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From atoms to nuclei, to quarks and gluons

10−10 m : atom (99.98% of the mass is in the nucleus)

François Gelis QCD at High Temperature 1/112 Cape Town, November 2013
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From atoms to nuclei, to quarks and gluons

< 10−15 m : quark substructure
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From atoms to nuclei, to quarks and gluons

< 10−15 m : quarks + gluons
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François Gelis

2

Quarks and gluons

Strong interactions : Quantum Chromo-Dynamics

• Matter : quarks ; Interaction carriers : gluons

a

i

j

∼ g (ta)ij
a

b

c

∼ g (Ta)bc

• i, j : quark colors ; a, b, c : gluon colors

• (ta)ij : 3× 3 SU(3) matrix ; (Ta)bc : 8× 8 SU(3) matrix

Lagrangian

L = −
1

4
F2 +

∑
f

ψf(i/D−mf)ψf

• Free parameters : quark masses mf, scale ΛQCD
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Asymptotic freedom

Running coupling : αs = g
2/4π

αs(r) =
2πNc

(11Nc − 2Nf) log(1/rΛ
QCD

)

α
S
(M

Z
)=0.1182±0.0027
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Color confinement

• The quark potential increases linearly with distance

François Gelis QCD at High Temperature 4/112 Cape Town, November 2013
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Color confinement

• In nature, we do not see free quarks and gluons (the closest we
have to actual quarks and gluons are jets)

• Instead, we see hadrons (quark-gluon bound states):

• The hadron spectrum is uniquely given by ΛQCD ,mf

• But this dependence is non-perturbative (it can now be obtained
fairly accurately by lattice simulations)

François Gelis QCD at High Temperature 5/112 Cape Town, November 2013



François Gelis

5

Deconfinement
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Debye screening at high density

V(r) = 
exp( - r / rdebye )

r
r

• In a dense environment, color charges are screened by their
neighbours

• The Coulomb potential decreases exponentially beyond the
Debye radius rdebye

• Bound states larger than rdebye cannot survive

François Gelis QCD at High Temperature 6/112 Cape Town, November 2013
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Debye screening
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• In lattice calculations, one sees the qq̄ potential flatten at long
distance as T increases
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Deconfinement transition
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3 flavour
2+1 flavour

2 flavour
pure gauge

• Fast increase of the pressure :
• at T ∼ 270 MeV, if there are only gluons
• at T ∼ 150–170 MeV, depending on the number of light quarks
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QCD phase diagram

Quark−Gluon

hadronic
phase Color superconductor

plasma

Temperature

Nuclei Neutron stars

Net Baryon
Density
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QGP in the early universe

Quark−Gluon

hadronic
phase Color superconductor

plasma

Temperature

Nuclei Neutron stars

Net Baryon
Density

Early Universe
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QGP in the early universe

François Gelis QCD at High Temperature 11/112 Cape Town, November 2013



François Gelis

12

Heavy ion collisions

Quark−Gluon

hadronic
phase Color superconductor

plasma

Temperature

Nuclei Neutron stars

Net Baryon
Density

Heavy Ion Collision
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Heavy Ion Collisions
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Experimental facilities : RHIC and LHC
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Heavy ion collision at the LHC
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From measured hadrons back to QCD...

z 

t

Goal : from the final state particles (hadrons), understand the
microscopic dynamics of the quarks and gluons
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t

strong fields classical dynamics

gluons & quarks out of eq. viscous hydro

gluons & quarks in eq. ideal hydro

hadrons kinetic theory

freeze out
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Stages of a nucleus-nucleus collision

François Gelis QCD at High Temperature 16/112 Cape Town, November 2013
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The long way from QCD to the real world...

What we can calculate

L = −
1

4
F2 +

∑
f

ψf(i/D−mf)ψf

What we can measure
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Stages of a nucleus-nucleus collision

z = ctz = -ct

z  (beam axis)

t
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Stages of a nucleus-nucleus collision

z 

t

• τ ∼ 0 fm/c

• Production of hard particles :

• jets, direct photons
• heavy quarks

• calculable with perturbative QCD (leading twist)

François Gelis QCD at High Temperature 18/112 Cape Town, November 2013
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Stages of a nucleus-nucleus collision

z 

t

strong fields classical fields

• τ ∼ 0.2 fm/c

• Production of semi-hard particles : gluons, light quarks
• relatively small momentum : p⊥ . 2–3 GeV
• make up for most of the multiplicity
• sensitive to the physics of saturation (higher twist)
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François Gelis

18

Stages of a nucleus-nucleus collision

z 

t

strong fields classical fields

gluons & quarks out of eq. viscous hydro

• τ ∼ 1–2 fm/c

• Thermalization

• some data suggest a fast thermalization
• but this is still not fully understood from QCD

François Gelis QCD at High Temperature 18/112 Cape Town, November 2013
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Stages of a nucleus-nucleus collision

z 

t

strong fields classical fields

gluons & quarks out of eq. viscous hydro

gluons & quarks in eq. hydrodynamics

• 2 ≤ τ . 10 fm/c

• Quark gluon plasma

François Gelis QCD at High Temperature 18/112 Cape Town, November 2013
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Stages of a nucleus-nucleus collision

z 

t

strong fields classical fields

gluons & quarks out of eq. viscous hydro

gluons & quarks in eq.
hydrodynamics

hadrons in eq.

• 10 . τ . 20 fm/c

• Hot hadron gas

François Gelis QCD at High Temperature 18/112 Cape Town, November 2013
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Stages of a nucleus-nucleus collision

z 

t

strong fields classical fields

gluons & quarks out of eq. viscous hydro

gluons & quarks in eq.
hydrodynamics

hadrons in eq.

freeze out

• τ→ +∞
• Chemical freeze-out :

density too small to have inelastic interactions

• Kinetic freeze-out :
no more elastic interactions

François Gelis QCD at High Temperature 18/112 Cape Town, November 2013
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Outline

1 QCD, Deconfinement, Heavy Ion Collisions

2 QCD at finite T, Medium effects, Lattice QCD

3 Out-of-equilibrium systems, Thermalization
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QCD at Finite T
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Goals

Examples of questions one would like to answer :

• What are the energy density and the pressure of the quark-gluon
plasma at a given temperature?

• What is its viscosity/conductivity/...?

• What photon/dilepton/... spectrum does it radiate?

• If an energetic quark/gluon travels through the QGP, how much
energy does it lose?

QCD at finite temperature is a set of techniques designed to compute
expectations values of the form :

〈O〉 ≡ tr e−βH O

tr e−βH

François Gelis QCD at High Temperature 19/112 Cape Town, November 2013
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Reminder : T = 0
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Quantum field theory at T=0

• It can be used to calculate scattering amplitudes, such as〈
~p1~p2out

∣∣~k1~k2in
〉

• Besides the incoming/outgoing particles, the only other fields that
can be involved in the scattering process are quantum
fluctuations of the vacuum

François Gelis QCD at High Temperature 20/112 Cape Town, November 2013
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Quantum field theory at T=0

• A Quantum Field Theory is specified by its Lagrangian, that
describes the interactions among its constituents. E.g.,

L ≡ 1
2
(∂µφ)(∂

µφ) −
1

2
m2φ2︸ ︷︷ ︸

free theory

+
g2

4!
φ4︸ ︷︷ ︸

interactions

• When the interactions are weak, one can compute observables
in perturbation theory, i.e. as a series in the coupling constant g2

• LSZ reduction formulas : scattering amplitudes are obtained from
the Fourier transform of the time-ordered correlators of the
elementary fields. Example :〈

~p1~p2out
∣∣~k1~k2in

〉
=

∫
x1,x2,y1,y2

ei(k1·x1+k2·x2−p1·y1−p2·y2)

×�x1�x2�y1�y2
〈
0out
∣∣Tφ(x1)φ(x2)φ(y1)φ(y2)∣∣0in

〉︸ ︷︷ ︸
can be calculated perturbatively

Note : T = time ordering
François Gelis QCD at High Temperature 21/112 Cape Town, November 2013
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Quantum field theory at T=0

• The g2 dependence can be extracted by writing the Heisenberg
fields in terms of fields of the interaction representation :

φ(x) ≡ U(−∞, x0)φin(x)U(x
0,−∞)

U(t2, t1) = T exp i
∫t2
t1

d4x L
I
(φin(x))︸ ︷︷ ︸

interaction term, e.g. g2φ4in(x)

• One gets a series in g2 by expanding the exponential in the
evolution operator

• Feynman rules in coordinate space :
• Vertices : −i g2

∫
d4x

• Propagators : G0
F
(x, y) =

〈
0
∣∣Tφin(x)φin(y)

∣∣0〉
Note : in momentum space,

G0
F
(p) ≡

∫
d4(x − y) eip·(x−y) G0

F
(x, y) =

i

p2 −m2+iε

François Gelis QCD at High Temperature 22/112 Cape Town, November 2013
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Quantum field theory at T=0 - Exercises

• Properties of U(t1, t2) :

• U(t, t)= 1

• UU†= 1

• U(t1, t2)U(t2, t3)= U(t1, t3)

• U−1(t1, t2)= U(t2, t1)

• φ(x) and φin(x) coincide when x0 → −∞
• If φ(x) obeys the equation of motion with interactions, then φin(x)

is a free field :

(� +m2)φ(x) −
∂L

I
(φ(x))

∂φ(x)
= U(−∞, x0)[(� +m2)φin(x)

]
U(x0,−∞)

François Gelis QCD at High Temperature 23/112 Cape Town, November 2013



François Gelis

23

Perturbative Expansion
at T > 0
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Thermal correlators and their T = 0 limit

• Can we generalize the T = 0 techniques to the calculation of the
following correlators?

G(x1, · · · , xn) ≡
Tr (e−βH Tφ(x1) · · ·φ(xn))

Tr (e−βH)

• In terms of eigenstates of the Hamiltonian :

G(x1, · · · , xn) =
1

Tr (e−βH)

∑
states n

e−βEn
〈
n
∣∣Tφ(x1) · · ·φ(xn)∣∣n〉

• When T → 0 (i.e. β→ +∞), only the vacuum state
∣∣0〉 survives

since it has the lowest energy. Thus

lim
T→0G(x1, · · · , xn) =

〈
0
∣∣Tφ(x1) · · ·φ(xn)∣∣0〉

François Gelis QCD at High Temperature 24/112 Cape Town, November 2013
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Perturbative expansion

• In order to perform the perturbative expansion at finite T , we
must identify all the sources of g dependence

• One of them is the interactions in the evolution of the field
operator φ(x). This is identical to T = 0 :

φ(x) = U(−∞, x0)φin(x)U(x
0,−∞)

U(t2, t1) ≡ T exp i
∫t2
t1

d4x L
I
(φin(x))

• At T > 0, another source of g-dependence is the density operator
exp(−βH), since H = H0 +HI . One can prove

e−βH = e−βH0 T exp i
∫−∞−iβ

−∞ d4x L
I
(φin(x))︸ ︷︷ ︸

U(−∞− iβ,−∞)

François Gelis QCD at High Temperature 25/112 Cape Town, November 2013
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Perturbative expansion - Exercise

• Proof of exp(−βH)︸ ︷︷ ︸ = exp(−βH0) U(−∞ − iβ,−∞)︸ ︷︷ ︸
A(β) B(β)

• B(β) can be rewritten as

B(β) = e−βH0 T exp−i
∫−∞−iβ

−∞ dt HIin(t)

with HIin(t) = exp(iH0(t +∞))H
I

exp(−iH0(t +∞))

• A(β) and B(β) are identical at β = 0 (trivial)

• Their first derivatives are identical at any β

A′(β) = −HA(β)

B′(β) = −H0B(β) − e
−βH0HIin(−∞ − iβ)︸ ︷︷ ︸ T exp−i

∫−∞−iβ

−∞ dt HIin(t)

H
I
e−βH0

François Gelis QCD at High Temperature 26/112 Cape Town, November 2013
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Perturbative expansion

• From the previous formulas, we can write :

e−βH Tφ(x1) · · ·φ(xn) =

= e−βH0 Pφin(x1) · · ·φin(xn) exp i
∫
C

d4x L
I
(φin(x))

C = [ti,+∞] ∪ [+∞, ti] ∪ [ti, ti − iβ] :

ti

ti - iβ

(it is instructive to let the path start at an arbitrary ti instead of −∞)

• The symbol P denotes path ordering. The contour C is oriented,
and the closest operator to the end of the path should be on the
left of the product

• On the upper branch of the contour, the path ordering is
equivalent to the usual time-ordering. The times x01, · · · , x0n are
on the upper branch of the path

François Gelis QCD at High Temperature 27/112 Cape Town, November 2013
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Perturbative expansion

• From the previous formula, one sees that – in coordinate space –
perturbation theory at finite T is very similar to perturbation
theory at T = 0. The only difference is that the time integrations
at the vertices run over the contour C

• Feynman rules :

• Vertices : −ig
∫
C

d4x

• Propagator :

G0(x, y) =
Tr (e−βH0 Pφin(x)φin(y))

Tr (e−βH0)

• At the moment, it seems that the result may depend on the
arbitrary initial time ti we have just introduced. However, we will
prove shortly that nothing depends on ti

François Gelis QCD at High Temperature 28/112 Cape Town, November 2013
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Perturbative expansion

• The free thermal propagator is obtained from the Fourier
decomposition of the free field φin(x) :

φin(x) =

∫
d3~p

(2π)32Ep

[
ain(~p) e

−ip·x + a†in(~p) e
+ip·x

]
• Exercise : prove the following relations[

e−βH0 , ain(~p)
]

= e−βH0(1 − e−βEp)ain(~p)

Tr (e−βH0 ain(~p)) = 0

Tr (e−βH0 a†in(~p)ain(~p
′)) = (2π)3 2Ep nB(Ep) δ(~p − ~p′)

with n
B
(E) =

1

eβE − 1

• From there, it is easy to obtain :

G0(x, y) =

∫
d3~p

(2π)32Ep

[
(θc(x

0 − y0) + n
B
(Ep)) e

−ip·(x−y)

+(θc(y
0 − x0) + n

B
(Ep)) e

+ip·(x−y)
]

François Gelis QCD at High Temperature 29/112 Cape Town, November 2013
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Kubo-Martin-Schwinger symmetry

• The density operator exp(−βH) can be viewed as an evolution
operator for an imaginary time shift :

e−βHφ(x0−iβ,~x)eβH = φ(x0,~x)

• Consider the correlator G ≡ Tr (e−βH Tφ(ti,~x) · · · )

• ti is the “smallest” time on C : G = Tr (e−βH (T · · · )φ(ti,~x))

• Use the cyclicity of the trace, and the first relation :
G = Tr (e−βHφ(ti − iβ,~x) (T · · · ))

• ti−iβ is the “largest” time : G = Tr (e−βH Tφ(ti−iβ,~x) · · · )

Kubo-Martin-Schwinger symmetry :

G(· · · ti · · · ) = G(· · · ti − iβ · · · )

François Gelis QCD at High Temperature 30/112 Cape Town, November 2013
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Path deformations

• The free propagator does not depend explicitly on ti.
It verifies the KMS symmetry

• Any graph contributing to a correlator G(x1, · · · , xn) has a
contribution of the form :

G =

∫
C

dy01 · · ·dy0p F(x1, · · · , xn;y01, · · · , y0p)

• F takes identical values at y0i = ti and y0i = ti − iβ
• F does not depend explicitly on ti

G does not depend on ti

Interpretation : ti is the time at which the system is put in thermal
equilibrium. By definition of thermal equilibrium, no measurement
made afterwards can tell the value of ti

More general path deformations also leave the result unchanged
François Gelis QCD at High Temperature 31/112 Cape Town, November 2013
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Conserved charges and chemical potential

• A field φ is charged (with charge q) under the operator Q if it
obeys a relation of the form [Q,φin(x)] = −qφin(x)

Note : Q is Hermitian and q is real. If the field φ is Hermitian, then q can
only be zero. The simplest charged fields are complex scalars :

φin(x) =

∫
d3~p

(2π)32Ep

[
ain(~p) e

−ip·x + b†in(~p) e
+ip·x

]

• A conserved charge Q has an associated chemical potential µ.
Equilibrium expectation values should be calculated with the
density operator exp(−β(H+ µQ))

KMS symmetry with conserved charges

G(· · · ti · · · ) = eβµq G(· · · ti − iβ · · · )

François Gelis QCD at High Temperature 32/112 Cape Town, November 2013



François Gelis

33

Conserved charges

• Exercise : derive the relations :

Tr (eβ(H0+µQ) a†in(~p)ain(~p
′)) = (2π)3 2Ep

1

eβ(Ep−µq) − 1
δ(~p − ~p′)

Tr (eβ(H0+µQ) b†in(~p)bin(~p
′)) = (2π)3 2Ep

1

eβ(Ep+µq) − 1
δ(~p − ~p′)

(all the other averages are zero)

• The free propagator now depends on µ :

G0(x, y) =

∫
d3~p

(2π)32Ep

[
(θc(x

0 − y0) +
1

eβ(Ep−µq) − 1
) e−ip·(x−y)

+(θc(y
0 − x0) +

1

eβ(Ep+µq) − 1
) e+ip·(x−y)

]
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Fermions

• Consider a spin 1/2 fermion :

ψin(x) =
∑
s=1,2

∫
d3~p

(2π)32Ep

[
bsin(~p)u

s(~p) e−ip·x + ds†in (~p)v
s(~p) e+ip·x

]
with (/p −m)us(~p) = 0 , (/p +m)vs(~p) = 0

• For consistency, fermions must be quantized with
anti-commutation relations B Fermi-Dirac distributions

• Free propagator :

S0(x, y) =

∫
d3~p

(2π)32Ep

[
(Epγ

0−~p · ~γ+m)(θc(x
0−y0)−

1

eβ(Ep−µq)+1
) e−ip·(x−y)

+(−Epγ
0−~p · ~γ+m)(θc(y

0−x0)−
1

eβ(Ep+µq)+1
) e+ip·(x−y)

]

KMS for fermions

G(· · · ti · · · ) = −eβµq G(· · · ti − iβ · · · )

François Gelis QCD at High Temperature 34/112 Cape Town, November 2013
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What can we
calculate?
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Thermodynamical quantities

• Vacuum diagrams are diagrams without any external legs

• The sum of all the vacuum diagrams provides the partition
function

Z = Tr (e−βH)

• From Z, one can obtain other thermodynamical quantities :

E = −
∂Z

∂β

S = βE+ ln(Z)

F = E− TS = −
1

β
ln(Z)

François Gelis QCD at High Temperature 35/112 Cape Town, November 2013
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Production rates

• A hot plasma of electrically charged particles radiates photons

• Photons do not feel the strong interactions. They escape from
the system

• Pedestrian approach :

ω
dNγ

dtdVd3~q
∝
∫
(unobserved

particles )

∣∣∣∣∣∣∣∣
ω
∣∣∣∣∣∣∣∣
2

×n(ω1) · · ·n(ωn)
× (1± n(ω′1)) · · · (1± n(ω′p))

• Using QFT at finite temperature :

ω
dNγ

dtdVd3~q
∝ 1

eω/T − 1
Im Πµµ(ω, ~q)︸ ︷︷ ︸

photon self-energy

François Gelis QCD at High Temperature 36/112 Cape Town, November 2013
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Transport coefficients

• Transport coefficients characterize the ability of the QGP to move
certain quantities around :

• Color conductivity (color charge)
• Electrical conductivity (electrical charge)
• Viscosity (momentum)

Green-Kubo formulas :[
transport

coefficient

]
∼ lim
ω→0

1

ω
Im
∫+∞
0

dtd3~x e−iωt
〈
J(t,~x) J(0,~0)

〉

• J = current that couples to the quantity we want to transport
• J(0,~0) excites the system at 0,~0
• J(t,~x) measures the response at t,~x

François Gelis QCD at High Temperature 37/112 Cape Town, November 2013
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Matsubara Formalism
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Thermodynamical quantities

• Vacuum diagrams are pure numbers (they do not depend on any
external time)
B For this reason, we are not tied to using a contour C that

contains the real axis

• We can deform the contour to make it simpler

ti

ti - iβ

0

- iβ

• If we denote x0 = −iτ, the variable τ is real and spans the range
[0, β]. The Feynman rules obtained with this choice of the
contour C are known as “Matsubara formalism”

• Note : one could in principle use them to calculate non-vacuum
diagrams, but an analytic continuation is necessary to go back to
real times (complicated in general)
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Matsubara frequencies

• The propagator – and more generally the integrand for any
diagram – is β-periodic in the imaginary time τ

• Therefore, one can go to Fourier space by decomposing the time
dependence in Fourier series and by doing an ordinary Fourier
transform in space :

G0(τx,~x, τy, ~y) = T

+∞∑
n=−∞

∫
d3~p

(2π)3
eiωn(τx−τy)e−i~p·(~x−~y) G0(ωn, ~p)

with ωn ≡ 2πnT . Note : for fermions, ωn = 2π(n+ 1
2
)T

If the line carries the conserved charge q, one must shift
ωn → ωn − iµq

Exercise : an explicit calculation gives :

G0(ωn, ~p) =
1

ω2n + ~p
2
+m2

François Gelis QCD at High Temperature 39/112 Cape Town, November 2013
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Matsubara formalism

• Feynman rules :

• Propagators : G0(ωn, ~p) = 1/(ω2n + ~p2 +m2)

• Vertices : g (
∑
ωn and

∑
~p conserved at the vertices)

• Loops : T
∑
n

∫
d3~p
(2π)3

• Examples (written here in the massless case) :

= λT2
∑
m,n

∫
d3~p

(2π)3
d3~q

(2π)3
1

(ω2m + ~p2)(ω2n + ~q2)

= g2T2
∑
m,n

∫
d3~p

(2π)3
d3~q

(2π)3
1

(ω2m + ~p2)(ω2n + ~q2)(ω2m+n + (~p + ~q)2)
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Calculation of the discrete sums

• The calculation of the discrete sums can be quite hard...

• Method 1 : replace each propagator by

G0(ωn, ~p) =
1

2Ep

∫β
0

dτ e−iωnτ
[
(1+n

B
(Ep)) e

−Epτ+n
B
(Ep) e

Epτ
]

• One should combine this trick with the formula∑
n

eiωnτ = β
∑
n

δ(τ− nβ)

which turns all the time dependence into combinations of delta
functions. Then, all the time integrations are trivial
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Calculation of the discrete sums

• Method 2 : use a function P(ω) that has simple poles of residue
1 at each iωn. Then, write the discrete sums as∑

n

f(iωn) =

∮
γ

dz

2iπ
f(z)P(z)

where γ is a path made of a small circle around each pole

Note : for instance P(z) =
β

eβz − 1

• If the function f(z) has no pole on the imaginary axis, deform the
contour γ in two lines along the imaginary axis

• Deform the contour to bring it along the real energy axis (beware
of the poles lying away from the real axis!)
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Example

• Exercise. Tadpole in a λφ4 theory :

=
λT

2

∑
n

∫
d3~p

(2π)3
1

ω2n + ~p2

=
λT

2

∑
n

∫
d3~p

(2π)3
1

2Ep

∫β
0

dτ e−iωnτ
[
(1+n

B
(Ep))e

−Epτ+n
B
(Ep)e

Epτ
]

=
λ

2

∫
d3~p

(2π)32Ep

∫β
0

dτ
∑
n

δ(τ−nβ)
[
(1+n

B
(Ep))e

−Epτ+n
B
(Ep)e

Epτ
]

=
λ

2

∫
d3~p

(2π)32Ep

[
1 + 2n

B
(Ep)

]
(the remaining integral is “elementary”)

• Note : in the last formula, the 1 gives the usual ultraviolet
divergence, and the n

B
gives a finite contribution that vanishes if

T → 0 B this term is a medium effect
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Schwinger-Keldysh
Formalism
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Why we may need something different

• The Matsubara formalism is ideal for thermo-dynamical
quantities

• For quantities that depend on energy, one would need to perform
an analytic continuation from (discrete) imaginary frequencies to
(continuous) real energy

• For 2-point functions, how to do this is well known, but already
tricky (how to put the iε’s...?)

• For 3-point functions and beyond, this is usually too complicated,
and it is preferable to use a formalism that gives directly the
answer in terms of real energies
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Schwinger-Keldysh formalism

• Forget for the time being the vertical appendix to the time
contour.
Loose justification : take ti → −∞ and unplug the interactions in
this limit, then the initial density operator is made of the free
Hamiltonian, and there is no need for this extra bit of contour

• Break the propagator G(x, y) in four components, depending on
where the times x0, y0 are on the contour

• Fourier transform the propagator

G++(p) =
i

p2 −m2 + iε
+ 2π f(Ep) δ(p

2 −m2)

G+−(p) = 2π (θ(−p0) + f(Ep)) δ(p
2 −m2)

G−−(p) = [G++(p)]
∗

, G−+(p) = G+−(−p)

with f(ω) ≡ 1

eβω − 1
, Ep =

√
p2 +m2
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Schwinger-Keldysh formalism

• Feynman rules :

• Each vertex can be of type + or −
• Type + : −ig2 Type − : +ig2

• Connect a vertices of types ε and ε ′ by the propagator Gεε ′

• Note : the T → 0 limit of this formalism is equivalent to
Cutkosky’s cutting rules. In the calculation of the cross-section of
inclusive processes, they provide a way to perform the sum over
the unobserved particles in the final state

• Ignoring the vertical branch of the contour was a (small) cheat. It
leads to slightly incorrect Feynman rules. They can be fixed
simply by changing

f(Ep) → f(|p0|)
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Exercise

• Check the following formula :(
G++ G+−

G−+ G−−

)
= U

(
G
F

0
0 G∗

F

)
U

with

U(p) ≡


√
1+ f(Ep)

θ(−p0)+f(Ep)√
1+f(Ep)

θ(+p0)+f(Ep)√
1+f(Ep)

√
1+ f(Ep)


and

G
F
(p) ≡ i

p2 −m2 + iε
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KMS symmetry

• The n-point correlators in the Schwinger-Keldysh formalism obey
the following relation :∑

ε1···εn=±
Γε1···εn(k1, · · · , kn) = 0

Note : this relation is true even out of equilibrium

• A second relation - related to KMS - is satisfied in equilibrium :∑
ε1···εn=±

[ ∏
{i|εi=−}

e−βk
0
i

]
Γε1···εn(k1, · · · , kn) = 0
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Collective Phenomena
in the QGP
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Bad convergence of the perturbative expansion

• Example: perturbative calculation of the QGP pressure :

1.5 2 2.5 3 3.5 4 4.5 5

0.6

0.8

1

1.2

1.4

1.5 2 2.5 3 3.5 4 4.5 5

0.6

0.8

1

1.2

1.4

T=T




P=P

0

g

2

g

3

g

4

g

5

• Does not converge at all...
• The bare quanta of the naive perturbative expansion are quite

different from the actual (dressed) quanta in the QGP
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Trivial example of what may go wrong

• Consider the free theory of a massive field

L ≡ 1
2
(∂µφ)(∂

µφ) −
1

2
m2φ2

• Suppose that we are (very) naive and decide to treat the mass
term as an interaction... The bare propagator is therefore
massless

G0(p) =
i

p2

• The perturbative correction of order n in m2 reads

Gn(p) =
i

p2

[
m2

p2

]n
• This is a geometrical series whose sum is i/(p2 −m2)
• BUT: the domain of convergence of the series is p2 > m2
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Length Scales
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Degrees of freedom

• Quarks : 2 (spin) × 3 (color) = 6 (per flavor)

dNq

d3~xd3~k
=

1

eω/T + 1
(Fermi-Dirac)

• Gluons : 2 (spin) × 8 (color) = 16

dNg

d3~xd3~k
=

1

eω/T − 1
(Bose-Einstein)

• Average energy per particle : 〈E〉 ∼ T

• Particle density : ρ ∼ T3

• Average distance between particles : ` ∼ 1/T
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Length scales

• 1/T : wavelength of particles in the plasma
• 1/gT : typical distance for collective phenomena

• Thermal masses of quasi-particles
• Screening phenomena
• Damping of plasma waves

• 1/g2T : distance between two small angle scatterings
• Color transport
• Photon emission

• 1/g4T : distance between two large angle scatterings
• Momentum, electric charge transport
B characteristic scale of hydrodynamic modes

• In the weak coupling limit (g� 1), there is a clear hierarchy
between these scales

• Distinct effective theories according to the characteristic scale of
the problem under study
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Vacuum fluctuations

• At distances scales ` . 1/T , medium effects are irrelevant
• At such scales the dynamics is determined only by QCD vacuum

fluctuations
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Thermal fluctuations

• Distance scales 1/T . ` . 1/gT control the bulk thermodynamic
properties. The system can be studied by QCD at finite
temperature

• The leading thermal effects can be treated by an effective theory
that encompasses the main collective effects, and that has the
form of a collision-less Vlasov equation
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Small angle scatterings

• When it is necessary to follow a plasma particle over distances
1/g2T . `, we must take into account soft (small angle) collisions
with other particles of the plasma

• This can be done simply by adding a collision term to the
previous Vlasov equation
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Scattering rate

• Collisional width (up to logs) :

Γcoll =

∣∣∣∣∣∣∣ p
⊥

∣∣∣∣∣∣∣
2

∼ g4 T3
∫

mdebye

d2~p⊥
p4⊥

∼ g2T

• λ ≡ 1/Γcoll is the mean free path between two small angle
scatterings (θ ∼ g)

• Note : the mean free path between two large angle scatterings
(θ ∼ 1) is ∼ 1/g4T
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Large angle scatterings

• Over distance scales ` ∼ 1/g4T , one must take into account the
large angle collisions, that change significantly the direction of
motion of the particle (this is necessary e.g. for calculating
transport coefficients)

• The most efficient way to describe the system at these scales is
via a Boltzmann equation for color/spin averaged particle
distributions
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Hydrodynamical regime

• The hydrodynamical regime is reached for length scales that are
much larger than the mean free path : 1/g4T � `

• In order to describe the system at such scales, one needs :
• Hydrodynamical equations (Euler, Navier-Stokes)
• Conservation equations for the various currents
• Equation of state, viscosity
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Summary

1 / gT

1 
/ g

2 T

1 
/ g

4 T
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Effective Descriptions
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Perturbative modes

• A mode is perturbative if its kinetic energy is much larger than its
potential energy

• Kinetic energy :
〈
K
〉
∼
〈
(∂A)2

〉
∼ k2

〈
A2
〉

• Potential energy :
〈
U
〉
∼ g2

〈
A4
〉
∼ g2

〈
A2
〉2

B Thus, a mode k is perturbative if g2
〈
A2
〉
� k2

• When discussing the order of magnitude of
〈
A2
〉
, it is useful to

distinguish the contribution of the various momentum scales by
defining 〈

A2
〉
κ∗

∼

∫κ∗ d3~p
Ep

f(Ep)
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Perturbative modes

• Hard modes : k ∼ T ,
〈
A2
〉
T
∼ T2. Thus,

〈
K
〉
�
〈
U
〉

• Soft modes : k ∼ gT , k2 ∼ g2
〈
A2
〉
T

But the contribution of soft modes to
〈
A2
〉

is
〈
A2
〉
gT

∼ gT2, and

k2 � g2
〈
A2
〉
gT

The soft modes interact strongly with the hard modes, but weakly
among themselves B they can be described perturbatively after the
hard modes have been resummed

• Ultrasoft modes : k ∼ g2T ,
〈
A2
〉
g2T

∼ g2T2, k2 ∼ g2
〈
A2
〉
g2T

The dynamics of the ultrasoft modes is completely non-perturbative,
because their self-interactions are as large as their kinetic energy
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Effective theory for the soft modes

Braaten, Pisarski (1990), Frenkel, Taylor (1990)

• Obtained from the bare perturbative expansion by the
resummation of Hard Thermal Loops (HTL) :

∆L
HTL

(gluons) =
m2g

2

∫
dΩv̂

4π
Fµα

vαvβ

(v ·D)2
Fβ
µ , vµ = (1, v̂)

• Can be formulated as a (local) collisionless transport theory for
classical particles (Blaizot, Iancu (1993-1995)) :

(1) [Dµ, F
µν] = m2g

∫
dΩv̂

4π
vνW(x, v̂)

(2) [v ·D,W(x, v̂)] = v̂ · E(x)

• W(x, v̂) is the density of hard particles (ω ∼ T) at the location x,
with a velocity in the direction v̂

• (1) : Yang-Mills equation for the soft field modes (ω ∼ gT)
• (2) : Vlasov equation for the hard particles
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Dimensional reduction

• By summing the Matsubara modes whose frequency is non-zero
(fermions, bosons for n 6= 0), one gets a 3-dimensional
Yang-Mills theory coupled to an adjoint Higgs :

L
E
=
1

4
F2ij + tr[Di, A0]2 +m2E trA02 +

λ
E

2
(trA02)2 + · · ·

• A0 is the gluon zero mode
• m

E
, λ
E

are determined by matching to the underlying theory (i.e.
QCD)

• By integrating out the massive A0, one gets a 3-dimensional
pure Yang-Mills theory :

L
M

=
1

4
F2ij + · · ·

• its coupling g
M

is determined order by order from L
E

• this Yang-Mills theory is non-perturbative, and must be simulated
on a lattice (this is much simpler than simulations of 4-dim QCD)
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Medium Effects
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Dressed propagator

• In order to assess how the medium affects the propagation of
gauge excitations, one should compute the polarization tensor

Πµν(x, y) ≡
〈
Jµ(x)Jν(y)

〉
• The leading effect of the medium arises via the 1-loop

self-energy. Diagrammatically, this amounts to summing :

+ + + +  . . .

• The properties of the medium can be read off the analytic
properties of this resummed propagator (cuts, poles, ...)
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Dressed propagator

• Reminder : the polarization tensor Πµν is transverse. At T = 0,
this implies :

Πµν(P) =

(
gµν −

PµPν

P2

)
Π(P2)

• This is due to gauge invariance and Lorentz invariance

• Exercise : this property ensures that the photon remains massless
at all orders of perturbation theory

• This formula is not valid at T > 0, because there is a preferred
frame (in which the plasma velocity is zero)

B the tensorial decomposition of Πµν is more complicated, and the
photon may acquire an effective mass
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Dressed propagator

• At finite T , the tensorial decomposition of Πµν is :

Πµν(P) = Pµν
T

(P)Π
T
(P) + Pµν

L
(P)Π

L
(P)

with the following projectors (in the plasma rest frame)

Pij
T
(P) = gij +

pipj

~p2
, P0i

T
(P) = 0 , P00

T
(P) = 0

Pij
L
(P) = −

(p0)2pipj

~p2P2
, P0i

L
(P) = −

p0pi

P2
, P00

L
(P) = −

~p2

P2

• This leads to the following resummed propagator :

Dµν(P) = Pµν
T

(P)
1

P2 − Π
T
(P)

+ Pµν
L

(P)
1

P2 − Π
L
(P)
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Dressed propagator - Exercise

• Check the following properties of the tensors Pµν
T,L

:

Pµ
T µ

= 2

Pµ
L µ

= 1

Pµ
T α
Pαν
T

= Pµν
T

Pµ
L α
Pαν
L

= Pµν
L

Pµ
T α
Pαν
L

= 0
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Dressed propagator

• The calculation of Πµν can be done in the Matsubara formalism
(i.e. for a discrete imaginary frequency iωn + an analytic
continuation iωp → p0), or directly for real energies in the
Schwinger-Keldysh formalism

• Because one is after the long distance properties of the plasma,
one also makes the approximation

∣∣~p∣∣� ∣∣~k∣∣
(Hard Thermal Loops : Braaten, Pisarski - 1990)

• For instance, the fermionic contribution to the spatial part Πij of
the polarization tensor reads :

ω , p

= −
g2NfT

2

∫
d3~k

(2π)3
v̂
i
k

∂n
F
(~k)

∂kl

[
δjl −

v̂
j
kv̂
l
k

ω − v̂k · ~p + iε

]

(v̂k ≡ ~k/|~k|)

• Note : with the gluon loop, the only change is Nf → Nf + 2Nc
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Quasi-particles

• The functions Π
T,L

(P) read (here, for QED) :

Π
T
(P) =

e2T2

6

[p20
p2

+
p0

2p

(
1 −

p20
p2

)
ln
(p0 + p
p0 − p

)]
Π
L
(P) =

e2T2

3

[
1 −

p20
p2

][
1 −

p0

2p
ln
(p0 + p
p0 − p

)]

• Quasi-particles correspond to poles in the propagator. Their
dispersion relation is the function p0 = ω(~p) that defines the
location of the pole

• The inverse of the imaginary part of p0 is the lifetime of the
quasi-particles (If Im(p0) = 0, they are stable). In order to have
well defined quasi-particles, one must have Im(p0)� Re(p0)
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Quasi-particles

• Dispersion relation of gluons in the plasma :

p

ω

(T)

(L)
mg

gluons

• Thermal masses due to interactions with the other particles in
the plasma :

mq ∼ mg ∼ gT

• At this order, the quasi-particles are stable (ImΠ
T,L

= 0)
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Singularities

• In the complex plane of ω/|~p|, the dressed propagator has poles
(quasi-particles) and a cut (Landau damping) :

ω / |p|

T (2)L (1)

-1 +1
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Debye screening

• A test charge polarizes the particles of the plasma in its vicinity,
in order to screen its charge :

V(r) = 
exp( - r / rdebye )

r
r

• The Coulomb potential of the test charge decreases
exponentially at large distance. The effective interaction range
is :

` ∼ 1/mdebye ∼ 1/gT

• Note : static magnetic fields are not screened by this mechanism
(they are screened over length-scales `mag ∼ 1/g2T )
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Debye screening

• Place a quark of mass M at rest in the plasma, at ~r = 0

• Scatter another quark off it. The scattering amplitude reads

M =
[
gu(~k

′
)γµu(~k)

][
gu(~P

′
)γνu(~P)

] ∑
α=T,L

Pµνα (Q)

Q2 − Πα(Q)

k k’

P P’

Q = k-k’

• If ~P = 0 (test charge at rest), only α = L contributes

• From (P +Q)2 =M2, we get a 2πδ(q0)/2M

• For the scattering off an external potential Aµ, the amplitude is
M =

[
gu(~k

′
)γµu(~k)

]
Aµ(Q)

• Thus, the potential created by the test charge at rest is :

Aµ(Q) = g
u(~P

′
)γνu(~P)

2M

2πδ(q0)P
µν
L

(0, ~q)

~q2 + Π
L
(0, ~q)

=
2πgδµ0δ(q0)

~q2 + Π
L
(0, ~q)
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Debye screening

• By a Fourier transform, we obtain the Coulomb potential :

A0(~r) = g

∫
d3~q

(2π)3
ei~q·~r

~q2 + Π
L
(0, ~q)

• If we are in the vacuum, Π
L
= 0, and the Fourier transform gives

the usual Coulomb law :

A0vac(~r) = g

∫
d3~q

(2π)3
ei~q·~r

~q2
=

g

4π|~r|

• In a plasma, Π
L
(0, ~q) = g2T2

3
≡ m2

D
. The Fourier transform can

also be done exactly

A0(~r) = g

∫
d3~q

(2π)3
ei~q·~r

~q2 +m2
D

=
g

4π|~r|
e−mD |~r|

B the potential is unmodified at r� 1/m
D

, but exponentially
suppressed at large distance
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Debye screening

• It is easy to see here why the naive perturbation theory works
pretty badly

• Suppose we want to calculate the Coulomb potential of a test
charge in the QGP in perturbation theory. The term of order
g2n+1 would be :

A02n+1(t,~r) = (−1)n g m2n
D

∫
d3~q

(2π)3
ei~q·~r

q2n+2

B all these corrections are very divergent in the infrared. No
truncation in the series over n gives the correct long distance
behavior of the potential

François Gelis QCD at High Temperature 75/112 Cape Town, November 2013



François Gelis

76

Landau damping

• The self-energies Π
L,T

(p0, ~p) have an imaginary part when
|p0| ≤ |~p|. This implies that the propagation of space-like modes
is attenuated

• A wave propagating through the plasma is damped because its
quanta may be absorbed by particles of the plasma :

• The characteristic frequency of this damping is :

ωc ∼ gT

François Gelis QCD at High Temperature 76/112 Cape Town, November 2013



François Gelis

76

Lattice QCD

Ref : Z. Fodor and C. Hoelbling, arXiv:1203.4789
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Partition function

• Partition function :

Z ≡ Tr (e−βH) =
∫
[DAµDψDψ] e−SE [A

µ,ψ,ψ]

• The perturbative expansion has a slow convergence

• In the region of the phase transition, the coupling is not small

• Could Z be computed non-perturbatively from first principles?
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Lattice QCD

• Discretize the Euclidean space-time on a 4-dim cubic lattice :

• The functional integration becomes an ordinary integral, over a
high (but finite) dimensional domain. This can be evaluated by
Monte-Carlo sampling, provided the weight exp(−S

E
) is positive
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Lattice QCD : gluons

• Naively, one may think of putting the gauge potential Aµ on the
nodes of the lattice. Problem : this breaks the gauge invariance
of the action by terms proportional to the lattice spacing

• Wilson formulation : introduce a link variable

Uµ(x) ≡ P exp ig0
∫x+µ̂
x

ds Aµ(s)

that lives on the edge between the nodes x and
x + µ̂. Under a gauge transformation, it transforms
as

Uµ(x) → Ω(x)Uµ(x)Ω
†(x + µ̂) x x+µ̂

Uµ(x)

• Wilson action for the gluons :

S
E
=
6

g20

∑
x;µν

1−
1

3
Re Tr (Uµ(x)Uν(x+ µ̂)U†µ(x+ ν̂)U

†
ν(x)︸ ︷︷ ︸

plaquette at the point x in the µν plane

)
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Lattice QCD : gluons

Properties of the Wilson action :

• Gauge invariant

• Goes to the continuum action when a→ 0

Note : there exist “improved” actions for
which this convergence is faster

x x+µ̂

x+ν̂
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Lattice QCD : fermions

Spinors live on the nodes of the lattice
Under gauge transformations: ψ(x) → Ω(x)ψ(x)
Covariant derivative :

Dµψ(x) = Uµ(x)ψ(x + µ̂) − ψ(x)

Gauge transformation :

Dµψ(x) → Ω(x)Dµψ(x)
x x+µ̂
Uµ(x)

Ψ(y)

• The action is quadratic in the spinors =⇒ integrate them out

• Contractions between the ψ’s and ψ†’s from the correlator (e.g. a
current-current correlator) one evaluates lead to Dirac propagators
(/D +m)−1. On the lattice, large matrix inversion

• This also gives the Dirac determinant Det (/D +m). On the lattice,
this is computed by stochastic methods
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Lattice QCD : quenched approximation

• The computation of the determinant is very expensive, because it
must be taken into account in the update of the gauge
configurations

• Quenched approximation : ignore the determinant. This amounts
to assuming that the quarks running in the loops are very heavy

• The only fermions left are the Dirac propagators connecting the
fermions in the operators one evaluates. E.g., for a
meson-meson correlator, one would have:
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Lattice QCD : dynamical fermions

• In order to have fermion loops, we must keep the Dirac
determinant :

Det ∼ exp
∞∑
n=1

1

n
Tr
[(
g /A

1

/∂ +m

)n]
n = 1 :
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Lattice QCD : dynamical fermions

• In order to have fermion loops, we must keep the Dirac
determinant :

Det ∼ exp
∞∑
n=1

1

n
Tr
[(
g /A

1

/∂ +m

)n]
n = 2 :
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Lattice QCD : dynamical fermions

• In order to have fermion loops, we must keep the Dirac
determinant :

Det ∼ exp
∞∑
n=1

1

n
Tr
[(
g /A

1

/∂ +m

)n]
n = 3 :
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Lattice QCD : dynamical fermions

• In order to have fermion loops, we must keep the Dirac
determinant :

Det ∼ exp
∞∑
n=1

1

n
Tr
[(
g /A

1

/∂ +m

)n]
Exp : multiple loops
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Lattice QCD : dynamical fermions

• As long as there is no baryon chemical potential, the determinant
is positive =⇒ include it in the Monte-Carlo sampling

• Complications with fermions :

• Unphysical degrees of freedom and/or breaking of chiral symmetry

• When computing correlators between fermionic currents, one
needs to invert /D +m. Very expensive for light quarks

• Det (/D +m) not positive definite if µ
B
> 0. Monte-Carlo sampling

practically impossible
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What can be calculated on the lattice?

• Straightforward :
• Equation of state
• Quark condensate, Susceptibilities
• Hadronic masses (but not the widths)
• Mellin moments of parton distributions
• Strong coupling constant

• Much more difficult (some dents can be made by brute force) :
• Transport coefficients
• Dilepton rates
• Thermodynamics at non-zero chemical potential

• Impossible (would require a major theoretical breakthrough) :
• Cross-sections
• Real-time dynamics of a system

François Gelis QCD at High Temperature 85/112 Cape Town, November 2013



François Gelis

86

Lattice QCD : calibration

• Lattice calculations give results in units of the lattice spacing a,
for the given bare coupling g0 introduced in the action

• To obtain physical results, one must first compute a known
quantity (e.g. some meson mass). This calibrates the lattice
spacing :

a = some value in fm/c (that depends on g0)
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Example : computation of a mass

• Find a operator O that has the right quantum numbers. Ex. :
O ≡ ψγ5ψ for pseudoscalar particles

• Compute the correlator 〈O(x)O(0)〉

• This correlator behaves like :

〈O(x)O(0)〉 ∼
∑
s

Zs e
−iMsτ

s = any state that overlaps with the operator O, with mass MS

• By fitting the time dependence, one gets the mass of the lightest
particle with a given set of quantum numbers
Note : the precise form of the operator O does not matter, as
long as it overlaps with the particle under consideration

• Caveats :
• does not give the higher lying states
• does not give the width
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2 QCD at finite T, Medium effects, Lattice QCD
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The naive approach... does not work

• In the Schwinger-Keldysh formalism in momentum space, the
propagators contain explicitly the particle distribution

• Naive idea : replace the Bose-Einstein or Fermi-Dirac
distributions by non-equilibrium distributions, and use this altered
formalism to compute properties of a non-equilibrium
quark-gluon plasma

G0++(p) =
i

p2 −m2 + iε
+ 2πfpδ(p

2 −m2)

G0−−(p) =
−i

p2 −m2 − iε
+ 2πfpδ(p

2 −m2)

G0+−(p) = 2π(θ(−p
0) + fp)δ(p

2 −m2)

G0−+(p) = 2π(θ(+p
0) + fp)δ(p

2 −m2)
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Pathologies - Exercise

• The propagators of the Schwinger-Keldysh formalism in
momentum space are linear combinations of the distributions

P
1

p2 −m2
, δ(p2 −m2)

• Show that the square of these distributions is ill-defined

• However, some bilinear combinations are well defined :

2
[
P
1

x

]
δ(x) = −

d

dx
δ(x)

π2δ2(x) −
[
P
1

x

]2
=
d

dx

[
P
1

x

]
• For consistency, all the ill-defined products of distributions should

cancel when calculating graphs in the Schwinger-Keldysh
formalism
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Pathologies

• Example : insertion of a self-energy. Consider :

Σ =
∑

ε,ε′=±
G0+ε(p)Σεε′(p)G

0
ε′+(p)

• This expression contains δ2(p2 −m2) terms (that cannot be
combined with others to make finite objects) whose sum is
proportional to (for p0 > 0)

2fp(1+ fp)
[
Σ++ + Σ−−

]
+ (1+ 2fp)

[
(1+ fp)Σ+− + fpΣ−+

]
• Using the first relation among the Σεε′ ’s (which is always true),

this coefficient becomes

(1+ fp)Σ+− − fpΣ−+

B This is zero only if the KMS identity holds, i.e. if the system
is in equilibrium!
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Pathologies

• One can learn a bit more by (formally) resumming the self energy
on the propagator. Define :

G
0 ≡

(
G0++ G0+−

G0−+ G0−−

)
, D ≡

(
G0
F

0

0 G0∗
F

)
, S ≡

(
Σ++ Σ+−

Σ−+ Σ−−

)

• Exercise. Prove that :

G ≡
∞∑
n=0

[
G
0(−iS)

]n
G
0 = U

(
G
F
G
F
Σ̃G∗

F

0 G∗
F

)
U

with G
F
(p) ≡ i

p2 −m2 − Σ
F
+ iε

and


Σ
F
≡ Σ++ + Σ+−

Σ̃ ≡ 1

1 + fp

[
(1 + fp)Σ+− − fpΣ−+

]
• G

F
and G∗

F
have mirror poles with respect to the real energy axis

B pinch singularities if ImΣ
F
= 0
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Interpretation

• Compare the bare and resummed propagators :

G
0 =

(
G0
F

θ(−p0)(G0
F
+G0∗

F
)

θ(+p0)(G0
F
+G0∗

F
) G0∗

F

)
+(G0

F
+G0∗

F
)fp

(
1 1

1 1

)

G =

(
G
F

θ(−p0)(G
F
+G∗

F
)

θ(+p0)(G
F
+G∗

F
) G∗

F

)
+ (G

F
+G∗

F
)fp

(
1 1

1 1

)
+
[
(1 + fp)Σ+− − fpΣ−+

]
G
F
G∗
F

(
1 1

1 1

)

• The pinch term gives an equal contribution to the four
components of the propagator matrix, exactly like the distribution
fp B this suggests that this term can be absorbed in a
redefinition of fp
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Interpretation

• Strictly speaking, the Schwinger-Keldysh formalism with
ti = −∞ makes sense only in equilibrium

• In fact, the pinch singularities tell us that we are trying to do
something a bit stupid :

We are trying to calculate a certain process taking place at a
time x0 in an out of equilibrium medium, in terms of the particle
distribution fp at the time ti. This is in principle feasible, but
extremely unnatural

The pinch singularities suggest that it would be much simpler to
compute this process in terms of the particle distribution at the
time x0 instead

• By working in coordinate space, we will see that the self-energy
resummation amounts - in a certain approximation - to let fp
have a time dependence governed by a Boltzmann equation
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Boltzmann Equation
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Dyson-Schwinger equations

• In coordinate space, the resummation of the self-energy can be
done via the Dyson-Schwinger equations :

G(x, y) = G0(x, y) +

∫
C

d4ud4v G0(x, u)
(
− iΣ(u, v)

)
G(v, y)

G(x, y) = G0(x, y) +

∫
C

d4ud4v G(x, u)
(
− iΣ(u, v)

)
G0(v, y)

• Apply �x +m2 to the first equation :

(�x +m
2)G(x, y) = −iδc(x− y) −

∫
C

d4v Σ(x, v) G(v, y)

• Similarly,

(�y +m
2)G(x, y) = −iδc(x− y) −

∫
C

d4v G(x, v) Σ(v, y)
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Wigner transform

• Out of equilibrium, 2-point functions depend separately on their
two arguments (in equilibrium they depend only on the difference
x− y)

• It is useful to perform a Fourier transform with respect to the
difference s ≡ x− y. Wigner transform of F(x, y) :

F(X, p) ≡
∫
d4s eip·s F(X+

s

2
, X−

s

2
)

• Derivatives with respect to x and y can be written in terms of
derivatives with respect to X and s :

∂x =
1

2
∂
X
+ ∂s , ∂y =

1

2
∂
X
− ∂s

�x =
1

4
�
X
+ ∂

X
· ∂s +�s , �y =

1

4
�
X
− ∂

X
· ∂s +�s
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Wigner transform - Exercise

• Wigner transform of a convolution. Consider :

H(x, y) ≡
∫
d4z F(x, z)G(z, y)

• Prove that :

H(X, p) = F(X, p) e
i
2

[←
∂X

→
∂p−

→
∂X

←
∂p

]
G(X, p)

• By expanding the exponential, one gets the gradient expansion
of the Wigner transform of the convolution product
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Gradient expansion

• The derivatives with respect to X (∂
X
,�

X
) characterize the space

and time scales over which the particle distribution changes
significantly

• We assume that these scales are much larger than the De
Broglie wavelength of the particles, i.e. that ∂

X
� p,�

X
� p2

• Note : typically, ∂
X

is at most of the order of the inverse transport
mean free path, i.e. g4T

• As we shall see, the relevant self-energy in transport phenomena
is of order g4T2, while the typical particle momentum is of order T

B it is sufficient to expand the convolution product in the r.h.s.
to zeroth order in gradients
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Gradient expansion

• By taking the difference of the Dyson-Schwinger equations w.r.t.
x and y, and by breaking it down into its ± components, one finds

−2ip · ∂
X
(G+−(X, p) −G−+(X, p)) = 0

−2ip · ∂
X
(G+−(X, p) +G−+(X, p)) = 2

[
G−+Σ+− −G+−Σ−+

]

• Quasi-particle ansatz : by analogy with the free theory, one
assumes that (for p0 > 0)

G−+(X, p) = (1+ f(X, p))ρ(X, p)

G+−(X, p) = f(X, p)ρ(X, p)

where ρ(X, p) ≡ G−+(X, p) −G+−(X, p)

• This assumption is valid when the quasi-particles are long-lived.
This requires a small coupling and a moderate density
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Boltzmann equation

Boltzmann equation :

[
∂t + ~vp · ~∇~x

]
f(X, p) =

i

2Ep

[
(1+ f(X, p))Σ+− − f(X, p)Σ−+

]
where ~vp ≡ ~p/Ep

• In the r.h.s (collision term), we see the same combination as in
the KMS condition B it is zero in equilibrium

• The collision term is a (spatially local) functional of the particle
distribution f(X, p) B the Boltzmann equation is an
approximation of the Dyson-Schwinger equations in which the
degrees of freedom are on-shell particles

• The combination ∂t + ~vp · ~∇~x is the transport derivative
It is zero on any function whose t and ~x dependence arise only in
the combination ~x− ~vpt
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Boltzmann equation - Exercise

• Consider a scalar theory with a λφ4 interaction

• Show that the first non-zero contribution to the collision term
arises at 2-loops, in the diagram

• Calculate the corresponding collision term, and show that it is
given by

λ2

4Ep

∫
d3~p1

(2π)32E1

∫
d3~p2

(2π)32E2

∫
d3~p3

(2π)32E3
(2π)4δ(p − p1 − p2 − p3)

×
[
f(p1)f(p2)(1 + f(p3))(1 + f(p)) − f(p3)f(p)(1 + f(p1))(1 + f(p2))

]
(General structure : Gain term – Loss term)
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Boltzmann-Vlasov equation

• Our derivation must be slightly modified when the self-energy
Σ(u, v) contains a local part :

Σ(u, v) = Φ(u)δc(u− v) + Π(u, v)

• In the derivation of the Boltzmann equation, one needs the
Wigner transform of

Φ(y)G(x, y) −Φ(x)G(x, y)

Exercise : show that to lowest order in the gradient expansion,
this Wigner transform is

i∂
X
Φ(X) · ∂pG(X, p)

• The modified Boltzmann equation reads :[
∂t + ~vp · ~∇~x

]
f+

1

2Ep
∂
X
Φ · ∂pf =

i

2Ep

[
(1+ f)Σ+− − fΣ−+

]
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The trouble with large occupation numbers

• Immediately after the collision of two heavy nuclei, the gluon
occupation number f(p) is large, of order 1/g2

• If f(p) ∼ g−2, several issues arise :

• It is not possible to truncate the collision term
• Quasi-particles do not exist (their decay width is comparable to

their mass)
• Gauge fields are large (∼ g−1)

• In principle, lattice QCD has no problem with large fields.
BUT : it is an Euclidean method, not suited for following the
real-time dynamics of an out-of-equilibrium system
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Classical Statistical
Field Theory
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Analogous approximation in Quantum Mechanics

• Consider the von Neumann equation for the density operator :

∂ρ̂τ

∂τ
= ih̄

[
Ĥ, ρ̂τ

]
(**)

• Introduce the Wigner transforms :

Wτ(x,p) ≡
∫
ds eip·s

〈
x+

s

2

∣∣ρ̂τ∣∣x− s
2

〉
H(x,p) ≡

∫
ds eip·s

〈
x+

s

2

∣∣Ĥ∣∣x− s
2

〉
(classical Hamiltonian)

• Then, (**) is equivalent to

∂Wτ

∂τ
= H(x,p)

2

ih̄
sin
(
ih̄

2

( ←
∂p

→
∂x −

←
∂x

→
∂p

))
Wτ(x,p)

=
{
H,Wτ

}︸ ︷︷ ︸
Poisson bracket

+O(h̄2)
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Analogous approximation in Quantum Mechanics

• Approximating the full right hand side by the Poisson bracket is
the same as solving classical equations of motion instead of the
full quantum evolution. This leads to an O(h̄2) error

• There is also an h̄ dependence coming from the initial state. In
Quantum Mechanics, the uncertainty principle states that
∆x · ∆p ≥ h̄. This implies that the initial Wigner distribution
Wτ=0(x,p) cannot be localized at a single point in phase-space
– it must have a width of extension h̄ (at least)

• All the O(h̄) effects can be accounted for by a Gaussian initial
distribution Wτ=0(x,p)

• The initial Gaussian distribution can be sampled by a
Monte-Carlo. For each initial (~x, ~p), solve the classical equation
of motion up to the time of interest
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Classical Hamiltonian lattice QCD

• Choose a variable that you call “time”
(τ =

√
t2 − z2 in a high energy collision)

• Conjuguate momenta : E ≡ ∂L
∂(∂τA) . Hamiltonian : H = EA− L

• Classical equations of motion :

∂τA =
∂H

∂E
, ∂τE = −

∂H

∂A

• Lattice setup :

• Discretize space on a 3-dim cubic lattice. Keep time continuous
• The gauge potential Ai are described as link variables living on the

edges of the lattice. The Aτ component lives on the nodes (but in
practice, one ignores it altogether by choosing the Aτ = 0 gauge)

• The electrical fields Ei live on the nodes of the lattice
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Classical Hamiltonian lattice QCD

• Hamiltonian in Aτ = 0 gauge :

H =
∑
~x;i

Ei(x)Ei(x)

2
−
6

g20

∑
~x;ij

1−
1

3
Re Tr (Ui(x)Uj(x+ ı̂)U

†
i(x+ ̂)U

†
j(x)︸ ︷︷ ︸

plaquette at the point ~x in the ij plane

)

• Properties :

• Invariant under the residual gauge transformations that preserves
Aτ = 0 (i.e. time independent gauge transformations)

• Hamilton equations ⇔ lattice classical Yang-Mills equations

• The Hamilton equations on the lattice form a (large) set of
ordinary differential equations, that can e.g. be solved with the
leapfrog algorithm
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Initial condition

• The typical application of this method is the Color Glass
Condensate description of heavy ion collisions :

L =
1

4
FµνF

µν + (Jµ1 + Jµ2 )︸ ︷︷ ︸
strong color currents

Aµ

• One would like to compute expectation values such as〈
Oτ,~x

〉
≡
〈
0in
∣∣O[A(τ,~x), E(τ,~x)]∣∣0in

〉
Leading Order in g2 :〈

Oτ,~x
〉
= O[Acl(τ,~x),Ecl(τ,~x)]

where Acl,Ecl are the solutions of the classical Yang-Mills equations
such that

lim
τ→−∞Acl,Ecl = 0
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Fluctuating initial conditions

• By having a distribution of initial conditions instead of a single
one, one can go beyond leading order

• If one averages over Gaussian fluctuations of the initial condition,
there is a (unique) choice of the fluctuations for which :

• One gets also the correct Next-to-Leading Order result

• One resums an infinite class of loop corrections

• To obtain the variance of this Gaussian distribution, one must
perform a 1-loop calculation
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Application to heavy-ion collisions [FG, T. Epelbaum (2013)]

Main steps

1. Solve (analytically) the equation of motion of small perturbations
on top of the classical background, in order to obtain the correct
spectrum of Gaussian fluctuations

2. Solve numerically the Yang-Mills equations on a lattice in 3+1
dimensions

3. Do a Monte-Carlo sampling of the fluctuating initial conditions
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Discretization of the expanding volume

x

y

η

L

L
N

a⊥aη

• Comoving coordinates : τ, η, x⊥

• Only a small volume is simulated
+ periodic boundary conditions

• L2×N lattice with L ∼ 64− 100, N ∼ 128− 200

η = const

τ = const
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Gaussian spectrum of fluctuations

Expression of the variance (from 1-loop considerations)

Γ2(u, v) =

∫
modes k

ak(u)a
∗
k(v)

DµD
µaνk −DµD

νaµk + igFµ
νaµk = 0 , lim

x0→−∞ak(x) ∼ eik·x

z

t

0

21

3

e ik.x

0. Aµ = 0, trivial

1,2. Aµ = pure gauge, analytical solution

3. Aµ non-perturbative, lowest order
expansion in Qsτ

• We need the fluctuations in
Fock-Schwinger gauge
x+a− + x−a+ = 0

• Beware of the light-cone crossings,
since Fµν = ∞ there
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Isotropization

g = 0.1

-1
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Isotropization

g = 0.5
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Thank You!
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