (due to gluon evolution)

DGLAP evolution seen in DIS data

- use one of the global fits of PDFs to data by CTEQ
- steep rise of F_{2} at small x (due to gluon evolution)

DGLAP evolution seen in DIS data

- use one of the global fits of PDFs to data by CTEQ
- steep rise of F_{2} at small x (due to gluon evolution)
major success of PQCD
and DGLAP evolution

factorization in hadron-hadron collisions

What happens when two hadrons collide ?

factorization in hadron-hadron collisions

What happens when two hadrons collide ?

straightforward generalization of the concepts discussed so far:
jets, hadrons,
heavy quarks, ...

factorization in hadron-hadron collisions

What happens when two hadrons collide ?

straightforward generalization of the concepts discussed so far:
jets, hadrons,
heavy quarks, ...

$$
\begin{gathered}
d \sigma=\sum_{i j} \int d x_{i} d x_{j} f_{i}\left(x_{i}, \mu^{2}\right) f_{j}\left(x_{j}, \mu^{2}\right) d \widehat{\sigma}_{i j}\left(\alpha_{s}\left(\mu_{r}\right), Q^{2}, \mu^{2}, x_{i}, x_{j}\right) \\
\begin{array}{c}
\text { non-perturbative } \\
\text { but universal PDFs }
\end{array} \stackrel{\text { by } \mu \text { bined }}{\leftrightarrows} \text { hard scattering of partons } \rightarrow \text { PQCD }
\end{gathered}
$$

factorization at work

key assumption that a cross section factorizes into

- hard (perturbatively calculable) process-dep. partonic subprocesses
- non-perturbative but universal parton distribution functions
has great predictive power and can be challenged experimentally:

$$
\sigma_{e p}=\sigma_{e q} \otimes q
$$

$\sigma_{p p \rightarrow 2 j e t s}=\sigma_{q g \rightarrow 2 j e t s} \otimes q_{1} \otimes g_{2}+\cdots$

factorization at work

key assumption that a cross section factorizes into

- hard (perturbatively calculable) process-dep. partonic subprocesses
- non-perturbative but universal parton distribution functions
has great predictive power and can be challenged experimentally:

$$
\sigma_{e p}=\sigma_{e q} \otimes q
$$

$\sigma_{p p \rightarrow 2 j e t s}=\sigma_{q g \rightarrow 2 j e t s} \otimes q_{1} \otimes g_{2}+\cdots$

factorization: so far a success story

results now start to being used in global fits to constrain PDFs particularly sensitive to gluons

$$
\text { gg } \rightarrow \text { gg } \quad \text { gq } \rightarrow \text { gq }
$$

two recent examples from the LHC :
1-jet and di-jet cross sections many other final-states available
$\mathbf{y}=\ln \tan \frac{\theta}{2} \sim \frac{1}{2} \ln \frac{\mathrm{x}_{1}}{\mathrm{x}_{2}} \quad \mathrm{M}=\sqrt{\mathrm{x}_{1} \mathbf{x}_{2} \mathrm{~S}}$ $\mathrm{x}_{1}=\frac{\mathrm{M}}{\sqrt{\mathrm{s}}} \mathrm{e}^{+\mathrm{y}} \quad \mathrm{x}_{2}=\frac{\mathrm{M}}{\sqrt{\mathrm{s}}} \mathrm{e}^{-\mathrm{y}}$

proofs of factorization

- to prove the validity of factorization to all orders of pQCD is a highly theoretical and technical matter

proofs of factorization

- to prove the validity of factorization to all orders of PQCD is a highly theoretical and technical matter
- serious proofs exist only for a limited number of processes such as DIS and Drell-Yan Libby, Sterman; Ellis et al.; Amati et al.; Collins et al.:...

issues: factorization does not hold graph-by-graph; saved by the interplay between graphs, unitarity, causality, and gauge invariance

proofs of factorization

- to prove the validity of factorization to all orders of PQCD is a highly theoretical and technical matter
- serious proofs exist only for a limited number of processes such as DIS and Drell-Yan Libby, Sterman; Ellis et al.; Amati et al.; Collins et al.;...

issues: factorization does not hold graph-by-graph; saved by the interplay between graphs, unitarity, causality, and gauge invariance
- factorization good up to powers of hard scale $Q: O\left(\Lambda_{Q C D} / Q\right)^{n}$

proofs of factorization

- to prove the validity of factorization to all orders of pQCD is a highly theoretical and technical matter
- serious proofs exist only for a limited number of processes such as DIS and Drell-Yan Libby, Sterman; Ellis et al.; Amati et al.; Collins et al.:...

issues: factorization does not hold graph-by-graph; saved by the interplay between graphs, unitarity, causality, and gauge invariance
- factorization good up to powers of hard scale $Q: O\left(\Lambda_{Q C D} / Q\right)^{n}$
faith in factorization rests on existing calculations and the tremendous success of $P Q C D$ in explaining data

proofs of factorization

- to prove the validity of factorization to all orders of pQCD is a highly theoretical and technical matter
- serious proofs exist only for a limited number of processes such as DIS and Drell-Yan Libby, Sterman; Ellis et al.; Amati et al.; Collins et al.;..

issues: factorization does not hold graph-by-graph; saved by the interplay between graphs, unitarity, causality, and gauge invariance
- factorization good up to powers of hard scale $Q: O\left(\Lambda_{Q C D} / Q\right)^{n}$
faith in factorization rests on existing calculations and the tremendous success of $p Q C D$ in explaining data
recall: the renormalizibility of a non-abelian gauge theory like $Q C D$ was demonstrated by ' \dagger Hooft and Veltman
now we have studied all relevant concepts of perturbative QCD !!

now we have studied all relevant concepts of perturbative QCD !!

recap: salient features of $p Q C D$
now we have studied all relevant concepts of perturbative QCD !!

recap: salient features of PQCD
- strong interactions, yet perturbative methods are applicable
- confined quarks, yet calculations based on free partons can describe large classes of processes
now we have studied all relevant concepts of perturbative QCD !!

recap: salient features of PQCD

- strong interactions, yet perturbative methods are applicable
- confined quarks, yet calculations based on free partons can describe large classes of processes
keys to resolve the apparent dilemma:
- asymptotic freedom
- infrared safety
- factorization theorems \& renormalizibility

pQCD: a tool for the most violent collisions

pQCD: a tool for the most violent collisions

high- p_{T} jet: factorization!

pQCD: a tool for the most violent collisions

"soft stuff": difficult!

pQCD: a tool for the most violent collisions

"soft stuff": difficult!

"underlying event": more than difficult
to take home from this part of the lectures

- factorization = isolating and absorbing long-distance singularities accompanying identified hadrons into parton densities (initial state) and fragmentation fcts. (final state)
- factorization and renormalization introduce arbitrary scales \rightarrow powerful concept of renormalization group equations
$\rightarrow \alpha_{s}$, PDFs, frag. fcts. depend on energy/resolution
- PDFs (and frag. fcts) have definitions as bilocal operators
- hard hadron-hadron interactions factorize as well: $\mathbf{f} \otimes \mathbf{f} \otimes \mathbf{d} \sigma$
- strict proofs of factorization only for limited class of processes

unofficial Part IV
some applications \& advanced topics
scales and theoretical uncertainties; Drell-Yan process small-x physics; global QCD analysis; resummations

the Whys and Hows of NLO Calculations \& Beyond

why go beyond LO (and even NLO)?

recall factorization theorem for hadronic processes:

$$
\begin{gathered}
d \sigma=\sum_{i j} \int d x_{i} d x_{j} f_{i}\left(x_{i}, \mu^{2}\right) f_{j}\left(x_{j}, \mu^{2}\right) d \widehat{\sigma}_{i j}\left(\alpha_{s}\left(\mu_{r}\right), Q^{2}, \mu^{2}, x_{i}, x_{j}\right) \\
\begin{array}{c}
\text { non-perturbative } \\
\text { but universal PDFs }
\end{array} \stackrel{\text { by } \mu \text { bed } \mu}{\longrightarrow} \text { two partons } \rightarrow \text { parttering of }
\end{gathered}
$$

- independence of physical do on μ (and μ_{r}) has led us to powerful RGEs

why go beyond LO (and even NLO)?

recall factorization theorem for hadronic processes:

$$
\begin{gathered}
d \sigma=\sum_{i j} \int d x_{i} d x_{j} f_{i}\left(x_{i}, \mu^{2}\right) f_{j}\left(x_{j}, \mu^{2}\right) d \widehat{\sigma}_{i j}\left(\alpha_{s}\left(\mu_{r}\right), Q^{2}, \mu^{2}, x_{i}, x_{j}\right) \\
\begin{array}{c}
\text { non-perturbative } \\
\text { but universal PDFs }
\end{array} \stackrel{\text { by } \mu \text { linked } \mu}{\text { two partons } \rightarrow \text { pQCD }} \boldsymbol{\text { twattering of }}
\end{gathered}
$$

- independence of physical do on μ (and μ_{r}) has led us to powerful RGEs caveat: we work with a perturbative series truncated at LO, NLO, NNLO, ... \rightarrow at any fixed order N there will be a residual scale dependence in our theoretical prediction
\rightarrow since μ is completely arbitrary this limits the precision of our results

why go beyond LO (and even NLO)?

recall factorization theorem for hadronic processes:

$$
d \sigma=\sum_{i j} \int d x_{i} d x_{j} f_{i}\left(x_{i}, \mu^{2}\right) f_{j}\left(x_{j}, \mu^{2}\right) d \widehat{\sigma}_{i j}\left(\alpha_{s}\left(\mu_{r}\right), Q^{2}, \mu^{2}, x_{i}, x_{j}\right)
$$

- independence of physical do on μ (and μ_{r}) has led us to powerful RGEs caveat: we work with a perturbative series truncated at LO, NLO, NNLO, ... \rightarrow at any fixed order N there will be a residual scale dependence in our theoretical prediction
\rightarrow since μ is completely arbitrary this limits the precision of our results
simplest example:
$e^{+} e^{-} \rightarrow$ hadrons
applies in general also for μ_{f}

$$
\frac{d}{d \ln \mu_{r}} \sum_{n=1}^{N} c_{n}\left(\mu_{r}\right) \alpha_{s}^{n}\left(\mu_{r}\right) \sim \mathcal{O}\left(\alpha_{s}^{N+1}\left(\mu_{r}\right)\right)
$$

uncertainty is formally of higher order -> gets smaller if higher orders are known

explicit example: scale dependence of $\mathrm{e}^{+} \mathrm{e}^{-}->$jets

recall: at NLO we have

$$
\sigma^{\mathrm{NLO}}\left(\mu_{R}\right)=\sigma_{q \bar{q}}\left(1+c_{1} \alpha_{\mathrm{s}}\left(\mu_{R}\right)\right)
$$

explicit example: scale dependence of $\mathbf{e}^{+} \mathbf{e}^{--->}$jets

recall: at NLO we have

$$
\sigma^{\mathrm{NLO}}\left(\mu_{R}\right)=\sigma_{q \bar{q}}\left(1+c_{1} \alpha_{\mathrm{s}}\left(\mu_{R}\right)\right)
$$

suppose we want to choose a different scale Q - what do we need to do?

explicit example: scale dependence of $\mathbf{e}^{+} \mathbf{e}^{--->}$jets

recall: at NLO we have

$$
\sigma^{\mathrm{NLO}}\left(\mu_{R}\right)=\sigma_{q \bar{q}}\left(1+c_{1} \alpha_{s}\left(\mu_{R}\right)\right)
$$

suppose we want to choose a different scale Q - what do we need to do?
recall: $\quad \alpha_{s}\left(\mu_{r}^{2}\right)=\frac{\alpha_{s}\left(Q^{2}\right)}{1+2 b_{0} \alpha_{s}\left(Q^{2}\right) \ln \left(\mu_{r} / Q\right)}$

explicit example: scale dependence of $\mathbf{e}^{+} \mathbf{e}^{--->}$jets

recall: at NLO we have

$$
\sigma^{\mathrm{NLO}}\left(\mu_{R}\right)=\sigma_{q \bar{q}}\left(1+c_{1} \alpha_{S}\left(\mu_{R}\right)\right)
$$

suppose we want to choose a different scale Q - what do we need to do?
recall: $\left.\quad \alpha_{s}\left(\mu_{r}^{2}\right)=\frac{\alpha_{s}\left(Q^{2}\right)}{1+2 b_{0} \alpha_{s}\left(Q^{2}\right) \ln \left(\mu_{r} / Q\right)} \underset{\text { expand }}{\approx} \quad \begin{array}{l}\text { coupling small } \\ \approx \\ \mathbf{Q}^{2}\end{array}\right)-2 \mathbf{b}_{\mathbf{0}} \alpha_{\mathbf{s}}^{2}\left(\mathbf{Q}^{2}\right) \ln \left(\mu_{\mathbf{r}} / \mathbf{Q}\right)$

explicit example: scale dependence of $\mathbf{e}^{+} \mathbf{e}^{--->}$jets

recall: at NLO we have

$$
\sigma^{\mathrm{NLO}}\left(\mu_{R}\right)=\sigma_{q \bar{q}}\left(1+c_{1} \alpha_{s}\left(\mu_{R}\right)\right)
$$

suppose we want to choose a different scale Q - what do we need to do?
recall: $\left.\quad \alpha_{s}\left(\mu_{r}^{2}\right)=\frac{\alpha_{s}\left(Q^{2}\right)}{1+2 b_{0} \alpha_{s}\left(Q^{2}\right) \ln \left(\mu_{r} / Q\right)} \underset{\text { expand }}{\approx} \quad \begin{array}{l}\text { coupling small } \\ \approx\end{array} \mathbf{Q}^{2}\right)-2 \mathbf{b}_{\mathbf{0}} \alpha_{\mathbf{s}}^{2}\left(\mathbf{Q}^{2}\right) \ln \left(\mu_{\mathbf{r}} / \mathbf{Q}\right)$
plug back into $\sigma^{\text {NLO }}=\sigma_{q \bar{q}}\left(1+c_{1} \alpha_{\mathbf{s}}(Q)-2 c_{1} b_{0} \ln \frac{\mu_{R}}{Q} \alpha_{\mathbf{s}}^{2}(Q)+\mathcal{O}\left(\alpha_{\mathbf{s}}^{3}\right)\right)$

explicit example: scale dependence of $\mathbf{e}^{+} \mathbf{e}^{--->}$jets

recall: at NLO we have

$$
\sigma^{\mathrm{NLO}}\left(\mu_{R}\right)=\sigma_{q \bar{q}}\left(1+c_{1} \alpha_{s}\left(\mu_{R}\right)\right)
$$

suppose we want to choose a different scale Q - what do we need to do?
recall: $\left.\quad \alpha_{s}\left(\mu_{r}^{2}\right)=\frac{\alpha_{s}\left(Q^{2}\right)}{1+2 b_{0} \alpha_{s}\left(Q^{2}\right) \ln \left(\mu_{r} / Q\right)} \underset{\text { expand }}{\approx} \quad \begin{array}{l}\text { coupling small } \\ \approx\end{array} \mathbf{Q}^{2}\right)-2 \mathbf{b}_{0} \alpha_{\mathbf{s}}^{2}\left(\mathbf{Q}^{2}\right) \ln \left(\mu_{\mathbf{r}} / \mathbf{Q}\right)$
plug back into $\sigma^{\text {NLO }}=\sigma_{q \bar{q}}\left(1+c_{1} \alpha_{\mathbf{s}}(Q)-2 c_{1} b_{0} \ln \frac{\mu_{R}}{Q_{\pi}} \alpha_{\mathrm{s}}^{2}(Q)+\mathcal{O}\left(\alpha_{\mathrm{s}}^{3}\right)\right)$

explicit example: scale dependence of $\mathrm{e}^{+} \mathrm{e}^{-}->$jets

recall: at NLO we have

$$
\sigma^{\mathrm{NLO}}\left(\mu_{R}\right)=\sigma_{q \bar{q}}\left(1+c_{1} \alpha_{\mathrm{s}}\left(\mu_{R}\right)\right)
$$

suppose we want to choose a different scale Q - what do we need to do?
recall: $\quad \alpha_{s}\left(\mu_{r}^{2}\right)=\frac{\alpha_{s}\left(Q^{2}\right)}{1+2 b_{0} \alpha_{s}\left(Q^{2}\right) \ln \left(\mu_{r} / Q\right)} \underset{\substack{\text { expand }}}{\approx} \alpha_{\mathbf{s}}\left(\mathbf{Q}^{2}\right)-2 \mathbf{b}_{0} \alpha_{\mathbf{s}}^{2}\left(\mathbf{Q}^{2}\right) \ln \left(\mu_{\mathbf{r}} / \mathbf{Q}\right)$
plug back into $\sigma^{\mathrm{NLO}}=\sigma_{q \bar{q}}\left(1+c_{1} \alpha_{\mathrm{s}}(Q)-2 c_{1} b_{0} \ln \frac{\mu_{R}}{Q} \alpha_{\mathrm{s}}^{2}(Q)+\mathcal{O}\left(\alpha_{\mathrm{s}}^{3}\right)\right)$
scale-dep. of $\sigma\left(e^{+} e^{-} \rightarrow\right.$ hadrons $)$

explicit example - cont'd

next calculate full NNLO result:

$$
\begin{gathered}
\sigma^{\mathrm{NNLO}}\left(\mu_{R}\right)=\sigma_{q \bar{q}}\left[1+c_{1} \alpha_{\mathrm{s}}\left(\mu_{R}\right)+c_{2}\left(\mu_{R}\right) \alpha_{\mathrm{s}}^{2}\left(\mu_{R}\right)\right] \\
\text { NNLO term starts to } \\
\text { depend on the scale }
\end{gathered}
$$

explicit example - cont'd

next calculate full NNLO result:

$$
\begin{gathered}
\sigma^{\mathrm{NNLO}}\left(\mu_{R}\right)=\sigma_{q \bar{q}}\left[1+c_{1} \alpha_{\mathbf{s}}\left(\mu_{R}\right)+c_{2}\left(\mu_{R}\right) \alpha_{\mathrm{s}}^{2}\left(\mu_{R}\right)\right] \\
\text { NNLO term starts to } \\
\text { depend on the scale }
\end{gathered}
$$

in fact c_{2} must (and will !) cancel the scale ambiguity found at NLO:

$$
c_{2}\left(\mu_{R}\right)=c_{2}(Q)+2 c_{1} b_{0} \ln \frac{\mu_{R}}{Q}
$$

explicit example - cont'd

next calculate full NNLO result:

$$
\begin{gathered}
\sigma^{\mathrm{NNLO}}\left(\mu_{R}\right)=\sigma_{q \bar{q}}\left[1+c_{1} \alpha_{\mathbf{s}}\left(\mu_{R}\right)+c_{2}\left(\mu_{R}\right) \alpha_{\mathrm{s}}^{2}\left(\mu_{R}\right)\right] \\
\text { NNLO term starts to } \\
\text { depend on the scale }
\end{gathered}
$$

in fact c_{2} must (and will !) cancel the scale ambiguity found at NLO:

$$
c_{2}\left(\mu_{R}\right)=c_{2}(Q)+2 c_{1} b_{0} \ln \frac{\mu_{R}}{Q}
$$

such that the residual scale dependence is now $O\left(\alpha_{s}{ }^{3}\right)$

explicit example - cont'd

next calculate full NNLO result:

$$
\begin{gathered}
\sigma^{\mathrm{NNLO}}\left(\mu_{R}\right)=\sigma_{q \bar{q}}\left[1+c_{1} \alpha_{\mathbf{s}}\left(\mu_{R}\right)+c_{2}\left(\mu_{R}\right) \alpha_{\mathrm{s}}^{2}\left(\mu_{R}\right)\right] \\
\text { NNLO term starts to } \\
\text { depend on the scale }
\end{gathered}
$$

in fact c_{2} must (and will !) cancel the scale ambiguity found at NLO:

$$
c_{2}\left(\mu_{R}\right)=c_{2}(Q)+2 c_{1} b_{0} \ln \frac{\mu_{R}}{Q}
$$

such that the residual scale dependence is now $O\left(\alpha_{s}{ }^{3}\right)$
at all orders the scale dependence would disappear

explicit example - cont'd

next calculate full NNLO result:

$$
\begin{gathered}
\sigma^{\mathrm{NNLO}}\left(\mu_{R}\right)=\sigma_{q \bar{q}}\left[1+c_{1} \alpha_{\mathrm{s}}\left(\mu_{R}\right)+c_{2}\left(\mu_{R}\right) \alpha_{\mathrm{s}}^{2}\left(\mu_{R}\right)\right] \\
\text { NNLO term starts to } \\
\text { depend on the scale }
\end{gathered}
$$

in fact c_{2} must (and will !) cancel the scale ambiguity found at NLO:
scale "ambiguity" is a blessing in disguise: varying the renormalization [factorization] scale $\mu_{r}\left[\mu_{f}\right.$] is a way of guessing the uncalculated higher order contributions
such that the residual scale dependence is now $O\left(\alpha_{s}{ }^{3}\right)$
at all orders the scale dependence would disappear

example from hadronic collisions

take the "classic" Drell Yan process

- dominated by quarks in the initial-state
- at LO no colored particles in the final-state
- clean experimental signature
- at LO an electromagnetic process (low rate)
- one of the best studied processes (known to NNLO)
as "clean" as it can get at a hadron collider

uncertainties for the Drell Yan process - cont'd

at NLO:

$$
\begin{aligned}
\sigma_{p p \rightarrow Z}^{\mathrm{NLO}}=\sum_{i, j} \int d x_{1} d x_{2} f_{i}\left(x_{1}, \mu_{F}^{2}\right) f_{j}\left(x_{2}, \mu_{F}^{2}\right) & {\left[\hat{\sigma}_{0, i j \rightarrow Z}\left(x_{1}, x_{2}\right)+\right.} \\
+ & \left.\alpha_{\mathbf{s}}\left(\mu_{R}\right) \hat{\sigma}_{1, i j \rightarrow Z}\left(x_{1}, x_{2}, \mu_{F}\right)\right]
\end{aligned}
$$

- no α_{s} at LO but μ_{F} appears in PDFs
- α_{s} enters at NLO and hence μ_{R}
- NLO terms reduce dep. on μ_{F}

uncertainties for the Drell Yan process - cont'd

at NLO:

$$
\begin{aligned}
\sigma_{p p \rightarrow Z}^{\mathrm{NLO}}=\sum_{i, j} \int d x_{1} d x_{2} f_{i}\left(x_{1}, \mu_{F}^{2}\right) f_{j}\left(x_{2}, \mu_{F}^{2}\right) & {\left[\hat{\sigma}_{0, i j \rightarrow Z}\left(x_{1}, x_{2}\right)+\right.} \\
+ & \left.\alpha_{\mathbf{s}}\left(\mu_{R}\right) \hat{\sigma}_{1, i j \rightarrow Z}\left(x_{1}, x_{2}, \mu_{F}\right)\right]
\end{aligned}
$$

- no α_{s} at LO but μ_{F} appears in PDFs
- α_{s} enters at NLO and hence μ_{R}
- NLO terms reduce dep. on μ_{F}
- one often varies μ_{F} and μ_{R} together (but that can underestimate uncertainties)

uncertainties for the Drell Yan process - cont'd

at NLO:

$$
\begin{aligned}
\sigma_{p p \rightarrow Z}^{\mathrm{NLO}}=\sum_{i, j} \int d x_{1} d x_{2} f_{i}\left(x_{1}, \mu_{F}^{2}\right) f_{j}\left(x_{2}, \mu_{F}^{2}\right) & {\left[\hat{\sigma}_{0, i j \rightarrow Z}\left(x_{1}, x_{2}\right)+\right.} \\
+ & \left.\alpha_{\mathbf{s}}\left(\mu_{R}\right) \hat{\sigma}_{1, i j \rightarrow Z}\left(x_{1}, x_{2}, \mu_{F}\right)\right]
\end{aligned}
$$

- no α_{s} at LO but μ_{F} appears in PDFs
- α_{s} enters at NLO and hence μ_{R}
- NLO terms reduce dep. on μ_{F}
- one often varies μ_{F} and μ_{R} together (but that can underestimate uncertainties)
- NLO corrections large but scale dependence is reduced

uncertainties for the Drell Yan process - cont'd

at NLO:

$$
\begin{array}{r}
\sigma_{p p \rightarrow Z}^{\mathrm{NLO}}=\sum_{i, j} \int d x_{1} d x_{2} f_{i}\left(x_{1}, \mu_{F}^{2}\right) f_{j}\left(x_{2}, \mu_{F}^{2}\right) \\
{\left[\hat{\sigma}_{0, i j \rightarrow Z}\left(x_{1}, x_{2}\right)+\right.} \\
\left.+\alpha_{\mathbf{s}}\left(\mu_{R}\right) \hat{\sigma}_{1, i j \rightarrow Z}\left(x_{1}, x_{2}, \mu_{F}\right)\right]
\end{array}
$$

- no α_{s} at LO but μ_{F} appears in PDFs
- α_{s} enters at NLO and hence μ_{R}
- NLO terms reduce dep. on μ_{F}
- one often varies μ_{F} and μ_{R} together (but that can underestimate uncertainties)
- NLO corrections large but scale dependence is reduced
- even better at NNLO

uncertainties for the Drell Yan process - cont'd

at NLO:

$$
\begin{array}{r}
\sigma_{p p \rightarrow Z}^{\mathrm{NLO}}=\sum_{i, j} \int d x_{1} d x_{2} f_{i}\left(x_{1}, \mu_{F}^{2}\right) f_{j}\left(x_{2}, \mu_{F}^{2}\right) \\
{\left[\hat{\sigma}_{0, i j \rightarrow Z}\left(x_{1}, x_{2}\right)+\right.} \\
\left.+\alpha_{\mathbf{s}}\left(\mu_{R}\right) \hat{\sigma}_{1, i j \rightarrow Z}\left(x_{1}, x_{2}, \mu_{F}\right)\right]
\end{array}
$$

- no α_{s} at LO but μ_{F} appears in PDFs
- α_{s} enters at NLO and hence μ_{R}
- NLO terms reduce dep. on μ_{F}
- one often varies μ_{F} and μ_{R} together (but that can underestimate uncertainties)
- NLO corrections large but scale dependence is reduced
- even better at NNLO

changing scales in DGLAP evolution

estimate by G. Salam: vary the scale of α_{s} in the DGLAP kernel

changing scales in DGLAP evolution

estimate by G. Salam: vary the scale of α_{s} in the DGLAP kernel

Uncert. on gluon ev. from 2 to 100 GeV

changing scales in DGLAP evolution

estimate by G. Salam: vary the scale of α_{s} in the DGLAP kernel

Uncert. on gluon ev. from 2 to 100 GeV

- about 30% in LO
- down to about 5\% in NLO
- NNLO brings it down to 2%

changing scales in DGLAP evolution

estimate by G. Salam: vary the scale of α_{s} in the DGLAP kernel

Uncert. on gluon ev. from 2 to 100 GeV

- about 30% in LO
- down to about 5\% in NLO
- NNLO brings it down to 2% which is about the precision of the HERA DIS data

Anatomy of a Global QCD Analysis

how to determine PDFs from data?

probes:

DIS
hard scale Q

parton cross section calculable
hadron-hadron hard scale рт 2

how to determine PDFs from data?

probes:

DIS
hard scale Q

hadron-hadron hard scale PT $^{\text {T }}$

how to determine PDFs from data?

probes:

task: extract PDFs and their uncertainties (assume factorization)

- all processes tied together: universality of pdfs \& Q^{2} - evolution
- each reaction provides insights into different aspects and kinematics
- need at least NLO accuracy for quantitative analyses
- information on PDFs "hidden" inside complicated (multi-)convolutions

anatomy of global PDF analyses

obtain PDFs
 through global χ^{2} optimization

set of optimum parameters for assumed functional form
computational challenge:

- up to $\mathrm{O}(20-30)$ parameters
- many sources of uncertainties
- very time-consuming NLO expressions

anatomy of global QCD analyses

anatomy of global QCD analyses

"resolution scale" μ

anatomy of global QCD analyses

anatomy of global QCD analyses

anatomy of global QCD analyses

global analysis: computational challenge

- one has to deal with $O(\mathbf{2 8 0 0})$ data points from many processes and experiments
- need to determine $\mathbf{O}(20-30)$ parameters describing PDFs at μ_{0}
- NLO expressions often very complicated \rightarrow computing time becomes excessive \rightarrow develop sophisticated algorithms \& techniques, e.g., based on Mellin moments

global analysis: computational challenge

- one has to deal with $O(2800)$ data points from many processes and experiments
- need to determine $\mathbf{O}(20-30)$ parameters describing PDFs at μ_{0}
- NLO expressions often very complicated \rightarrow computing time becomes excessive \rightarrow develop sophisticated algorithms \& techniques, e.g., based on Mellin moments Kosower: Vogt: Vogelsang, MS data sets \& $\left(x, Q^{2}\right)$ coverage used in MSTW fit

Martin, Stirling, Thorne, Watt, arXiv:0901.0002

Data set	$N_{\text {pta }}$		
H1 MB $99 e^{+} p$ NC	8		
H1 MB $97 e^{-} p$ NC	64		
H1 low $Q^{2} 96-97 e^{+} p$ NC	80		
H1 high $Q^{2} 98-99 e^{-} p$ NC	126		
H1 high $Q^{2} 99-00 e^{+} p$ NC	147		
ZEUS SVX $95 e^{+} p$ NC	30		
ZEUS 96-97 $e^{+} p$ NC	144		
ZEUS 98-99 e-p NC	92		
ZEUS 99-00 $e^{+} p$ NC	90		
H1 99-00 $e^{+} p$ CC	28		
ZEUS 99-00 $e^{+} p$ CC	30		
H1/ZEUS ${ }^{+} \bar{p} F^{\text {charm }}$	83		
H1 $99-00 e^{+} p$ incl. jets	24		
ZEUS 96-97 et $\mathrm{e}^{\text {t }}$ incl. jets	30		
ZEUS $90-00 e^{ \pm}-p$ incll jots	30		
Dø II $p \bar{p}$ incl. jets	110		
	76		
CDF II W \rightarrow d $/ v$ asym.	22		
D® II $W=$ he ssym.	10		
DØ \\| $\\| \underline{Z}$ rap.	28		
CDF II Z rap.	29		

- Red $=$ New w.r.t. MRST 2006 fit,

which data sets determine which partons

Process	Subprocess	Partons	x range
$\ell^{ \pm}\{p, n\} \rightarrow \ell^{ \pm} X$	$\gamma^{*} q \rightarrow q$	q. \bar{q}, g	$x \geq 0.01$
$\ell^{ \pm} n / p \rightarrow \ell^{ \pm} X$	$\gamma^{+} d / u \rightarrow d / u$	d / u	$x \gtrsim 0.01$
$p p \rightarrow \mu^{+} \mu^{-} X$	$u \bar{u}, d \bar{d} \rightarrow \gamma$	\bar{q}	$0.015 \lesssim x \lesssim 0.35$
$p n / p p \rightarrow \mu^{+} \mu^{-} X$	$(u \bar{d}) /(u \bar{u}) \rightarrow \gamma^{*}$	\bar{d} / \bar{u}	$0.015 \lesssim x \lesssim 0.35$
$\nu(\bar{\nu}) N \rightarrow \mu^{-}\left(\mu^{+}\right) X$	$W^{*} q \rightarrow q^{\prime}$	q, \bar{q}	$0.01 \lesssim \ll 0.5$
$\nu N \rightarrow \mu^{-} \mu^{+} X$	$W^{*} \mathrm{~s} \rightarrow \mathrm{c}$	s	$0.01 \lesssim x \lesssim 0.2$
$\bar{p} N \rightarrow \mu^{+} \mu^{-} X$	$W^{*} \bar{s} \rightarrow \bar{c}$	\bar{s}	$0.01 \leqslant x \leqslant 0.2$
$e^{ \pm} p \rightarrow e^{ \pm} X$	$\gamma^{*} q \rightarrow q$	g, q, \bar{q}	$0.0001 \lesssim x>0.1$
$e^{+} p \rightarrow \bar{\nu} X$	$W^{+}\{d, s\} \rightarrow\{u, c\}$	d, s	$x \geq 0.01$
$e^{ \pm} p \rightarrow e^{ \pm} c \bar{c} X$	$\gamma^{*} \mathrm{c} \rightarrow \mathrm{c}, \gamma^{*} \mathrm{~g} \rightarrow \mathrm{c} \overline{\mathrm{c}}$	c, g	$0.0001 \lesssim x \lesssim 0.01$
$e^{ \pm} p \rightarrow$ jet $+X$	$\hat{\gamma}^{\prime} g \rightarrow q \bar{q}$	g	$0.01 \lesssim x<0.1$
$\begin{aligned} & \hline p \bar{p} \rightarrow \text { jet }+X \\ & p \bar{p} \rightarrow\left(W^{ \pm} \rightarrow \ell^{ \pm} \nu\right) X \\ & p \bar{p} \rightarrow\left(Z \rightarrow \ell^{+} \ell^{-}\right) X \end{aligned}$	$\begin{aligned} & g q, q g, q q \rightarrow 2 j \\ & u d \rightarrow W, \bar{u} \bar{d} \rightarrow W \\ & u u, d d \rightarrow Z \end{aligned}$	$\begin{gathered} \frac{g, q}{u, d, \bar{u}, \bar{d}} \end{gathered}$	$\begin{gathered} 0.01 \lesssim x \lesssim 0.5 \\ x \gtrsim 0.05 \\ x \gtrsim 0.05 \end{gathered}$

which data sets determine which partons

Process	Subprocess	Partons	x range
$\ell^{ \pm}\{p, n\} \rightarrow \ell^{ \pm} X$	$\gamma^{*} q \rightarrow q$	q. \bar{q}, g	$x \geqslant 0.01$
$\ell^{ \pm} n / p \rightarrow \ell^{ \pm} X$	$\gamma^{*} d / u \rightarrow d / u$	d / u	$x \gtrsim 0.01$
$p p \rightarrow \mu^{+} \mu^{-} X$	$u \bar{u}, d \bar{d} \rightarrow \gamma^{*}$	\bar{q}	$0.015 \lesssim x \lesssim 0.35$
$p n / p p \rightarrow \mu^{+} \mu^{-} X$	$(u \bar{d}) /(u \bar{u}) \rightarrow \gamma^{*}$	\bar{d} / \bar{u}	$0.015 \leqq x \lesssim 0.35$
$\nu(\bar{\nu}) N \rightarrow \mu^{-}\left(\mu^{+}\right) X$	$W^{*} q \rightarrow q^{*}$	q, \bar{q}	$0.01 \lesssim<x<0.5$
$v N \rightarrow \mu^{-} \mu^{+} X$	$W^{*} s \rightarrow c$	$\stackrel{8}{8}$	$0.01 \lesssim x \lesssim 0.2$
$\bar{\nu} N \rightarrow \mu^{+} \mu^{-} X$	$W^{*} \bar{s} \rightarrow \bar{c}$	\bar{s}	$0.01 \leqslant x \leqslant 0.2$
$e^{ \pm} p \rightarrow e^{ \pm} X$	$\gamma^{*} q \rightarrow q$	g, q, \bar{q}	$0.0001 \lesssim x>0.1$
$e^{+} p \rightarrow \bar{\nu} X$	$W^{+}\{d, s\} \rightarrow\{u, c\}$	$d_{\text {d, }}$	$x \gtrsim 0.01$
$e^{ \pm} p \rightarrow e^{ \pm} c \bar{c} X$	$\gamma^{*} \mathrm{c} \rightarrow \mathrm{c}, \gamma^{*} \mathrm{~g} \rightarrow \mathrm{ce}$	c, g	$0.0001 \lesssim x \lesssim 0.01$
$e^{ \pm} p \rightarrow$ jet $+X$	$\hat{\gamma}^{\prime} g \rightarrow q \bar{q}$	g	$0.01 \ll x<0.1$
$p \bar{p} \rightarrow$ jet $+X$	9g, $q 9, q q \rightarrow 2 j$	$9, q$	$0.01 \lesssim x \lesssim 0.5$
$p \bar{p} \rightarrow\left(W^{ \pm} \rightarrow \ell^{ \pm} \nu\right) X$	$u d \rightarrow W, \bar{u} \bar{d} \rightarrow W$	u, d, \bar{u}, \bar{d}	$x \gtrsim 0.05$
$p \bar{p} \rightarrow\left(Z \rightarrow \ell^{+} \ell^{-}\right) X$	$u u, d d \rightarrow Z$	d	$x \geq 0.05$

- notice the huge gluon distribution
- quality of the fit:
$\chi^{2} / \#$ data pts.
- 2543/2699 NLO
-3066/2598 LO
interplay of many data sets crucial

PARTON
 Drive carefully

Burial place of James Clerk Maxwell

from R.D. Ball

3

when there is not enough room: gluons at small x

what drives the growth of the gluon density

 observe that only 2 splitting fcts are singular at small x

$$
\left.\left.P_{g q}(x)\right|_{x \rightarrow 0} \approx \frac{2 C_{F}}{x} \quad P_{g g}(x)\right|_{x \rightarrow 0} \approx \frac{2 C_{A}}{x}
$$

-> small \times region dominated by gluons

what drives the growth of the gluon density

 observe that only 2 splitting fcts are singular at small x

$$
\left.\left.P_{g q}(x)\right|_{x \rightarrow 0} \approx \frac{2 C_{F}}{x} \quad P_{g g}(x)\right|_{x \rightarrow 0} \approx \frac{2 C_{A}}{x}
$$

-> small \times region dominated by gluons

- write down "gluon-only" DGLAP equation only valid for small x and large Q^{2}

$$
\frac{d g\left(x, \mu^{2}\right)}{d \log \mu^{2}}=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d z}{z} \frac{2 C_{A}}{z} g\left(x / z, \mu^{2}\right)
$$

what drives the growth of the gluon density

 observe that only 2 splitting fcts are singular at small x

$$
\left.\left.P_{g q}(x)\right|_{x \rightarrow 0} \approx \frac{2 C_{F}}{x} \quad P_{g g}(x)\right|_{x \rightarrow 0} \approx \frac{2 C_{A}}{x}
$$

-> small \times region dominated by gluons

- write down "gluon-only" DGLAP equation only valid for small x and large Q^{2}

$$
\frac{d g\left(x, \mu^{2}\right)}{d \log \mu^{2}}=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d z}{z} \frac{2 C_{A}}{z} g\left(x / z, \mu^{2}\right)
$$

- for fixed coupling this leads to "double logarithmic approximation"

$$
x g\left(x, Q^{2}\right) \sim \exp \left(2 \sqrt{\frac{\alpha_{S} C_{A}}{\pi} \log (1 / x) \log \left(Q^{2} / Q_{0}^{2}\right)}\right)
$$

predicts rise that is faster than $\log ^{a}(1 / x)$ but slower than $(1 / x)^{a}$

gluon occupancy

- DGLAP predicts an increase of gluons at small x but proton becomes more dilute as Q^{2} increases transverse size of partons $\approx 1 / Q$

gluon occupancy

- DGLAP predicts an increase of gluons at small x but proton becomes more dilute as Q^{2} increases transverse size of partons $\approx 1 / Q$

but what happens at small x for not so large (fixed) Q^{2} ?

gluon occupancy

- DGLAP predicts an increase of gluons at small x but proton becomes more dilute as Q^{2} increases transverse size of partons $\approx 1 / Q$
but what happens at small x for not so large (fixed) Q^{2} ?
- aim to resum terms $\approx \alpha_{s} \log (1 / x)$
- Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation: evolves in \times not Q^{2}
- BFKL predicts a power-like growth $x g\left(x, Q^{2}\right) \sim(1 / x)^{\alpha_{P}-1}$
much faster than in DGLAP

gluon occupancy

- DGLAP predicts an increase of gluons at small x but proton becomes more dilute as Q^{2} increases transverse size of partons $\approx 1 / Q$

but what happens at small x for not so large (fixed) Q^{2} ?

"high-energy (Regge) limit of QCD"

- aim to resum terms $\approx \alpha_{s} \log (1 / x)$
- Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation: evolves in \times not Q^{2}
- BFKL predicts a power-like growth $x g\left(x, Q^{2}\right) \sim(1 / x)^{\alpha_{P}-1}$
much faster than in DGLAP

BIG problem

- proton quickly fills up with gluons (transverse size now fixed!)
- hadronic cross sections violate $\ln ^{2} s$ bound (Froissart-Martin) and grow like a power

color dipole model

make progress by viewing, e.g., DIS from a "different angle"

DIS in the proton rest frame can be viewed as the photon splitting into a quark-antiquark pair ("color dipole") which scatters off the proton (= "slow" gluon field)

color dipole model

make progress by viewing, e.g., DIS from a "different angle"

DIS in the proton rest frame can be viewed as the photon splitting into a quark-antiquark pair ("color dipole") which scatters off the proton (= "slow" gluon field)

- factorization now in terms of

color dipole model

make progress by viewing, e.g., DIS from a "different angle"

DIS in the proton rest frame can be viewed as the photon splitting into a quark-antiquark pair ("color dipole") which scatters off the proton (= "slow" gluon field)

- factorization now in terms of

- introduces dipole-nucleon scattering amplitude N as fund. building block
- energy dependence of N described by Balitsky-Kovchegov equation

color dipole model

make progress by viewing, e.g., DIS from a "different angle"

DIS in the proton rest frame can be viewed as the photon splitting into a quark-antiquark pair ("color dipole") which scatters off the proton (= "slow" gluon field)

- factorization now in terms of

- introduces dipole-nucleon scattering amplitude N as fund. building block
- energy dependence of N described by Balitsky-Kovchegov equation
- non-linear -> includes multiple scatterings for unitarization
- generates saturation scale Q_{s}
- suited to treat collective phenomena (shadowing, diffration)
- impact parameter dependence

when a $N^{x} L O$ calculation is not good enough

observation: fixed N^{\times}LO order QCD calculations are not necessarily reliable this often happens at low energy fixed-target experiments and can be an issue also at colliders, even the LHC
reason: structure of the perturbative series and IR cancellation
at partonic threshold / near exclusive boundary:

- just enough energy to produce, e.g., high-p p_{T} parton
- "inhibited" radiation (general phenomenon for gauge theories)

when a $N^{x} L O$ calculation is not good enough

observation: fixed N×LO order QCD calculations are not necessarily reliable this often happens at low energy fixed-target experiments and can be an issue also at colliders, even the LHC
reason: structure of the perturbative series and IR cancellation
at partonic threshold / near exclusive boundary:

- just enough energy to produce, e.g., high-p p_{T} parton
- "inhibited" radiation (general phenomenon for gauge theories)
simple example: Drell-Yan process

"imbalance" of real and virtual contributions: IR cancellation leaves large log's

all order structure of partonic cross sections

let's consider pp scattering:
$\begin{aligned} & \text { logarithms related to } \\ & \text { partonic threshold }\end{aligned} \widehat{x}_{T}=\frac{2 p_{T}}{\sqrt{\widehat{s}}} \rightarrow 1$

general structure of partonic cross sections at the $\mathrm{k}^{\text {th }}$ order:

$$
\begin{aligned}
p_{T}^{3} \frac{d \hat{\sigma}_{a b}}{d p_{T}}= & p_{T}^{3} \frac{d \hat{\sigma}_{b}^{\text {Born }}}{d p_{T}}[1+\underbrace{\mathcal{A}_{1} \alpha_{s} \ln ^{2}\left(1-\hat{x}_{T}^{2}\right)+\mathcal{B}_{1} \alpha_{s} \ln \left(1-\hat{x}_{T}^{2}\right)}_{\text {NLO }} \\
& \left.+\ldots+\mathcal{A}_{k} \alpha_{s}^{k} \ln ^{2 k}\left(1-\hat{x}_{T}^{2}\right)+\ldots\right]+\ldots \\
& \text { "threshold logarithms" }
\end{aligned}
$$

all order structure of partonic cross sections

let's consider pp scattering:
logarithms related to partonic threshold

$$
\widehat{x}_{T}=\frac{2 p_{T}}{\sqrt{\hat{s}}} \rightarrow 1
$$

general structure of partonic cross sections at the $k^{\text {th }}$ order:

$$
\begin{aligned}
& p_{T}^{3} \frac{d \hat{\sigma}_{a b}}{d p_{T}}= p_{T}^{3} \frac{d \hat{\sigma}_{b}^{\text {Born }}}{d p_{T}}[1+\underbrace{\mathcal{A}_{1} \alpha_{s} \ln ^{2}\left(1-\hat{x}_{T}^{2}\right)+\mathcal{B}_{1} \alpha_{s} \ln \left(1-\hat{x}_{T}^{2}\right)}_{\text {NLO }} \\
&\left.+\ldots+\mathcal{A}_{k} \alpha_{s}^{k} \ln ^{2 k}\left(1-\hat{x}_{T}^{2}\right)+\ldots\right]+\ldots \\
& \text { "threshold logarithms" }
\end{aligned}
$$

where relevant? ... convolution with steeply falling parton luminosity $L_{a b}$:

$$
\text { large at small } \tau / z
$$

\rightarrow important for fixed target phenomenology: threshold region more relevant (large τ)

resummations - how are they done

$\alpha_{s}^{k} \operatorname{In}^{2 k}\left(1-\widehat{x}_{T}^{2}\right)$

may spoil perturbative series unless taken into account to all orders
resummation of such terms has reached a high level of sophistication
Sterman: Catani, Trentadue: Laenen, Oderda, Sterman;
Catani et al.: Sterman, Vogelsang; Kidonakis, Owens;

- worked out for most processes of interest at least to NLL
- well defined class of higher-order corrections
- often of much phenomenological relevance
even for high mass particle production at the LHC

resummations - how are they done

$$
\alpha_{s}^{k} \ln ^{2 k}\left(1-\widehat{x}_{T}^{2}\right)
$$ may spoil perturbative series unless taken into account to all orders

resummation of such terms has reached a high level of sophistication
Sterman: Catani, Trentadue: Laenen, Oderda, Sterman:
Catani et al.: Sterman, Vogelsang: Kidonakis, Owens: ...

- worked out for most processes of interest at least to NLL
- well defined class of higher-order corrections
- often of much phenomenological relevance even for high mass particle production at the LHC

resummation (= exponentiation) occurs when "right" moments are taken:
Mellin moments for threshold logs

$$
\alpha_{s}^{k} \ln ^{2 k}\left(1-\widehat{x}_{T}^{2}\right) \rightarrow \alpha_{s}^{k} \ln ^{2 k}(N)
$$

- fixed order calculations needed to determine "coefficients"
- the more orders are known, the more subleading logs can be resummed

resummations - terminology

resummations - terminology

Fixed order calculation

resummations - terminology

Fixed order calculation

resummations - terminology

Fixed order calculation

resummations - terminology

Fixed order calculation

LO					
NLO	$\alpha_{\mathrm{s}} \mathbf{L}^{2}$	$\alpha_{\mathrm{s}} \mathbf{L}$	α_{s}		
NNLO	$\alpha_{\mathrm{s}}^{2} \mathbf{L}^{4}$	$\alpha_{\mathrm{s}}^{2} \mathbf{L}^{3}$	$\alpha_{\mathrm{s}}^{2} \mathbf{L}^{2}$	$\alpha_{\mathrm{s}}^{2} \mathbf{L}$	$+\cdots$

resummations - terminology

Fixed order calculation

resummations - terminology

Fixed order calculation

resummations - terminology

Fixed order calculation

LO

$$
\alpha_{\mathbf{s}} \mathbf{L}^{2} \quad \alpha_{\mathbf{s}} \mathbf{L}
$$

$$
\alpha_{\mathrm{s}}^{2} \mathbf{L}^{4}
$$

$$
\alpha_{\mathrm{s}}^{2} \mathbf{L}^{3}
$$

$$
\alpha_{\mathrm{s}}^{2} \mathbf{L}^{2}
$$

$$
\alpha_{\mathrm{s}}^{2} \mathbf{L}+\ldots
$$

$$
\alpha_{\mathrm{s}}^{3} \mathbf{L}^{6}
$$

$$
\alpha_{\mathrm{s}}^{3} \mathbf{L}^{5}
$$

$$
\alpha_{\mathrm{s}}^{3} \mathbf{L}^{4}
$$

$$
\alpha_{\mathrm{s}}^{3} \mathbf{L}^{3}+\ldots
$$

$$
\alpha_{\mathrm{s}}^{4} \mathbf{L}^{8}
$$

$$
\alpha_{\mathrm{s}}^{4} \mathrm{~L}^{7}
$$

$$
\alpha_{\mathrm{s}}^{4} \mathbf{L}^{6}
$$

$$
\alpha_{\mathrm{s}}^{4} \mathbf{L}^{5}
$$

$$
\vdots
$$

$\mathrm{N}^{\mathrm{k}} \mathrm{LO} \quad \alpha_{\mathrm{s}}^{\mathrm{k}} \mathrm{L}^{2 \mathrm{k}}$
$\alpha_{s}^{k} \mathbf{L}^{2 k-1}$
$\alpha_{s}^{k} \mathbf{L}^{2 k-2}$
$\alpha_{\mathrm{s}}^{\mathrm{k}} \mathbf{L}^{2 \mathrm{k}-3}$

resummations - terminology

Fixed order calculation

Resummation

NLO	$\alpha_{\mathrm{s}} \mathbf{L}^{2}$	$\alpha_{\text {s }} \mathbf{L}$	$\alpha_{\text {s }}$	+ .
NNLO	$\alpha_{s}^{2} \mathbf{L}^{4}$	$\alpha_{\mathrm{s}}^{2} \mathrm{~L}^{3}$	$\alpha_{\mathrm{s}}^{2} \mathrm{~L}^{2}$	$\alpha_{\mathrm{s}}^{2} \mathrm{~L}+$
	$\begin{gathered} \alpha_{\mathrm{s}}^{3} \mathbf{L}^{6} \\ \alpha_{\mathrm{s}}^{4} \mathbf{L}^{8} \end{gathered}$	$\begin{aligned} & \alpha_{\mathrm{s}}^{3} L^{5} \\ & \alpha_{\mathrm{s}}^{4} \mathbf{L}^{7} \end{aligned}$	$\begin{gathered} \alpha_{\mathrm{s}}^{3} \mathbf{L}^{4} \\ \alpha_{\mathrm{s}}^{4} \mathbf{L}^{6} \end{gathered}$	$\begin{aligned} & \alpha_{\mathrm{s}}^{3} \mathbf{L}^{3}+\ldots \\ & \alpha_{\mathrm{s}}^{4} \mathbf{L}^{5}+\ldots \end{aligned}$
$\mathrm{N}^{\mathrm{k}} \mathrm{LO}$	\vdots $\alpha_{\mathrm{s}}^{\mathbf{k}} \mathbf{L}^{2 \mathrm{k}}$	$\alpha_{\mathrm{s}}^{\mathrm{k}} \mathbf{L}^{2 \mathrm{k}-1}$	$\alpha_{\mathrm{s}}^{\mathrm{k}} \mathbf{L}^{2 \mathrm{k}-2}$	$\alpha_{\mathrm{s}}^{\mathbf{k}} \mathbf{L}^{2 \mathbf{k}-3}$

LL

resummations - terminology

Fixed order calculation

Resummation

resummations - terminology

Fixed order calculation

Resummation

LO NLO

$\alpha_{\mathrm{s}} \mathbf{L}^{2}$	$\alpha_{\mathrm{s}} \mathrm{L}$	$\alpha_{\text {s }}$	+ \ldots
$\alpha_{\mathrm{s}}^{2} \mathrm{~L}^{4}$	$\alpha_{\mathrm{s}}^{2} \mathrm{~L}^{3}$	$\alpha_{\mathrm{s}}^{2} \mathrm{~L}^{2}$	$\alpha_{\mathrm{s}}^{2} \mathrm{~L}+\ldots$
$\begin{aligned} & \alpha_{\mathrm{s}}^{3} \mathbf{L}^{6} \\ & \alpha_{\mathrm{s}}^{4} \mathbf{L}^{8} \end{aligned}$	$\begin{aligned} & \alpha_{\mathrm{s}}^{3} \mathbf{L}^{5} \\ & \alpha_{\mathrm{s}}^{4} \mathbf{L}^{7} \end{aligned}$	$\begin{aligned} & \alpha_{\mathrm{s}}^{3} L^{4} \\ & \alpha_{\mathrm{s}}^{4} L^{6} \end{aligned}$	$\begin{aligned} & \alpha_{\mathrm{s}}^{3} \mathbf{L}^{3}+\ldots \\ & \alpha_{\mathrm{s}}^{4} \mathbf{L}^{5}+\ldots \end{aligned}$
$\alpha_{\mathrm{s}}^{\mathrm{k}} \mathbf{L}^{2 \mathbf{k}}$	$\alpha_{\mathrm{s}}^{\mathrm{k}} \mathbf{L}^{2 \mathrm{k}-1}$	$\alpha_{\mathrm{s}}^{\mathrm{k}} \mathbf{L}^{2 \mathbf{k}-2}$	$\alpha_{\mathrm{s}}^{\mathbf{k}} \mathbf{L}^{2 \mathbf{k}-3}$
LL	NLL	NNLL	

some leading log exponents

(assuming fixed α_{s} for simplicity)
color factors for soft gluon radiation matter:

$$
\exp \left[\frac{\mathbf{C}_{\mathbf{F}} \alpha_{\mathbf{s}}}{\pi} \ln ^{2}(\mathbf{N})-\frac{\mathbf{C}_{\mathbf{F}} \alpha_{\mathbf{s}}}{\pi} \frac{1}{2} \ln ^{2}(\mathbf{N})\right]
$$

DIS

some leading log exponents

(assuming fixed α_{s} for simplicity)
color factors for soft gluon radiation matter:
unobserved parton

$$
\begin{gathered}
\exp \left[\frac{\mathbf{C}_{\mathbf{F}} \alpha_{\mathbf{s}}}{\pi} \ln ^{2}(\mathbf{N})-\frac{\mathbf{C}_{\mathbf{F}} \alpha_{\mathbf{s}}}{\pi} \frac{1}{2} \ln ^{2}(\mathbf{N})\right] \\
\text { moderate enhancement, unless } \mathrm{X}_{\mathrm{Bj}} \text { large }
\end{gathered}
$$

$$
\begin{array}{ll}
\mathrm{q} \overline{\mathrm{q}} \rightarrow \gamma \mathrm{~g} & \exp \left[\left(\mathbf{C}_{\mathbf{F}}+\mathbf{C}_{\mathbf{F}}-\frac{1}{2} \mathbf{C}_{\mathbf{A}}\right) \frac{\alpha_{\mathrm{s}}}{\pi} \ln ^{2}(\mathbf{N})\right] \\
\mathrm{q} g \rightarrow \gamma \mathrm{q} & \exp \left[\left(\mathbf{C}_{\mathbf{F}}+\mathbf{C}_{\mathbf{A}}-\frac{\mathbf{1}}{2} \mathbf{C}_{\mathbf{F}}\right) \frac{\alpha_{\mathrm{s}}}{\pi} \ln ^{2}(\mathbf{N})\right]
\end{array}
$$

exponents positive \longrightarrow enhancement

some leading log exponents

(assuming fixed α_{s} for simplicity)
color factors for soft gluon radiation matter:

$$
\exp \left[\frac{\mathbf{C}_{\mathbf{F}} \alpha_{\mathrm{s}}}{\pi} \ln ^{2}(\mathbf{N})-\frac{\mathbf{C}_{\mathbf{F}} \alpha_{\mathrm{s}}}{\pi} \frac{1}{2} \ln ^{2}(\mathbf{N})\right]
$$

moderate enhancement, unless $x_{B j}$ large

expect much larger enhancement

resummations: window to non-perturbative regime

important technical issue:
resummations are sensitive to strong coupling regime
\rightarrow need some "minimal prescription" to avoid Landau pole (where $\alpha_{s} \rightarrow \infty$) Catani, Mangano, Nason, Trentadue: define resummed result such that series is asymptotic w/o factorial growth associated with power corrections [achieved by particular choice of Mellin contour]
\rightarrow power corrections may be added afterwards if pheno. needed studying power corrections prior to resummations makes no sense

resummations: window to non-perturbative regime

important technical issue:
resummations are sensitive to strong coupling regime
\rightarrow need some "minimal prescription" to avoid Landau pole (where $\alpha_{\mathrm{s}} \rightarrow \infty$) Catani, Mangano, Nason, Trentadue: define resummed result such that series is asymptotic w/o factorial growth associated with power corrections [achieved by particular choice of Mellin contour]
\rightarrow power corrections may be added afterwards if pheno. needed studying power corrections prior to resummations makes no sense
window to the non-perturbative regime so far little explored

"convergence" of an asymptotic series

see, "Renormalons" review by M. Beneke, hep-ph/9807443
suppose we keep calculating higher and higher orders

factorial growth
\rightarrow big trouble: the perturbative series is not convergent but only asymptotic

"convergence" of an asymptotic series

see, "Renormalons" review by M. Beneke, hep-ph/9807443
suppose we keep calculating higher and higher orders

factorial growth
\rightarrow big trouble: the perturbative series is not convergent but only asymptotic
illustration:
try resumming
$R=\sum_{n=0}^{\infty} \alpha_{s}^{n} n!$
[with $\left.\alpha_{s}=0.1\right]$

taken from M. Cacciari

pQCD - non-perturbative bridge

- "renormalon ambiguity" \leftrightarrow incompleteness of PQCD series
\rightarrow we can only define what the sum of the perturbative series is like truncating it at the minimal term

pQCD - non-perturbative bridge

- "renormalon ambiguity" \leftrightarrow incompleteness of PQCD series
\rightarrow we can only define what the sum of the perturbative series is like truncating it at the minimal term
- what is missing is a genuine ambiguity
\rightarrow eventually lifted by non-perturbative (NP) corrections:

$$
R=R^{p Q C D}+R^{N P}
$$

pQCD - non-perturbative bridge

- "renormalon ambiguity" \leftrightarrow incompleteness of pQCD series
\rightarrow we can only define what the sum of the perturbative series is like truncating it at the minimal term
- what is missing is a genuine ambiguity
\rightarrow eventually lifted by non-perturbative (NP) corrections:

$$
R=R^{p Q C D}+R^{N P}
$$

- QCD: NP corrections are power suppressed:

$$
R^{N P}=\exp \left(-p \ln \frac{Q^{2}}{\Lambda^{2}}\right)=\left(\frac{\Lambda^{2}}{Q^{2}}\right)^{p}
$$

the value of p depends on the process and can sometimes be predicted

SUMMARY \& OUTLOOK

QCD: the most perfect gauge theory (so far)

simple \mathcal{L} but rich \& complex phenomenology; few parameters in principle complete up to the Planck scale (issue: CP, axions?)
highly non-trivial ground state responsible for all the structure in the visible universe
emergent phenomena: confinement, chiral symmetry breaking, hadrons

confinement

e.g. through lattice QCD

interplay between High Energy and Hadron Physics
asymptotic freedom
hard scattering cross sections and
renormalization group
perturbative methods
we have just explored the tip of the iceberg

we have just explored the tip of the iceberg
enjoy the other lectures!

