

## SEARCH FOR SUPERSYMMETRY AT CMS

### **Christian Autermann**

## RWTH Aachen University, Germany



SPONSORED BY THE



Federal Ministry of Education and Research



# Overview

Motivation and Introduction of Supersymmetry

**Indirect Searches** 

**Direct Searches for Supersymmetry** 

- Inclusive all-hadronic searches
- "Natural-SUSY" stop, sbottom searches
- Search for gauge-mediated SUSY with photons
- Electroweak produced Supersymmetry
- Stealth models

The dilepton mass-edge analysis

Conclusion



# New physics beyond the Standard Model: Supersymmetry

- After the discovery of a Higgs Boson:
  - Hierarchy problem has become a real problem!
  - What mechanism is responsible for the Higgs mass?
- Supersymmetry can provide viable dark matter candidates:
  - Implies stable lightest (neutral) supersymmetric particles (LSP) leading to missing transverse energy (MET) in the detectors
  - Corollary, limits on SUSY from MET searches do not apply if SUSY LSPs aren't (exclusively) responsible for dark matter
- Unification of Gauge couplings at the GUT scale
- Local space-time symmetry naturally includes Gravity



# (Broken) Symmetries can be elegant!



Entrance of Fermi National Laboratory (Fermilab FNAL), near Chicago



## What is the status of the search for Supersymmetry?



- Simplest models like cMSSM (constrained minimal supersymmetric standard model) basically out of the game
- "Natural SUSY" has to have decoupled spectra



# $B^0$ , $B^0_s \rightarrow \mu\mu$ : Indirect searches

### **CMS PAS BPH-13-007** submitted to Nature

branching fraction to  $\mu\mu$  has sensitivity to "new physics" like Supersymmetry





**Results**: Consistent with Standard Model *→* Constraints allowed "New Physics"









# Overview

Motivation and Introduction of Supersymmetry

**Indirect Searches** 

Direct Searches for Supersymmetry

- Inclusive all-hadronic searches
- "Natural-SUSY" stop, sbottom searches
- Search for gauge-mediated SUSY with photons
- Electroweak produced Supersymmetry
- Stealth models

The dilepton mass-edge analysis

Conclusion



CMS PAS SUS-13-012 JHEP 06 (2014) 055

## Inclusive search for SUSY in the MET and jets final state



 $\sqrt{s} = 8$  TeV, 19.5 fb<sup>-1</sup> luminosity (full 2012)

- Dominant squark and gluino pair/ associated production
- Stable neutralino LSP

### Final state

MHT missing transverse Energy

$$\mathbf{H}_{T} = \left| -\sum_{i}^{jets} \vec{p}_{T}, i \right|$$

- Jets
  - High multiplicity or
  - High  $H_T$  (scalar sum jet  $p_T$ )

$$H_T = \sum_{i}^{jets} \left| \vec{p}_T, i \right|$$

→ Very little model assumptions





## Selection

- 3 jets pT > 50 GeV, |η| < 2.5
- ΔΦ(MHT, jets<sub>1,2,3</sub>) > 0.5, 0.3, 0.3
- Veto events with isolated e,  $\mu$  with  $p_T > 10$  GeV

| Variable         | baseline | 36 signal search regions |     |       |      |        |      |       |        |
|------------------|----------|--------------------------|-----|-------|------|--------|------|-------|--------|
| Jet-multiplicity | 3 -      | 3 - 5                    |     | 6 - 7 | 7    |        |      | 8 -   |        |
| HT [GeV]         | 500 -    | 500-800                  | 800 | -1000 | 1000 | -1250  | 1250 | -1500 | 1500 - |
| MHT [GeV]        | 200 -    | 200-300                  |     | 300-4 | 50   | 450-60 | 0    | 600 - |        |

# Backgrounds

- QCD multi-jet production MHT from jet resolution and mismeasurements
- W/tt→(e/µ)+jets
   Lepton is not reconstructed
- Z**→**vv
- W+jets→τ+jets
- ➔ All are estimated using data-driven methods

### Baseline selection:



⊭<sub>T</sub> [GeV]



CMS

10



## **Background estimation**

- <u>Z</u> →νν from γ+jets
  - Z/γ similar at high boson pT
  - Replace γ with MET
  - Correct Z/γ ratio using simulation
  - Apply γ acceptance & efficiency corrections

### • tt/W $\rightarrow \tau(\rightarrow hadrons) + jets$

- Isolated µ control sample
- µ replaced by tau response according to template (each µ sampled 100 times)
- μ trigger, acceptance, efficiency, and branching ratio μ / v corrections







## Results of the Jets plus MET search





## Cross section limit and Interpretation in SMS

### Gluino-gluino pair-production

### Squark-squark pair-production

- First two squark generations mass degenerate
- Only one accessible squark





Kruger, Dec. 4th, 2014 Christian Autermann

**CMS PAS SUS-13-019** 

# SUSY search with MT2

Analysis carried out in the HT, jet-multiplicity, MT2 plane

$$(M_{T2})^2 = 2p_T^{vis(1)} p_T^{vis(2)} (1 + \cos\phi_{12})$$

Backgrounds from data control regions



### signal region



## MT2: Results





# Overview

Motivation and Introduction of Supersymmetry

**Indirect Searches** 

**Direct Searches for Supersymmetry** 

- Inclusive all-hadronic searches
- "Natural-SUSY" stop, sbottom searches
  - Search for gauge-mediated SUSY with photons
  - Electroweak produced Supersymmetry
  - Stealth models

The dilepton mass-edge analysis

Conclusion



### CMS PAS SUS-13-015

# Direct stop / sbottom searches



- MET > 175 GeV
- 2 jets pT > 70 GeV,  $\Delta \phi < 2.5$  to supress QCD bb
- 1, 2 b-tags, veto leptons
- veto 3<sup>rd</sup> jet pt > 50 GeV to suppress ttbar

**Stop analysis** 



- MET > 200 GeV
- $\geq$  2 jets, pT > 70 GeV and
- $\geq$  4 jets, pT > 40 GeV and
- ≥ 5 jets, pT > 30 GeV
- at least 1 b-tag, veto leptons
- Δφ(jet, MET) > 0.5, 0.5, 0.3
- top-reconstruction



### Backgrounds:

- $Z \rightarrow vv$  from  $W \rightarrow vI$  enriched data
- ttbar, W decaying to one lepton escaping detection →lost lepton
- QCD negligible (data sidebands)

### Backgrounds:

- ttbar, W decaying to one lepton escaping detection →lost lepton method
- $Z \rightarrow vv$  from MC, corrected by data
- QCD from data side-bands





# Summary stop and sbottom searches



- Several dedicated searches for "natural SUSY"
- Reinterpretations of inclusive searches
- Several "blind spots"
- Still room for natural SUSY to hide

 $\leftarrow \rightarrow$ 

room for (new) sophisticated search strategies





# Overview

Motivation and Introduction of Supersymmetry

**Indirect Searches** 

**Direct Searches for Supersymmetry** 

- Inclusive all-hadronic searches
- "Natural-SUSY" stop, sbottom searches
- Search for gauge-mediated SUSY with photons
  - Electroweak produced Supersymmetry
  - Stealth models

The dilepton mass-edge analysis

Conclusion





- → Wino-like neutralinos
- $\geq$  1 photon with pT > 110 GeV  $\geq$  2 jets with pT > 30 GeV HT > 500 GeV Particle-flow MET > 100 GeV
- 6 exclusive bins in MFT

- Bino-like neutralinos
- $\geq$  2 photon with pT > 36 (26) GeV  $\geq$  1 jets with pT > 40 GeV no MET, but MR > 600 GeV, R<sup>2</sup>>0.02



## Analyses strategies

### Single Photon

- QCD photon-jet and QCD photon-fakes (jet→γ)
   MET from jet resolution and mismeasurements
   → Estimation from data: jet-control sample
- 2. Electro-weak backgrounds where an electron fakes a photon  $(e \rightarrow \gamma)$ 
  - → Estimation from data: electron sample weighted by electron, photon conversion rate measured on Z→ee

### Diphoton "Razor" Analysis

$$\begin{split} M_R &\equiv \sqrt{(|\vec{p}_{j_1}| + |\vec{p}_{j_2}|)^2 - (p_z^{j_1} + p_z^{j_2})^2} \\ M_T^R &\equiv \sqrt{\frac{E_T^{miss}(p_T^{j_1} + p_T^{j_2}) - \vec{E}_T^{miss} \cdot (\vec{p}_T^{j_1} + \vec{p}_T^{j_2})}{2}} \end{split} \qquad R \equiv \frac{M_T^R}{M_R} \end{split}$$

Signal region  $M_R > 600$  GeV,  $R^2 > 0.02$ ,  $M_R$  shape from data control region 0.01 <  $R^2$  < 0.02



# Results

### Single-Photon







## Interpretation in a General Gauge Mediated Scenario



Paper covering both analyses in preparation



# Search for stop and higgsino production using diphoton Higgs decays $-\frac{\text{Stop}_{R}}{1}$

- "Natural" SUSY scenario with gauge mediated symmetry breaking
- Right-handed stop and higgsino are assumed to be only accessible sparticles
- Electroweak pair production of higgsinos or strong pair production of right-handed stop





Final state: H H + MET (+ 2b or 2t in case of strong production)



## Selection

- 2 photons γ: pT > 40, 25 GeV, |η| < 1.4442</li>
- 2 b-tagged jets: combined-secondary-vertex, particle-flow jets d=0.5, pile-up subtracted, pT > 30 GeV, |η| < 2.4</li>

| • | Signal selection        | Lower control region    | Upper control region    |  |  |
|---|-------------------------|-------------------------|-------------------------|--|--|
|   | 120 < m( γγ ) < 131 GeV | 103 < m( γγ ) < 118 GeV | 133 < m( γγ ) < 163 GeV |  |  |

- Three signal categories (increases sensitivity up to 35%)
  - i.  $\geq$  3 b-tagged jets  $\rightarrow$  strong production
  - ii. 95 < m( bb ) < 155 GeV: "on-H"
  - iii. all other events: "off-H"

- → ewk production or small stop neutralino mass difference
- → strong & ewk production

## **Background estimation**

- SM background from di-photon inv. mass sidebands
  - SM Higgs background (peaking) found to be negligible
- Fit performed using lower and upper control region for each category
  - Systematics due to fit-function studied
  - · Correlation to other variables by independent fits to lower and upper sideband





## Results for the three categories



### Event yields

| Category            | (i)         | (ii)         | (iii)        |  |
|---------------------|-------------|--------------|--------------|--|
| signal 350 / 135    | 10.7        | 2.0          | 6.8          |  |
| signal 300 / 290    | 2.1         | 10.1         | 3.9          |  |
| signal 400 / 300    | 4.0         | 1.4          | 2.8          |  |
| expected background | $6.7\pm1.4$ | $10.5\pm1.8$ | $29.7\pm2.8$ |  |
| observed            | 6           | 7            | 33           |  |

 $\sqrt{s} = 8 \text{ TeV}$ L<sub>int</sub> = 19.7 fb<sup>-1</sup>

Dominant uncertainties:

- Background statistics
- B-tagged jet identification 1-17%
- Jet energy scale 7-43%

28









## **Results and Interpretation**

- CLs limits at 95% confidence level
  - LHC-style profiled likelihood teststatistics
- stop masses < 360 410 GeV excluded, depending on the neutralino mass







# Overview

Motivation and Introduction of Supersymmetry

**Indirect Searches** 

**Direct Searches for Supersymmetry** 

- Inclusive all-hadronic searches
- "Natural-SUSY" stop, sbottom searches
- Search for gauge-mediated SUSY with photons
- Electroweak produced Supersymmetry
  - Stealth models

The dilepton mass-edge analysis

Conclusion



 $P_2$ 

 $\tilde{\chi}_2^0$ 

31

# Search for electroweak production PRD 90 (2014) 092007 of neutralinos, charginos and higgsinos



- Probing decay channels
  H → bb / γγ / multileptons
  Z → II / jj, W → Iv / jj
- using Higgs mass similar as Z, W
- large MET, transverse mass MT, scalar energy sum ST, depending on the analysis



Higgsino mass  $m_{g_0}$  (GeV)

# Search for electroweak production of neutralinos, charginos and higgsinos



Channels combined to single limit



# Search for electroweak production of neutralinos, charginos and higgsinos



Talk by David Morse, Friday afternoon





# Overview

Motivation and Introduction of Supersymmetry

**Indirect Searches** 

**Direct Searches for Supersymmetry** 

- Inclusive all-hadronic searches
- "Natural-SUSY" stop, sbottom searches
- Search for gauge-mediated SUSY with photons
- Electroweak produced Supersymmetry
- Stealth models

The dilepton mass-edge analysis

Conclusion



## CMS PAS SUS-14-009

Search for Stealth Supersymmetry



- Stealth SUSY benchmark model for no-MET signatures
  - New hidden sector of particles at the weak scale with nearly mass-degenerate superpartners
- Diphoton channel
  - Background from S<sub>T</sub> side-bands
     (S<sub>T</sub>: scalar sum of pT of all accepted physics objects i.e. jets, photons, leptons, MET)
- Lepton channel
  - Dominant backgrounds ttbar, single-top, Z taken from Monte Carlo simulation, using corrections from data-control regions



19.7 fb<sup>-1</sup> (8 TeV)

**0 b-tag e**,μ

 $S_{T} > 700 \text{ GeV} \dots M_{\tilde{g}} = 600 \text{ GeV}$ 

2 3 4 5 6 ≥7

Data

Single t + tt

Non-prompt

Systematic unc.

S<sub>⊤</sub> > 1200 GeV

2345

6 ≥7

 $N_{jets}$ 

Drell-Yan Dibsoon 36

# Search for Stealth Supersymmetry

### ST photon analysis







# Search for Stealth Supersymmetry





#### Summary of CMS SUSY Results\* in SMS framework





Probe \*up to\* the quoted mass limit

![](_page_38_Picture_0.jpeg)

# Overview

Motivation and Introduction of Supersymmetry

**Indirect Searches** 

**Direct Searches for Supersymmetry** 

- Inclusive all-hadronic searches
- "Natural-SUSY" stop, sbottom searches
- Search for gauge-mediated SUSY with photons
- Electroweak produced Supersymmetry
- Stealth models
- The dilepton mass-edge analysis

Conclusion

![](_page_38_Picture_13.jpeg)

![](_page_39_Picture_0.jpeg)

![](_page_39_Figure_3.jpeg)

### Search for Supersymmetry: Dilepton mass edge

![](_page_39_Figure_5.jpeg)

![](_page_39_Figure_6.jpeg)

• Upper mass edge:  $M_{max} = M(\chi_2^0) - M(\chi_1^0)$ 

• 
$$\frac{d\sigma}{dm_{II}} = \frac{\pi^2 m_{II}}{2m_{\tilde{\chi}_2^0}^2} \sqrt{\left(m_{\tilde{\chi}_2^0}^2 - \left(m_{\tilde{\chi}_2^0} + m_{II}\right)^2\right)\right) \left(m_{\tilde{\chi}_2^0}^2 - \left(m_{\tilde{\chi}_2^0} - m_{II}\right)^2\right)}$$

for a direct 3-body decay and pure Lorentz invariant phase space

![](_page_40_Picture_0.jpeg)

## Search for Supersymmetry: Dilepton mass edge

![](_page_40_Figure_3.jpeg)

- 2 isolated leptons (e,  $\mu$ ) pT > 20 GeV,  $|\eta|$  < 2.4
- ≥ 2 jets pT > 40 GeV and MET > 150 GEV or
   ≥ 3 jets pT > 40 GeV and MET > 100 GEV
- m(II) > 20 GeV

![](_page_41_Picture_0.jpeg)

## Search for Supersymmetry: Dilepton mass edge

### 99% dominant background: ttbar

![](_page_41_Figure_4.jpeg)

- Bkgd: Use <u>opposite lepton flavor events (e μ)</u> events to model the like flavor events in the signal selection (ee, μμ)
  - Correct for differences of electron and muon efficiencies
- Result: A highly precise Standard model background expectation

![](_page_42_Picture_0.jpeg)

# Results of the dilepton search

![](_page_42_Figure_3.jpeg)

![](_page_43_Picture_0.jpeg)

## Significance of the dilepton search results

![](_page_43_Figure_3.jpeg)

![](_page_44_Picture_0.jpeg)

## Analysis was carried out as "blind analysis"

![](_page_44_Picture_3.jpeg)

![](_page_45_Picture_0.jpeg)

## First indication of Supersymmetry?

- Most likely explanation is still statistical fluctuation
- Other systematic effects in the data were not found

# But...

- ...this was real?
  - ...the excess grows with new data?
- What would the Supersymmetry properties look like?
- Can this be studied / validated / ruled out by other analyses or experiments?
- → Paper with interpretation in preparation

![](_page_46_Picture_0.jpeg)

# Ambulance chasing...

- B. Allanach, A. R. Raklev, A. Kvellestad, ``Interpreting a CMS IIjj MET Excess With the Golden Cascade of the MSSM", hep-ph:1409.3532.
- P. Huang, C. Wagner, ``CMS kinematic edge from sbottoms", hep-ph:1410.4998.

![](_page_46_Figure_5.jpeg)

![](_page_46_Picture_6.jpeg)

![](_page_46_Figure_7.jpeg)

![](_page_47_Picture_0.jpeg)

# Future prospects

- Lessons learned: We have accumulated enough luminosity and sensitivity to make searches for rare signatures in decay chains worthwhile
- Future analyses at center-of-mass energies of 13 TeV will push limits on Supersymmetry much further, especially from inclusive hadronic and leptonic search channels
- More sophisticated specialized algorithms will be necessary to target more difficult accessible Supersymmetry phase space regions

![](_page_48_Picture_0.jpeg)

## Future challenges:

- Boosted topologies only one challenge out of many at the future  $\sqrt{s} = 13$  TeV high luminosity LHC
  - → jet substructure algorithms
- "Pile-up" from simultaneous and high-frequency pp-collisions distorted energy reconstruction, increased trigger threshold, jet multiplicit
  - → requires sophisticated subtraction algorithms
- Compressed spectra

small Supersymmetry particle mass differences

- $\rightarrow$  only little visible energy, requires e.g. specialized triggers
- Electroweak production low jet multiplicity and energies
   → specialized analyses
- Model fits
  - → combine search results
  - → derive matching parameters, exclude phase space regions

![](_page_49_Picture_0.jpeg)

# Conclusion

- CMS has searched for New Physics using 19.5 fb<sup>-1</sup> of 8 TeV data of the full 2012 dataset
- Searching for Supersymmetry requires complex analysis tools
- Also 'negative' search results can be interesting
- CLs limits at 95% C.L. on the signal cross section have been calculated
- Interpretation in various simplified model spectra (SMS)

### References

CMS public results: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults</u>

![](_page_50_Picture_0.jpeg)

Kruger, Dec. 4th, 2014 Christian Autermann

51

# Additional material

![](_page_51_Figure_0.jpeg)

![](_page_52_Picture_0.jpeg)

## Inclusive search for SUSY with multi-leptons plus b

- Generic search, lepton requirement to suppress background
- Targeting possibly light third generation squarks (natural SUSY requires light 3<sup>rd</sup> generation)

![](_page_52_Figure_6.jpeg)

 $\begin{array}{c|c} P_2 & \tilde{b}_1 & \ddots & \tilde{\chi}_2^0 & \ddots & \tilde{\chi}_1^0 \\ P_1 & \tilde{b}_1^* & \ddots & \tilde{\chi}_2^0 & \ddots & \tilde{\chi}_1^0 \\ & \tilde{b}_1^* & \ddots & \tilde{\chi}_2^0 & \ddots & \tilde{\chi}_1^0 \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \end{array}$ 

Model C1

Sensitivity to SUSY scenarios with at least

- Three light isolated leptons (e, μ),
- One b-tagged jet
- Missing transverse energy (MET)
- Hadronic activity

 $\sqrt{s} = 8 \text{ TeV},$ 19.5 fb<sup>-1</sup> luminosity (full 2012)

![](_page_53_Picture_0.jpeg)

![](_page_53_Picture_1.jpeg)

## Selection

- 3 leptons with pT > 20, 10, 10 GeV
- m(l<sup>+</sup>l<sup>-</sup>) > 12 GeV
- ≥ 1 b-tagged jet with pT > 30 GeV
- No lepton with  $\Delta R(I, b-jet) < 0.4$
- no jet with  $\Delta R(I, jet) < 0.4$

### 29 signal regions

| Variable                     | Baseline  | Search Regions |    |            |            |
|------------------------------|-----------|----------------|----|------------|------------|
| Sign/Flavor                  | $3~e/\mu$ | On-Z           |    | Off-Z      |            |
| $N_{b-jets}$                 | $\geq 1$  | 1              | 2  |            | $\geq 3$   |
| N <sub>jets</sub>            | $\geq 2$  | 2-3            |    | $\geq 4$   |            |
| $H_{\rm T}~({\rm GeV})$      | $\geq 60$ | 60–200         |    | $\geq 200$ |            |
| $E_{\rm T}^{\rm miss}$ (GeV) | $\geq 50$ | 50-100         | 10 | 0-200      | $\geq 200$ |

<u>On-Z</u>: Opposite-sign same-flavor di-lepton mass with  $m(Z) \pm 15$  GeV

Bin rather than cut

![](_page_54_Picture_0.jpeg)

### Standard Model background

- Top anti-top plus boson production: ttW, ttZ, ttWZ
- Single-top plus Z production: tbZ
- Di-boson production: WZ, ZZ
- Triple-boson production, WWW, WWZ, WZZ
- Non-prompt lepton (e.g. from b-decays)
- On-shell and off-shell photon conversions  $\gamma \rightarrow l^+l_-$ 
  - Measured in low MET data control region

![](_page_54_Figure_10.jpeg)

![](_page_54_Figure_11.jpeg)

Monte Carlo simulation Validated in data control Region

Data side-band with 1 non-isolated lepton

![](_page_55_Picture_0.jpeg)

### Results

- Non-prompt lepton ú background dominant – this is extracted from data
- Simultaneous multi-bin fit to obtain final cross-section limits
- Lepton reconstruction and isolation efficiency uncertainties measured in data control sample on the Z peak

![](_page_55_Figure_6.jpeg)

| Source                                                                 | Uncertainty, % |
|------------------------------------------------------------------------|----------------|
| Luminosity                                                             | 4.4            |
| Modeling of lepton reconstruction, ID, $I_{\rm rel}$ based on Z-events | 12             |
| Jet energy scale                                                       | 5 - 15         |
| Unclustered energy and lepton effects on $E_{\rm T}^{\rm miss}$        | 5              |
| Modeling of b-jet multiplicity                                         | 5 - 20         |
| Trigger                                                                | 5              |
| Total systematic uncertainty                                           | 15 - 30        |

![](_page_56_Picture_0.jpeg)

95% C.L. upper limit on cross section (fb)

### Cross section limit and interpretation in simplified model spectra (SMS)

![](_page_56_Figure_3.jpeg)

![](_page_57_Picture_0.jpeg)

### Cross section limit and interpretation in SMS

![](_page_57_Figure_3.jpeg)

![](_page_58_Picture_0.jpeg)

## Inclusive multi-leptons search

- More general focus on all possible three-lepton signatures
- Not optimized for a particular SUSY scenario
- Multiple search regions binned in MET, HT rather than cut

### Selection

- $\geq$  3 isolated leptons, from same primary vertex
  - + pT > 10 GeV,  $|\eta|$  < 2.4 for e,  $\mu$
  - At most one or three prong  $\tau$ , pT > 20,  $|\eta|$  < 2.3
- Z-mass ± 15 GeV and m(II)<12 GeV veto for opposite-charge same-flavor lepton pairs</li>

### Signal search channels

- Bins of number of opposite-sign same-flavor dilepton pairs
- Separate channels for events containing a hadronic tau
- No b-jet or  $\geq$  1 b-jets
- HT < 200 GeV or HT > 200 GeV
- Five MET bins 0 50 100 150 200 GeV, ≥ 200 GeV

### Backgrounds

(same as for 3 lepton + b)

 $\sqrt{s} = 8 \text{ TeV}$ 9.2 fb<sup>-1</sup> luminosity

59

![](_page_59_Picture_0.jpeg)

### Results

# Gluino pair-production and decay via off-shell stop

### Slepton co-NLSP scenario

![](_page_59_Figure_5.jpeg)