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1 DIS in the dipole picture
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DIS kinematics, high energy=small x

k

k ′

γ∗

P
X

s = (k + P)2

q = k − k ′ q2 ≡ −Q2

W 2 = (P + q)2

ν = P · q/mN

x =
Q2

2P · q =
Q2

2νmN
=

Q2

W 2 + Q2 −m2
N

y =
2P · q
2P · k =

W 2 + Q2 −m2
N

sm2
N

High energy limit is x → 0
I This is when W 2 →∞ ; ν →∞ ;

i.e. the virtual photon-target c.m.s. energy is high.
I Now Q2 is “fixed”.

In DGLAP the limit is x fixed, Q2 large (large transverse momentum)

I want to convince you that the γ∗ is the theorist’s favorite hadron!
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Cross sections vs. energy

γ scattering behaves
just like p scattering
— apart from extra

1
137

The same should be
true for γ∗
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Kinematical variables in TRF

Light cone coordinates x± = 1√
2

(t ± z) (Note boldface x is 2d transverse)

Pµ =
` 0
m,
⊥
0,

z
0
´

=⇒
` +

m/
√

2,
−

m/
√

2,
⊥
0
´

qµ =
`0
ν,
⊥
0,

zp
ν2 + Q2

´
=⇒

` +

q+,
−

−Q2/(2q+),
⊥
0
´

High energy: q+ ≈
√

2ν big Look at γ∗ wavefunction e−i(q+x−+q−x+)

x−
t

x+

z

γ∗ p

I Very accurate resolution in x−

I No resolution in x+

Scattering instantaneous in x+ compared
to natural timescale of γ∗

In particular γ∗ cannot change into a hadronic
final state inside proton; it has to fluctuate into
hadrons before.
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DIS in dipole picture

Simplest hadronic state in the interacting γ∗ state: quark-antiquark dipole.

σ̂

P

γ∗ z

1− z

rT σγ
∗p

T ,L =

Z
d2r dz

˛̨̨
ψγ
∗→qq̄(r, z)T ,L

˛̨̨2
2ImA

High energy: we assume (lifetime/timescale) factorization between

I

˛̨̨
ψγ
∗→qq̄(r, z)T ,L

˛̨̨2
: probability for photon to fluctuate into q̄q

I 2ImA imaginary part of the forward elastic scattering amplitude, i.e. the
total cross section; optical theorem

Same process in the IMF would look like this
I Formally higher order (NLO DIS)

I Dominates at small x because xg(x ,Q2) is large
I Does not describe valence quarks
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Virtual photon wavefunction ψγ
∗→qq̄

The concept makes sense in the framework of
Light Cone Perturbation Theory: (No time to go very far here)

Outline of LCPT calculation
I Idea: know free particle Fock states: |γ∗〉0, |qq̄〉0, |qq̄g〉0 etc.
I Interacting states are superpositions of these:

|γ∗〉 = (1 + . . . )|γ∗〉0 + ψγ
∗→qq̄ ⊗ |qq̄〉0 + ψγ

∗→qq̄g ⊗ |qq̄g〉0 + . . .

I QM perturbation theory: ground state |0〉 wavefunction correction is

X
n

〈n| V̂ |0〉
En − E0

|n〉

I Here 1/∆E is ∼ the lifetime of the quantum fluctuation from 0 to n

I In LCPT, “energy” is k−

I Matrix elements 〈n| V̂ |0〉 are vertices in Feynman rules
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Calculating ψγ
∗→qq̄

Need two things to calculate ψγ
∗→qq̄

k , s

k ′, s′

q, ελ

I Matrix element

∼ eūs(k)ε/λvs′(k
′) ; s, s′ = ±1

2
; λ = 0 = L, λ = ±1 = T

I Energy denominator (q− − k− − k ′−)−1

= −
„

Q2

2q+
+

k2 + m2

2zq+
+

k2 + m2

2(1− z)q+

«
=

−2q+z(1− z)

Q2z(1− z) + m2| {z }
≡ε2

+k2

Fourier-transform k→ r, sum over spins; result is˛̨̨
ψγ
∗→qq̄

T

˛̨̨2
=

αe.m.

2π2 Ncef

“h
z2 + (1− z)2

i
K 2

1 (εr) + m2
f K 2

0 (εr)
”

˛̨̨
ψγ
∗→qq̄

L

˛̨̨2
=

αe.m.

2π2 Ncef 4Q2z2(1− z)2K 2
0 (εr)
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DIS dipole frame: summary

I Picture DIS as γ∗ scattering on target
I At high energy (in TRF) γ∗ fluctuates into qq̄

σγ
∗p

T ,L =

Z
d2r dz

˛̨̨
ψγ
∗→qq̄(r , z)T ,L

˛̨̨2
2ImA˛̨̨

ψγ
∗→qq̄(r , z)T ,L

˛̨̨2
∼ exp

np
z(1− z)Qr

o
I Typical dipole size: r ∼ 1/Q
I Used optical theorem: 2ImA is total cross section

I can also take |A|2 : elastic scattering (diffractive DIS)
I We are assuming that fixed-size dipoles are the basis that diagonalizes

the imaginary part of the T -matrix
I This makes sense in an eikonal approximation for the scattering
I In general: high energy/eikonal approximation: particles fly through target at

fixed x; does not imply zero momentum transfer!
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2 Balitsky-Kovchegov equation
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What happens if one radiates a gluon?

p, i , s

k , a, λ

p′ = p − k

j , s′

k+ = zp+

Light cone wavefunction

ψq→qg(z, k) =

√
p+

p− − kt

2k+ − p′2
2p′+)

× ūs′(p′)p
(2π)32p′+

ta
ij gε/(k)p
(2π)32k+

us(p)p
(2π)32p+

Matrix elements from Pauli hep-ph/0103106

This is simple in the soft limit z → 0:

ψq→qg(z, k) = − g
2π3/2 ta

ij
1√
z
ε · k
k2 δs,s′ |ψ|2 ∼ dP

dz d2k
∼ 1

z
1
k2

 X
λ=±1

εiε
∗
j = gij

!

Typical gauge theory logarithmic divergences in emission probability:

soft dz
z

collinear d2k
k2

http://arxiv.org/abs/hep-ph/0103106
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Soft gluons and large logs, idea of RGE
y
≡

ln
k+

p(
y)

γ
∗
(y

)

p(
y

+
∆

y)
γ
∗
(y

+
∆

y)

I Emitted gluons have z between 1 and x :
each gluon contributes ∼ αs ln 1/x

I For x small αs ln 1/x ∼ 1 =⇒ all n gluon
emissions contribute same =⇒ resum

I Cone by Renormalization Group Equation

Is the gluon at y a part of γ∗ or of p?
You have to decide!

Physical cross section is the same.

σγ
∗p =

gluons up to y are part of protonz }| {˛̨̨
ψγ
∗→qq̄

˛̨̨2
y
⊗ 2ImAqq̄p

y +
˛̨̨
ψγ
∗→qq̄g

˛̨̨2
y
⊗ 2ImAqq̄gp

y + . . .

=
˛̨̨
ψγ
∗→qq̄

˛̨̨2
y+∆y
⊗ 2ImAqq̄p

y+∆y +
˛̨̨
ψγ
∗→qq̄g

˛̨̨2
y+∆y
⊗ 2ImAqq̄gp

y+∆y + . . .| {z }
gluons up to y +∆y are part of proton

Can calculate
˛̨̨
ψγ
∗→qq̄

˛̨̨2
y
’s =⇒ get differential equation for unknown A
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Gluon emission from coordinate space dipole

Let’s put this idea into practice. We will
I Calculate ψγ

∗→qq̄g(z)

I Take soft gluon limit z → 0
I Reabsorb the gluon to become a part of the target
I Get evolution equation for qq̄ cross section

We need:

We can do this with ψγ
∗→qq̄ we already know and and coordinate space

ψq→qg(z, r) =

Z
d2kp
(2π)3

eik·rψq→qg(z, k) = −i
g

2π3/2 ta
ij

1√
z
ε · r
r2 δs,s′



15

DIS in dipole picture BK equation Wilson lines pA collisions Gluon saturation Glasma

Gluon emission from coordinate space dipole

i , x, zq+

j , y, (1− z)q+

i , x

j , y

i , x

j , y

a, z, z′ a, z, z′

r = x− y r′ = x− z z− y = r− r′ ψq→qg(z′)

|γ∗〉int = |γ∗〉+

Z
z,r

C(r)√
Nc
ψγ
∗→qq̄(z, r) |qi (x)q̄j (y)〉

+

Z
z,r,z′,r′

1√
Nc
ψγ
∗→qq̄(z, r)

−ig
2π3/2

ta
ij√
z′

»
(x− z) · ε
(x− z)2 −

(y− z) · ε
(y− z)2

–
|qi (x)q̄j (y)ga(z)〉

Adjust coefficient of qq̄-state to keep wavefunction normalized:

|C(r)|2 = 1− g2

4π3

1
Nc

ta
ij t

a
ji

Z
dz′

z′

Z
d2r′σλ=±1

˛̨̨̨
(x− z) · ελ

(x− z)2 − (y− z) · ελ
(y− z)2

˛̨̨̨2
= 1− αs

π2

Nc
2 − 1
2Nc

∆y
Z

d2r′
r2

r′2(r− r′)2

X
λ=±1

ε
(λ)
i ε

(λ)∗
j = gij
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Crucial step: move the gluon to the target

Scattering amplitude is ImA(r) =
R

d2bN (b, r).
We want equality between scatterng amplitudes with gluon in different place:

N y+∆y
qq̄ = N y

qq̄+
αs

π2

Nc
2 − 1
2Nc

Z y+∆y

y
d ln 1/z′

Z
d2r′

r2

r′2(r− r′)2

h
N ln 1/z′

qq̄g −N ln 1/z′

qq̄

i
Dipole scattering on new target N y+∆y

qq̄ is

I Dipole scattering off original target N y
qq̄

I Dipole emits a gluon into rapidity interval
[y , y + ∆y ], which scatters off target

I Normalization of original dipole is corrected (There

are now less dipoles in γ∗)

Almost there
We are looking for an equation for Nqq̄ : but enocuntered new quantity Nqq̄g ,
which needs to be related to Nqq̄ . Will do this in the large Nc approximation
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Gluon at large Nc

I At large Nc

=⇒ gluon = qq̄
pair (not dipole!)

I Nc
2 − 1 gluon

colors ≈ Nc
2

quark-antiquark
pair colors.

I Had
|q(x)q̄(y)g(z)〉

I Approximate by
|q(x)q̄(z)q(z)q̄(y)〉

ta
ij ≈

i
j

ta
ij

j i

a

≈

j i

i
j

ta
ij

i , x

a, z

j , y

≈ i , z
j , z

i , x

j , y

Now, instead of Nqq̄g , we need Nqq̄qq̄ ;
amplitude for simultaneous scattering of two dipoles.
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Two gluon scattering amplitude

I N is really scattering probability;
I S = 1−N is probability not to scatter

For two dipoles:
I No scattering: neither dipole scatters

=⇒ Sqq̄qq̄ = Sqq̄Sqq̄

I Scattering probability Nqq̄qq̄ = 1− Sqq̄qq̄ = 1− (1−Nqq̄)(1−Nqq̄)

Thus we end up with the approximation:

N (q(x)q̄(y)g(z)) ≈ N (q(x)q̄(z)) +N (q(z)q̄(y))−N (q(x)q̄(z))N (q(z)q̄(y))

and our equation is

N y+∆y
qq̄ = N y

qq̄ +
αs

π2

Nc
2 − 1
2Nc

Z y+∆y

y
d ln 1/z′

Z
d2z

(x− y)2

(x− z)2(z− y)2

×
h
N ln 1/z′

qq̄ (x, z) +N ln 1/z′

qq̄ (z, y)−N ln 1/z′

qq̄ (x, z)N ln 1/z′

qq̄ (z, y)−N ln 1/z′

qq̄ (x, y))
i

Differentially for infinitesimal ∆y , and with large Nc

∂yN (r) =
αsNc

2π2

Z
d2r′

r2

r′2(r′ − r)2

ˆ
N (r′) +N (r− r′)−N (r′)N (r− r′)−N (r)

˜
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Summary

Balitsky-Kovchegov equation (∼1995)

∂yN (r) =
αsNc

2π2

Z
d2r′

r2

r′2(r′ − r)2

×
ˆ
N (r′) +N (r− r′)−N (r′)N (r− r′)−N (r)

˜
This is the basic tool of modern small-x physics.

I Given initial condition N (r) at y = y0 the equation predicts the scattering
amplitude at larger y = smaller x = higher

√
s.

I Drop nonlinear term: BFKL equation
I Divergences at r′ → 0 and r′ → r regulated because N (0) = 0 due to

color neutrality.
I Enforces black disk limit (unitraity) N < 1
I For practical work coupling αs should depend on distance: some

combination of r, r′, r− r′
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What the solution of BK looks like

The equation can be solved
numerically

I Small dipoles r . 1/Qs scatter
very little
At r = 0 color neutral system,
should not scatter by the strong
interaction!

I Large dipoles r & 1/Qs scatter
with probability almost one, but
not more. Saturation

0.01 0.1 1
rΛ

QCD

0

0.2

0.4

0.6

0.8

1

N

k √ α
s

r √ α
s

y = ln 1/x

x

(Actually cheating, this plot is a solution of

JIMWLK, which generalizes BK)
Remember, for the DIS F2,FL convolute this with the (known) γ∗ wavefunction.

σγ
∗p

T ,L =

Z
d2b d2r dz

˛̨̨
ψγ
∗→qq̄(r , z)T ,L

˛̨̨2
2N (r,b, x)

Fits HERA data (x < 0.01 Q2 moderate) extremely well
(b-dependence modeled with varying degrees of sophistication)
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3 Eikonal propagation in target color field
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What is the target made of?

I So far we have not specified anything about the degrees of freedom in
the target.

I We will srgue that at high energy the target consists dominantly of
gluons

I We know that at small x the gluon distribution is larger than the quark one.
I BK equation builds up the target by adding gluons to it.

Color Glass Condensate (CGC)
We assume that there are so many gluons in the target, that it can be
described by a classical gluon field. This is the heart of the CGC effective
theory.

Many gluons = large color field Aµ
Have to sum all diagrams with n
gluons lines
— but we can assume the gluons are
a classical field

A
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What is the target made of?

A

pµ
Quark propagating in classical color
field: Dirac equation!

(i∂/− gA/)ψ(x) = 0

(Note: A/ = Aµa γµta is Nc × Nc-matrix )

Want to dig out the dominant contribution: eikonal approximation
I Gluon is spin 1: it couples to a vector: ∼ pµAµ
I For high energy particle the only momentum available is pµ
I pµ has one large component: p+ =⇒ pµAµ ∼ p+A− =⇒ only need A−

Ansatz for DE: ψ(x) = V (x)e−ip·x u(p), plug into equation Nc × Nc-matrix!

=⇒ ∂+V (x+, x−, x) = −igA−(x+, x−, x)V(x+, x−, x)

This is solved by path-ordered exponential

V (x+, x−, x) = P exp

(
−ig

Z x+

dy+A−(y+, x−, x)

)
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Eikonal propagation

I Now we know how a high energy quark propagates in a classical field.
I Thus we know the scattering S-matrix element for many-quark states

E.g. incoming free quark |qi (x)〉 at x+ → −∞ is, at x+ →∞

|qi (x)〉in =

»
P exp


−ig

Z ∞
−∞

dy+A−(y+, x−, x)

ff–
ji

|qj (x)〉out

a linear superposition of color rotated outgoing quarks.
I In scattering problem integrate x+ ∈ [−∞,∞]

I In the high energy limit quark wavefunction oscillates like eip+x− with
large p+ =⇒ x−-dependence negligible compared to this
=⇒ approximate x− = 0

Scattering is described by 2-dimensional field of SU(Nc)-matrices

V (x) ≡ P exp

−ig

Z ∞
−∞

dx+A−(x+, x− = 0, x)

ff
— These is known as the Wilson lines
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Dipole amplitude and Wilson lines

Incoming dipole (color neutral, average over colors!) changes into

|in〉 =
δii′

Nc
|qi (x)q̄i′(y)〉in =

δii′

Nc
Vji (x)V †i′ j′(y) |q(x)j q̄(y)j′〉out (V (y)†jk = V (y)∗kj for antiquark)

The total cross section is related to the imaginary part of the forward elastic
scattering amplitude; i.e. we need to count outgoing dipoles in this state

S = out 〈qk (x)q̄k (y)| in〉 =
δii′

Nc
δkjδkj′Vji (x)V †i′ j′(y) =

1
Nc

Tr V (x)V †(y)

Dipole amplitude in the CGC
Relate N in BK and DIS to a microscopical description of the target:

Nqq̄ = 1− 1
Nc

Tr V (x)V †(y)

Note conventions

Sfi = 〈f | Ŝ |f 〉 = 1 + iTfi σtot = 2ImTii N ≡ ImTii Sii = δii −N + imag
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More complicated operators

I The dipole amplitude is a target expectation value of a two-point function

Nqq̄ = 1−
D

D̂
E

=

fi
1− 1

Nc
Tr V (x)V †(y)

fl
target

I For this we derived the BK equation using a mean field approximationD
D̂D̂
E
≈
D

D̂
ED

D̂
E

I Similarly define other correlators, such as
D

D̂D̂
E

or the quadrupole

Q =

fi
1
Nc

Tr V (x)V †(y)V (u)V †(v)

fl
target

,

and the corresponding evolution equations.
I Without the mean field approx. these operators couple to each other

(e.g. ∂y

D
D̂

E
∼

D
D̂D̂

E
) the Balitsky hierarchy of evolution equations

I The hierarchy can be generalized into an evolution equation for the
probability distribution of Wilson lines — the JIMWLK equation
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From BK to JIMWLK

JIMWLK equation
Gives rapidity-dependence of probability distribution of Wilson lines

∂y Wy [U(x)] = HWy [U(x)]

H ≡ 1
2

Z
xyz

δ

δ eA+
c (y)

eba(x, z) · eca(y, z)
δ

δ eA+
b (x)

,

eba(x, z) =
1√
4π3

x− z
(x− z)2

“
1− U†(x)U(z)

”ba

You can derive this in a very similar way as we did for BK.
I Assume there is a y -dependent probability distribution Wy [U(x)]

I Consider collection of n Wilson lines propagating through target
I Emit one extra soft gluon and absorb small-z divergence into redefinition

of probability distribution: Wy [U(x)]→ Wy+∆y [U(x)]
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4 Particle production in pA
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Nuclear modification factor RpA

Comparison of ALICE data on particle production in pA and pp to some
theory predictions

0 2 4 6 8 10 12 14 16 18 20
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8  = 5.02 TeVNNsp-Pb  

| < 0.3
cms

ηALICE, NSD, charged particles, |

Saturation (CGC), rcBK-MC
Saturation (CGC), rcBK
Saturation (CGC), IP-Sat

0 2 4 6 8 10 12 14 16 18 20

pP
b

R

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8 )0πShadowing, EPS09s (

LO pQCD + cold nuclear matter

 (GeV/c)
T

p
0 2 4 6 8 10 12 14 16 18 20

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8 HIJING 2.1
=0.28gs

=0.28gDHC, s

DHC, no shad.

DHC, no shad., indep. frag.

There are two ways to calculate this in the CGC
kT -factorization Good at midrapidity/symmetric situation with strong color

fields in both colliding objects. This we will come to a bit later

Hybrid formalism One colliding object described as dilute collection of
partons =⇒ good at forward rapidity. Let us first understand
this
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Dilute-dense scattering

Look at forward rapidity pA
I The produced particle has large p+.
I Momentum conservation: it comes from

large x parton in proton
I At large x the proton is dilute collection of

valence quarks
=⇒ quark scattering on dense target

In: quark with momentum q+,q, color i

|in〉 =

Z
d2xe−iq·x |qi (x)〉in

After interaction with the target

|in〉 =

Z
d2xe−iq·xVji (x) |q(x)j〉out

p

A

qµ
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Scattering amplitude

|in〉 =

Z
d2xe−iq·xVji (x) |q(x)j〉out

Scattering amplitude by projecting quarks with
momentum p in the final state
(Cheating and forgetting the 1 in S = 1 + iT )

p

A

qµ pµ

Mi,q→k,p = out 〈qk (p)| in〉 =

Z
d2x d2ye−i(q·x−p·y)Vji (x)out

δ2(y−x)δkjz }| {
〈qk (y)| q(x)j〉out

We can choose q = 0

dσ
d2p

=
1
Nc

1
(2π)2

X
i,k

|Mi,q→k,p|2 =
1
Nc

1
(2π)2

Z
d2x d2ye−iq·(x−y) Tr V (x)V †(y)

There are xq(x , µ2) incoming quarks in the proton per unit rapidity.

Hybrid formula for quark production

dσ
d2p dy

=
1

(2π)2 xq(x , µ2)
1
Nc

Z
d2x d2ye−ip·(x−y) Tr V (x)V †(y)
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Back to RpA
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dσ
d2q dy

=
1

(2π)2 xq(x , µ2)
1
Nc

Z
d2x d2ye−iq·(x−y) Tr V (x)V †(y)

Now all we need is a parametrization, for protons and nuclei of

Tr V (x)V †(y)

I Fit to HERA data =⇒ proton dipole amplitude
I using BK equation (remember: BK gives x-dependence, need to fit initial condition)
I or some other model of the dipole cross section

I Generalize to nuclei: somehow incorporate Woods-Saxon TA(b)
I The HERA data is very precise and theory fits it well: the “theory errors”

in the above plot are all from this proton =⇒ nucleus generalization.
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From protons to nuclei

One typical initial condition for BK: GBW Golec-Biernat, Wusthoff:

N (b, r) = θ(Rp − b)

„
1− exp


− r2

4Q2
s

ff«
, and for nucleus?

1. Just fit QA
s separately to some nuclear data

2. Assume saturation scale Q2
s ∼ TA(b) or A1/3 — with what coefficient?

3. MC Glauber, count overlapping nucleons and
`
QA

s
´2

= NN
`
QA

s
´2

— Fine, but what is the area of the nucleon when you calculate NN?
Same as in DIS? Same as in Glauber? (These are different!)

One has to be careful (I’m being nasty showing these celebrated plots)
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And the prediction was?

Differences mostly in nuclear geometry, not in the QCD!
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Another example: forward dihadron correlations in dAu
Two particle collision vs. ∆ϕ :

pp peripheral dAu central dAu
p+p → π0π0+X, √s = 200 GeV
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Calculating 2-particle correlation in forward pA

I Quark from p (large x) from pdf, radiate
gluon

I Propagate eikonally through target
=⇒ Wilson lines U(x)

I Need target expectation values of Wilson
lines — from JIMWLK

p

A

dσqA→qgX

d3q d3k
∝
Z

x,x̄,y,ȳ
e−iq·(x−x̄) e−ik·(y−ȳ) F(x̄− ȳ, x− y)*

Q̂(y, ȳ, x̄, x) D̂(x, x̄)− D̂(y, x)D̂(x, z̄)− D̂(z, x̄)D̂(x̄, ȳ) + . . .

+
target

(z = zx + (1− z)y, z̄ = zx̄ + (1− z)ȳ.)

D̂(x− y) ≡ 1
Nc

Tr U(x)U†(y) Q̂(x, y,u, v) ≡ 1
Nc

Tr U(x)U†(y)U(u)U†(v)
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5 Gluon saturation and the CGC
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Classical field and equation of motion

I We were describing the high energy nucleus as a classical field: A−

=⇒ Wilson line
I What does this imply for the partonic content of the nucleus?
I The physical picture of “gluons as partons” requires two things

(cf. Marco’s lectures)
I Infinite momentum frame: nucleus moving fast

Also change direction: nucleus moves now in +z-direction with large p+.
Means we have large A+ component.

I Light cone gauge: have to gauge transform to A+ = 0

I But let us start with the “classical” part.

Classical field ≡ from equation of motion

[Dµ,Fµν ] = Jµ

What remains is

∇2A+ = J+

This is nice, the big +-field corresponds to a
color current in the +-direction.

t

z

x+

j+
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Spacetime structure of the field

The current lives on the light cone.
1. Naive explanation: Nucleus is

Lorentz-contracted to ∆z ∼ 2RAmA/
√

s
2. Real explanation: Current represents

large x degrees of freedom
I They have large p+, classical field small
I They are more localised in x− than the

field.

The current is independent of LC time x+;
glass!

Argument is as above:

1. Time is dilated for the nucleus

2. Any probe will have larger k− than color
current =⇒ probe will oscillate faster in
x+ and see current as static.

t

z

x−
x+

j+,A+

Extreme approximation:

j+(x−, x) ≈ δ(x−)ρ(x)

A+(x−, x) ≈ δ(x−)
1

∇2 ρ(x)
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Classical field and equation of motion

Now let us gauge transform.

A+ ⇒ U†(x, x−)A+U(x, x−)− i
g

U†(x, x−)∂−U(x, x−) = 0

A− ⇒ − i
g

U†(x, x−)∂+U(x, x−) = 0, still

Ai ⇒ i
g

U†(x, x−)∂iU(x, x−) transverse pure gauge

This is solved by familiar Wilson line

U(x, x−) = P exp

"
−ig

Z x−

dy−A+

#

Now Ai ∼ θ(x−) — delocalized in x−, just like
small k+ physical gluons should be.

t

z

x−
x+

A+
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Weizsäcker-Williams gluon distribution

In LC quantization (Now of nucleus, not γ∗) the number distribution of gluons:

dN
d2k dy

∼
D

Ai
a(k)Ai

a(−k)
E

I Ai
a(k) is obtained from the Wilson line

I Wilson line is related to DIS dipole cross section, BK equation
I One can express this Weizsäcker-Williams gluon distribution as:

dN
d2k dy

= ϕWW(k) =
CF

2π3

1
αs

Z
d2b

Z
d2r

eik·r

r2
eN (b, r)

( eN is the adjoint representation Wilson line correlator)

I You can write the dipole formula for DIS in a
kT -factorized form that involves ϕWW(k)

I Gluon saturation in ϕWW(k) at k . Qs

I ϕWW(k) ∼ 1/αs =⇒ “condensate” of gluons

Now we have a Color Glass Condensate.
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6 Heavy ion collisions and the glasma initial state
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Gluon fields in AA collision

Now two colliding nuclei =⇒ two color currents

Jµ = δµ+ρ(1)(x)δ(x−) + δµ−ρ(2)(x)δ(x+)

Classical Yang-Mills

η = cst.

t

z

x+x−

(3)

Aµ = ?

(4)

Aµ = 0

(2)

Aµ = pure gauge 2

(1)

Aµ = pure gauge 1

τ = cst.

2 pure gauges

Ai
(1,2) =

i
g

U(1,2)(x)∂iU†(1,2)(x)

U(1,2)(x) = Peig
R

dx− ρ(x,x−)

∇2

At

τ = 0:

Ai
˛̨̨
τ=0

= Ai
(1) + Ai

(2)

Aη|τ=0 =
ig
2

[Ai
(1),A

i
(2)]

Solve numerically Yang-Mills equations for τ > 0
This is the glasma field =⇒ Then average over ρ.
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Gluon fields in AA collision

Now two colliding nuclei =⇒ two color currents

Jµ = δµ+ρ(1)(x)δ(x−) + δµ−ρ(2)(x)δ(x+)

Classical Yang-Mills

η = cst.

t

z

x+x−

(3)

Aµ = ?

(4)

Aµ = 0

(2)

Aµ = pure gauge 2

(1)

Aµ = pure gauge 1

τ = cst.

2 pure gauges

Ai
(1,2) =

i
g

U(1,2)(x)∂iU†(1,2)(x)

U(1,2)(x) = Peig
R

dx− ρ(x,x−)

∇2

At τ = 0:

τ = 0:

Ai
˛̨̨
τ=0

= Ai
(1) + Ai

(2)

Aη|τ=0 =
ig
2

[Ai
(1),A

i
(2)]

Solve numerically Yang-Mills equations for τ > 0
This is the glasma field =⇒ Then average over ρ.



42

DIS in dipole picture BK equation Wilson lines pA collisions Gluon saturation Glasma

Gluon fields in AA collision

Now two colliding nuclei =⇒ two color currents

Jµ = δµ+ρ(1)(x)δ(x−) + δµ−ρ(2)(x)δ(x+)

Classical Yang-Mills

η = cst.

t

z

x+x−

(3)

Aµ = ?

(4)

Aµ = 0

(2)

Aµ = pure gauge 2

(1)

Aµ = pure gauge 1

τ = cst.

2 pure gauges

Ai
(1,2) =

i
g

U(1,2)(x)∂iU†(1,2)(x)

U(1,2)(x) = Peig
R

dx− ρ(x,x−)

∇2

At τ = 0:

Ai
˛̨̨
τ=0

= Ai
(1) + Ai

(2)

Aη|τ=0 =
ig
2

[Ai
(1),A

i
(2)]

Solve numerically Yang-Mills equations for τ > 0
This is the glasma field =⇒ Then average over ρ.
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Result: glasma field

.
.

.

..

.

.

.

.

..

.
.. .

. .

.
.

. . ..

.
.

.

I Initial condition is longitudinal E
and B field,

I Depend on transverse coordinate
with correlation length 1/Qs.
=⇒ gluon correlations

0 0.5 1 1.5 2
g

2µτ

0
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0.8

[(
g2 µ)

4 /g
2 ]

B
z

2

E
z

2

B
T

2

E
T

2

Gauss law and Bianchi: (here i = 1 . . . 3)

[Di ,E i ] = 0, [Di ,B i ] = 0

Separate nonabelian parts:

∂iE i = ig[Ai ,E i ], ∂iB i = ig[Ai ,B i ]

Effective electric and magnetic charge
densities.
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Deriving the initial condition

Let’s work in Fock-Schwinger/temporal gauge Aτ =
`
x+A− + x−A−

´
/τ = 0

=⇒ consistent with LC gauge solutions for both nuclei.

Ansatz: Ai =

knownz }| {
A(1)

i θ(−x+)θ(x−) + A(2)
i θ(x+)θ(−x−) +A(3)

i θ(x+)θ(x−)

A± = ±θ(x+)θ(x−)x±Aη

Insert into [Dµ,Fµν ] and match
δ-functions

H
initial condition for region (3):

A(3)
i |τ=0 = A(1)

i + A(2)
i

Aη|τ=0 =
ig
2

h
A(1)

i ,A(2)
i

i

η = cst.

t

z

x+x−

(3)

Aµ = ?

(4)

Aµ = 0

(2)

Aµ = pure gauge 2

(1)

Aµ = pure gauge 1

τ = cst.
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Gluon spectrum in the glasma

CYM equations can be solved numerically on the lattice.
Decompose solution in Fourier k-modes: gluon spectrum

Qs is only dominant scale

Parametrically
dNg

dy d2x d2p
=

1
αs

f
„

p
Qs

«

Produced gluon spectrum: harder at
higher

√
s

(Here: midrapidity, y ≡ ln
p

s/s0)

0.25 1 4 16
p

T
/Q

s

adj

0

0.2

0.4

0.6
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1

1.2

p T

2  d
N

/d
2 p T
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y = 1.30
y = 2.59
y = 3.89
y = 5.18
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Dilute limit and kT -factorization

The equations of motion are easy to solve in the dilute limit;
(This is a CGC theorist’s “pp collision”)

Linearized eqations are wave equations“
τ 2∂2

τ + τ∂τ + τ 2k2
”

Ai (τ, k) = 0“
τ 2∂2

τ − τ∂τ + τ 2k2
”

Aη(τ, k) = 0.

=⇒ Ai (τ, k) = Ai (τ = 0, k)J0(|k|τ) Aη(τ, k) = − 1
τ |k|A

η(τ = 0, k)J1(|k|τ).

I These are (boost invariant) plane waves =⇒ interpret as particles, gluons.
I Initial fields related to Wilson lines, and via that to the gluon amplitude

Number spectrum in the dilute limit: kT -factorization formula.

dN
dy d2k

=
αs

S⊥
2

CF

1
k2

Z
d2qϕdip(q)ϕdip(|k− q|).

This calculation can also be repeated by assuming that one of the two
colliding objects is dilute (Theorist’s “pA”) — It does not work in “AA”
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CYM vs. k-factorization

I In fact, also in “AA” the kT -factorization formula works for high pT

I But it does not give a finite integrated total gluon multiplicity,
I Sometimes this is fixed by an ad hoc cutoff

dN
d2p dy

=
1
αs

1
p2

Z
k

»
θ(p − k)

–
φy (k)φy (p− k)
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k/g
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pA: k-factorization works
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AA: kT -factorization only for large
pT



48

DIS in dipole picture BK equation Wilson lines pA collisions Gluon saturation Glasma

Back to RpA
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The theory predictions here are calculated with the kT -factorization formula:

dN
dy d2k

=
αs

S⊥
2

CF

1
k2

Z
d2qϕdip(q)ϕdip(|k− q|),

convoluted with a fragmentation function for g →hadrons.

I You can also rederive the hybrid formula from this, in the asymmetric
limit. (QA

s � Qp
s , i.. |k− q| � |q|)
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Tale of two gluon distributions

This picture has only been clarified recently. One must differentiate

WW distribution

ϕWW(k) =
CF

2π3

1
αs

Z
d2b

Z
d2r

× eik·r

r2 N (b, r)

I Comes from actually counting
gluons in the nucleus

I Appears in kT -factorized
expression for DIS

I Satisfies the usual
momentum-space version of the
BK equation

Dipole distribution distribution

ϕdip(k) =
CF

8π3

k2

αs

Z
d2b

Z
d2r

× eik·rN (b, r)

I Appears in kT -factorized
expression for particle production
in pp, pA

(Being careless with SU(Nc) representations and color factors here.)
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