CMS Experiment at the LHC, CERN

Data recorded: 2012-Nov-30 07:19:44,547430 GMT(08:19:44 CEST) Run / Event: 208307 / 997510994

New Heavy Flavour results at CMS

Vincenzo Chiochia

Physik-Institut - University of Zurich

4 December 2014 KRUGER-2014

μ-

Why heavy flavour physics?

- Physics of beauty and charm quarks in p-p collisions
- Research area with rich of phenomenology:
 - Heavy flavor production measurements
 - Tests of QCD (hard scattering, fragmentation, NRQCD, etc.)
 - Spectroscopy and particle properties
 - Heavy baryon spectroscopy
 - Spectrum of standard and exotic quarkonium states
 - Particle lifetimes, masses, decays, etc.

Rare beauty decays

 Complementary to direct searches: access multi-TeV energy scales through loop contributions

CMS published 28 journal articles in the heavy flavour area https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBPH

- Recent selected CMS highlights in heavy flavours:
 - Combined CMS+LHCb search for $B_{s,d} \rightarrow \mu \mu$ decays
 - CP violation in $B_s \rightarrow J/\psi \varphi$ decays
 - Production of J/ ψ , ψ (2S) and χ_{b}
 - B_c decays, observation of a new B⁺ rare decay

The CMS detector

Datasets and LHC luminosity

V. Chiochia (Zürich University) – New Heavy Flavor results at CMS - 4 December 2014

b quark production at the LHC

- Enormous b quark production rate at the LHC Run 1
- Expected to more than double in Run 2
- High rates imply very selective requirements at trigger level to store interesting b decays

Triggers for heavy flavor physics

- Trigger requirements tightened following the increase in instantaneous luminosity.
- About 10% of CMS bandwidth assigned to heavy flavor physics
- Single muon trigger efficiencies measured from data (tag&probe), di-muon correlations from MC

Quest for rare B decays: the LHC Run 1 heritage

Why searching for $B_{s,d} \rightarrow \mu^+ \mu^-$?

Decays highly suppressed in SM

- Forbidden at tree level
- b →s(d) FCNC transitions only through *Penguin* or Box diagrams
- Cabibbo (|Vtd|<|Vts|) and helicity suppressed

Standard Model predictions

- *𝔅*(B_s→μμ)=(3.65±0.23)×10⁻⁹[1]
 - ~10% corrections from B_s mixing when comparing to experiments included ^[2]
 - CKM best fit: (3.6^{+0.2}-0.3)×10^{-9 [3]}
- $\mathscr{B}(B^0 \rightarrow \mu \mu) = (1.07 \pm 0.10) \times 10^{-10} \, [1]$
- Sensitivity to new physics, e.g. extended Higgs sector and SUSY particles:
 - 2HDM branching ~(tanβ)⁴ and m(H⁺)
 - MSSM branching ~(tanβ)⁶
 - Leptoquarks
 - 4th generation top

[1] PRL112, 101801 (2014) [2] JHEP 1307 (2013) 77, PRL 109, 041801 (2012), arXiv:1208.0934 [3] Phys. Rev. D85: 033005, 2011

1990

proved charged multiplicity measurements.

1985

Key ingredients: Good dimuon vertex, correct B mass assignment, isolation, momentum pointing to interaction point

Signal characteristics:

- Two muons from a well reconstructed decay vertex
- Mass compatible with B_s (or B⁰)
- Dimuon momentum aligned with B flight direction

Background sources:

- Two semi-leptonic B decays (e.g. from gluon splitting)
- One semi-leptonic B decay + misidentified hadron
- Hadronic B decays
 - Peaking: $B_s \rightarrow K^-K^+$
 - More problematic within the B⁰ mass window
 - Rare semileptonic: $B_s \rightarrow K^- \mu^+ \nu$, $\Lambda_b \rightarrow p \mu \nu$

Discriminating variables

Boosted decision tree (BDT) selection 12 input variables: kinematic, Tracker only, Muon only, Tracker+Muon variables Trained on signal MC sample and dimuon mass sidebands from data √s = 7 TeV I_{3D} Same BDT for normalisation ($B^+ \rightarrow J/\psi K$) and control ($B_s \rightarrow J/\psi \beta$) channels $B_s^0 \rightarrow \mu^+\mu^-$ (MC) **Robustness studies** Insensitive to invariant mass using MC signal events with shifted mass Output independent on high- or low-mass side band PV Insensitive to multiple collisions (pileup) vertex 10 €

 \boldsymbol{D}

$L = 20 \text{ fb}^{-1} (\sqrt{s} = 8 \text{ TeV})$ $L = 20 \text{ fb}^{-1} (\sqrt{s} = 8 \text{ TeV})$ $L = 20 \text{ fb}^{-1} (\sqrt{s} = 8 \text{ TeV})$ 5000<u>CMS</u> $L = 20 \text{ fb}^{-1} (\sqrt{s} = 8 \text{ TeV})$ CMS CMS CMS 500 1000 6000F Dimuon Dimuon Dimuon Dimuon data sidebands data sidebands data sidebands data sidebands 4000 $B_{e} \rightarrow \mu^{+} \mu^{-}$ <mark>∑</mark>B_s → μ⁺ μ^{*} <mark>N</mark>B_e → μ⁺ μ^{*} 5000 $B_{e} \rightarrow \mu^{+} \mu^{-}$ 400 800 4000 3000 300 600 3000 2000 200 400 2000 1000 100 200 1000 100 0.05 50 0. 2 3 з $I_{3D}/\sigma(I_{2D})$ $\delta_{3D}/\sigma(\delta_{0D})$ α_{3D} χ^2/dof Flight length Pointing Impact parameter B-vertex reduced significance significance chi² angle

Examples of background separation ariables

Branching ratio measurement

- BDT output divided into 4 (2) bins for 2012 (2011) data and barrel/endcap categories
- Simultaneous UML fit of B_s and B⁰ candidates:
 - B^s and B⁰ decays signal
 - Peaking backgrounds (e.g. B⁰→Kπ, B_s→KK)
 - Rare s-I backgrounds (e.g. $\Lambda_b \rightarrow p \mu \nu$)
 - Combinatorial background

Event-per-event mass resolution included

 $BR(B_s \to \mu\mu) = (3.0^{+0.9}_{-0.8} \text{ (stat)}^{+0.6}_{-0.4} \text{ (syst)}) \times 10^{-9}$ $BR(B_d \to \mu\mu) = (3.5^{+2.1}_{-1.8} \text{ (stat+syst)}) \times 10^{-10}$

PRL 111 (2013) 101804

Combined CMS+LHCb analysis

- Extrapolations using Phase I/II detector setups and L1 triggers
- Invariant mass resolution from full GEANT4 simulation
- Restrict analysis to barrel region

	Mass resolution	δ Br[B_s(μμ)]	δ Br[B⁰(μμ)]	δ R	B⁰(µµ) Sign.
Phase 1 (300/fb)	42 MeV	13%	48%	50%	2.2σ
Phase 2 (3000/fb)	28 MeV	11%	18%	21%	6.8σ

V. Chiochia (Zürich University) – New Heavy Flavor results at CMS - 4 December 2014

CP Violation in $B_s \rightarrow J/\psi \varphi$ decays

CP violation in Bs decays

- B_s mesons mix with relatively large decay width difference (ΔΓs) between the two mass eigenstates
- Final state of the $B_s \rightarrow J/\psi(\mu\mu)\phi(KK)$ decay is accessible by both B_s and B_s
- The weak phase ϕ_s arises from the **quantum interference** between direct and mixing-mediated decays

- Precise SM predictions for ϕ_s (4% uncertainty) and experimentally clean final state ($\mu\mu$ KK) with low background
- Several new physics scenarios predict enhanced values of ϕ_s
- Final state with two vector mesons: **mixture of CP-even and CP-odd states**

 $\phi_{\mathbf{S}} \simeq -2\beta_{\mathbf{S}}, \ \beta_{\mathbf{S}} = \arg(-V_{tS}V_{tb}^* / V_{CS}V_{cb}^*)$

 $2\beta_{\rm S} = [0.0363^{+0.0016}_{-0.0015}]$ rad in the SM ¹

V. Chiochia (Zürich University) – New Heavy Flavor results at CMS - 4 December 2014

Time dependent and flavour tagged angular analysis to disentangle CP states

• **Opposite-side lepton tagger** to determine Bs flavour at production time: $P_{tag} = \epsilon (1-2\omega) = (0.97 \pm 0.04)\%$

Fit results and uncertainties

Parameter	Fit result
$ A_0 ^2$	0.511 ± 0.006
$ A_{\rm S} ^2$	0.015 ± 0.016
$ A_{\perp} ^2$	$\textbf{0.242} \pm \textbf{0.008}$
δ_{\parallel}	$3.48\pm0.09\text{rad}$
$\delta_{S\perp}^{''}$	$0.34\pm0.24\text{rad}$
δ_{\perp}	$2.73\pm0.36\text{rad}$
cτ	447.3 \pm 3.0 μ m
$\Delta \Gamma_{s}$	$0.096\pm0.014{ m ps}^{-1}$
ϕ_{s}	$-0.03\pm0.11\mathrm{rad}$

Source	$ A_0 ^2$	$ A_S ^2$	$ {\it A}_{\perp} ^2$	$\Delta\!\Gamma_{s} \left[\text{ps}^{-1} \right]$	$\delta_{\parallel} \; [\mathrm{rad}]$	$\delta_{\rm S\perp} \; [\rm rad]$	$\delta_{\perp} \; [{\rm rad}]$	ϕ_{s} [rad]	$\mathbf{c}\tau \; [\mu \mathbf{m}]$
Statistical uncertainty	0.0058	0.016	0.0077	0.0138	0.092	0.24	0.36	0.109	3.0
Proper time efficiency	0.0015	-	0.0023	0.0057	-	-	-	0.002	1.0
Angular efficiency (*)	0.0060	0.008	0.0104	0.0021	0.674	0.14	0.66	0.016	0.8
Model bias (**)	0.0008	-	-	0.0012	0.025	0.03	- (0.015	0.4
Proper time resolution	0.0009	-	0.0008	0.0021	0.004	-	0.02	0.006	2.9
Background mistag modelling	0.0021	-	0.0013	0.0018	0.074	1.10	0.02	0.002	0.7
-lavour tagging	-	-	-	<u> </u>	-	-	0.02	0.005	-
PDF modelling	0.0016	0.002	0.0021	0.0021	0.010	0.03	0.04	0.006	0.2
Free $ \lambda $ fit (***)	0.0001	0.005	0.0001	0.0003	0.002	0.01	0.03	0.015	-
Kaon p _T re-weighting (****)	0.0094	0.020	0.0041	0.0015	0.085	0.11	0.02	0.014	1.1
Total systematics	0.0116	0.022	0.0117	0.0073	0.684	1.12	0.66	0.032	3.5

 $(\ensuremath{^*})$ evaluated from the statistical uncertainty of the model

(**) determined from toy MC bias tests

(***) let $|\lambda|$ as a free parameter in the fit

(****) propagated from discrepancy between data and simulations

$$\phi_{\rm S} = -0.03 \pm 0.11(\text{stat.}) \pm 0.03(\text{syst.})$$
 rad

 $\Delta\Gamma_{\rm S} = 0.096 \pm 0.014(\text{stat.}) \pm 0.007(\text{syst.}) \text{ ps}^{-1}$

- $\Delta\Gamma_{s}$ confirmed to be non zero
- Very competitive \$\phi_s\$ determination
- **Good agreement with SM**
- Statistical uncertainties dominant

World summary

Experiment	$\Delta\Gamma_{ m s}$ (ps ⁻¹)	$\phi_{\sf s}$ (rad)
ATLAS (4.9/fb)	0.053±0.021±0.010	$0.12 \pm 0.25 \pm 0.05$
CMS (20/fb)	$0.096 \pm 0.014 \pm 0.007$	-0.03±0.11±0.03
LHCb (3/fb)	$0.0805 \pm 0.0091 \pm 0.0032$	$-0.058 \pm 0.049 \pm 0.006$

Recent results on Quarkonium

Q

g

 $\overline{\mathsf{Q}}$

Quarkonium production

- Study of quarkonium (cc and bb) production tests key aspects of QCD phenomenology:
 - Perturbative QCD, hadron formation, non-relativistic QCD (NRQCD), factorisation, etc.
- CMS has released a set of production and polarisation measurements for s-wave and pwave quarkonium states

$$\sigma(\mathcal{Q}) = \sum_{n} S[q\bar{q}(n)] \langle \mathcal{O}^{Q}(n) \rangle n$$

$$n =^{2S+1} L_{J}^{[C]} \qquad n =^{2S+1} L_{J}^{[C]} \qquad [C]=1,8$$

- Conjecture: long-distance matrix elements are independent on momentum and production process
- Constrained by cross section and polarisation measurements

See dedicated talk by **I.Kratschmer** in parallel session

Prompt J/ ψ and ψ (2S) production

- New results based on 2011 data extend p_T reach to 120 GeV (100 GeV) for $J/\psi(\psi)$
- Yields extracted from combined fit to the mass and plagernderay length distributions

- Single muon efficiency measured from data and dimuon correlations from MC
- Acceptance computed for different polarisation scenarios $W(\cos\theta,\phi) = \frac{3}{10(3+\lambda_{\theta})} \cdot (1 + \lambda_{\theta}\cos^2\theta + \lambda_{\phi}\sin^2\theta\cos^2\phi + \lambda_{\theta\phi}\sin^2\theta\cos\phi)$

Key results for testing predictions at large transverse momenta

P-wave bottomonium

- CMS
- Y(1S, 2S, 3S) resonances and ratios well studied, much less known about P-waves
 - P-wave states provide complementary information about NRQCD, as they depend on long distance matrix elements of the color octets
 - Quarkonium polarization measurements so far are limited to S-wave states
 - Decays from P-wave states non-negligible effects on measurements.
- CMS has the most precise differential measurement in of $\sigma(\chi_{b2}(1P))/\sigma(\chi_{b2}(1P))$ at the LHC
 - Experimentally quite challenging, small mass difference (19.4 MeV)
 - Use photon conversions to reconstruct $Y(1S)+\gamma$ final state in four p_T bins

P-wave bottomonium

Data do not exhibit strong p^Y dependence and closer to color-singlet predictions

- χ_b three times heavier than χ_c and relative velocity of QQ pair is 3 times smaller
- Impact of color octet is expected to be smaller than in χ_c case
- No cross section data available yet to extract χ_b NRQCD parameters. Simple scaling from χ_c fits is used

B_c studies and a new B⁺ rare decay

V. Chiochia (Zürich University) – New Heavy Flavor results at CMS - 4 December 2014

- Excellent laboratory to study heavy guark dynamics, unprecedented rates at LHC
- CMS confirms the $B_c \rightarrow J/\psi \pi \pi \pi$ decays and measures the ratio to $J/\psi \pi$ and $B^+ \rightarrow J/\psi K$

(*) PRD 81, 014015 - range covers different form factors

New decay: B⁺→ψ(2S)φK⁺

- Study of resonant structures in $B^+ \rightarrow J/\psi \varphi K^+$ decays lead to the first observation of the rare decay $B^+ \rightarrow \psi(2S)\varphi K^+$
- Ongoing: measurement of branching ratio

- The excellent performance of the CMS detector and LHC have allowed key contributions to the field heavy flavor physics
 - The CMS and LHCb collaborations have finally nailed down the B_s→µµ rare decay and will keep hunting for the even rarer B⁰→µµ during run 2. No surprises so far.
 - CMS has the second most precise determination of the CP violating fase φ_s and lifetime difference in B_s decays. Amazing agreement between experiments and with SM.
 - Prompt charmonium measurements have been extended beyond p_T=100 GeV. P-wave quarkonium studied differentially.
 - New measurements of B_c production will help understanding heavy quark dynamics
 - New B+ rare decay discovered!

Thanks to the organizers for this wonderful experience!

BACKUP SLIDES

Relative isolation of muon pairs

- Cone with ΔR=0.7 around di-muon momentum
- Include all tracks with p_T>0.9 GeV from same PV or d_{CA}<500 μm from B vertex
- Dip at ~0.97 from minimum track p⊤ requirement

B-vertex isolation

- either tracks not associated to any primary vertex or tracks associated to the same B candidate
- Distance of the closest track to SV (dca)
- Number of close tracks in d_{ca} <300 µm and p_T >0.5 GeV
- Muon isolation
- tracks in muon cone with ΔR=0.5

Signal normalization

Branching ratios calculated w.r.t. normalization channel $B^+ \rightarrow J/\psi(\mu^+\mu^-)K^+$

- Many systematic uncertainties cancel in ratio
- No need for absolute luminosity and b-quark cross section
- Large B⁺ yield and well known branching ratio to $J/\psi K^+$ (3% uncertainty)
- Ratio of b-quark fragmentation fractions to B_s/B^+ : $f_s/f_u = (256\pm 20) \times 10^{-3}$ [JHEP 04 (2013) 001]

Bs(mm) BDT validation

Use differences between data and MC for systematics

 P^{\pm} →J/ψ K[±] 3% ; B_s →J/ψ φ 9.5% (2011) and 3.5% (2012)

