Standard Model Higgs boson at CMS

Olivier Bondu on behalf of the CMS Collaboration

Kruger 2014: Third Biennial Workshop on Discovery Physics at the LHC

What is the Standard Model Higgs boson?

- EWSB mechanism introduce a complex scalar field
 - W and Z getting mass
 - One scalar physical particle: the Higgs boson H
- Last piece of the Standard Model
- Yukawa interactions with the fermions: generate mass
- Mass as free parameter (\sim [114.4 1000] GeV)

What about the one we discovered? Is it the one? (One of the) only place where we did actually see something in Run I data

Menu

- How did we find it?
- What did we find exactly?

Introduction

How did we find it?

What did we find?

Conclusions

Production of the SM Higgs boson

Introduction

How did we find it?

What did we find?

Conclusions

Decay of the SM Higgs boson

Search channels:

- Decay directly: HWW, HZZ, Hbb, $H\tau\tau$, H $\mu\mu$
- Decay through loops $H\gamma\gamma$, $HZ\gamma$
- Overwhelmed by QCD: Hgg, Hcc̄

What did we find?

Conclusions

How did we find it?

How did we find it?

What did we find?

Conclusions

The Compact Muon Solenoid experiment

How did we find it?

What did we find?

Conclusions

Preamble

- Focus on analysis of Run I data:
 - $\sqrt{s} = 7 8$ TeV, $\int L \sim 25$ fb $^{-1}$, <pu $> \sim 20$
- Analysis criteria tighten with \sqrt{s} , L, <pu>
 - Trigger, p_T, isolation, identification, kinematics, ...
- Global Event Description (aka Particle Flow)
 - Charged/neutral hadrons, muons, electrons, photons
 - Substract PU from isolations, jet clustering, PU jet identification
- Correct simulation for data-MC differences
- Interference between signal and background accounted for
- Focus on the boson at $m_H \sim 125 \, {\rm GeV}$
- Similar dijet tag (VBF production)
 - Two forward jets, rapidity gap, high m_{jj}, recoil in transverse plane

Analysis: two isolated photons

- Vertex BDT, photon E and $\sigma(E)$ BDTs, photon ID BDT
- Categories on BDT, production process

- Final calibration, improved simulation, improved energy scale uncertainties
- 25 event categories
- Background modeling: discrete profiling (enveloppe)
 - Good uncertainty coverage

Results

• Observed a 5.7 σ (5.2)

excess

- $\mu = 1.14^{+0.26}_{-0.23}$
- Mass: $m_H = 124.70 \pm 0.31(\text{stat}) \pm 0.15(\text{syst}) \text{ GeV}$
- Width: Γ_H = 2.4(3.1) GeV
- Spin: favors 0⁺

Analysis

- Boost categories in p_T(V); p_T(H)
- Fit to a BDT discriminant
 - *m*_{jj}, *N*_{aj}, CSVmin, △*R*(jj), ...
 - 3 BDT to separate tt, VJets, VV, VH

Results: excess compatible with an excess at 125 GeV

- Simultaneous fit to 14 BDT distributions
- Limit at 95% CL of 1.89 σ_{SM} (0.95 σ_{SM}) observed (expected)
- **Excess** of 2.1σ (2.1σ) observed (expected)

•
$$\mu = 1.00 \pm 0.05$$

How did we find it? What did we find? HZZ final state (I) JHEP 06 (2013) 081 🗷 Phys. Rev. D 89 (2014) 092007 • BR (HZZ) (4/) 15 - 7 TeV. L = 5.1 fb⁻¹: 15 - 8 TeV. L = 19.7 fb⁻¹ = 2.64%(0.0125)%∧₉35 Data m_=126 GeV E vents / 3 20 20 Dkin > Search in [110 – 1000] GeV 🗖 Ζγ̈́*,ΖΖ 7+X Bkgs: ZZ, $Z\gamma$, Zjets, tt • $\epsilon_{\rm trigger} \gtrsim 98\%$ 15 Low yield, narrow 10 resonance: accurate calibration, selection 200 800 300 400 600 100 efficiency m₄₁ (GeV)

Analysis

 Isolated leptons, FSR recovery (2 GeV), *e*-ID/*p*_T BDT

•
$$p_T^e > 7 \, {
m GeV}, \, p_T^\mu > 5 \, {
m GeV}$$

Results

- Excess of 6.8 σ (6.7) at 125.7 GeV
- $m_H = 125.6 \pm 0.4 (\text{stat}) \pm 0.2 (\text{syst}) \text{ GeV}$
- $\mu = 0.93^{+0.26}_{-0.23}(\text{stat})^{+0.13}_{-0.09}(\text{syst})$

How did we find it?

JHEP 06 (2013) 081 🗷

What did we find?

JHEP 01 (2014) 096 🗷

Conclusions

HWW final state (I)

- BR(HWW) = 21.5%
- Leptonic final states
- *m_{II}*, *m_T*/counting for signal extraction
- Search range 110-600 (-200 for VH)
- Backgrounds evaluated from data: WW,tt, VJets, VV

• $\epsilon_{
m trigger}\gtrsim 97\%$

Analysis

Leptons identified and isolated

- Isolated leptons, HPS τ_h , b-tag veto
- SVFIT (iff *τ* only source of true *∉*_T): maximum likelihood fit to reconstruct *m*_{ττ}

Introduction

How did we find it?

What did we find?

Conclusions

Hau au final state (II) JHEP 06 (2013) 081 II JHEP 05 (2014) 104 II

- Background estimation
 - DY: DY(µµ) with embedded taus
 - DY(*II*): misID from tag and probe
 - Wjet, tī: control region
 - QCD: control region
 - VV, t, HWW from simulation

• Boost $p_T^{\tau\tau}$, p_T^L categories

CMS, 4.9 fb⁻¹ at 7 TeV, 19.7 fb⁻¹ at 8 TeV Events 10 V Bkg uncertain 10 10⁴ 10 log(S/(S+B) 10 10² 10 10⁻¹ log(S/(S+B))

Results

- Observe **excess** of 3.2 σ (3.7) for $m_H = 125 \,\text{GeV}$
- $\mu = 0.78 \pm 0.27$
- $m_H = 122 \pm 7 \,\mathrm{GeV}$

- BR(HZγ) = 0.154%
- $\epsilon_{\mathrm{trigger}}^{ee\gamma;\mu\mu\gamma}\sim 60-98;91\%$
- OSSF lepton pair
- Backgrounds: Zγ ISR, Zγ
 FSR, Zjets
- Categories barrel/endcap, γ conversion, dijet
- Fit to $m_{ll\gamma}$ spectrum

Results

- No excess seen
- Dalitz decay $\gamma\gamma^* \rightarrow \mu\mu\gamma$ no excess either

What did we find?

 Introduction
 How did we find it?
 What did we find?

 Observation
 Observation
 Observation

 Mass and signal strength
 CMS-PAS-HIG-14-009 IM

• $m_H = 125.03^{+0.26}_{-0.27} (\text{stat})^{+0.13}_{-0.15} (\text{syst})$ GeV • $\mu = 1.00 \pm 0.09 (\text{stat})^{+0.08}_{-0.07} (\text{theo}) \pm 0.07 (\text{syst})$

 $\bullet \ \text{Off-shell} > 220 \, \text{GeV}$

- $H\gamma\gamma$: fit on $\cos\theta_{CS}^*$
- HZZ : kinematic discriminant
- HWW : binned ML
- Tested also mixtures (and not only pure states)
- All tests favors $J^{PC} = 0^{++}$

- Couples 'as a Higgs boson' to W and Z bosons
- Symmetry between W and Z couplings

- Observation of coupling to fermions at 4.4 σ (3.8)
- $\mu = 0.83 \pm 0.24$
- Similar coupling to quark and leptons

•
$$\mu = 2.8^{+1.0}_{-0.9}$$

What about bbH ? Softer spectra...

How did we find it?

What did we find?

- BR(Hee) = 5 × 10⁻⁹
- Search in [120 150] GeV
- Bkg from m_{ll} fit (DY, tt
 ,VV)
- Categories in (ggH/ VBF), tight/loose, η range, p^l/_T

Results

- Hµµ search: excludes 7.4 σ_{SM} (6.5^{+2.8}_{-1.9}); $\mu = 0.8^{+3.5}_{-3.4}$
- Hee search: excludes 0.041 pb (0.052 $^{+0.022}_{-0.015}$), aka 3.7 \times 10⁵ σ_{SM}
 - Expect 10⁻³ (SM)Hee events VS 0.23 (SM)Hγγ...
- Exclusion of universal coupling to leptons

√s = 7 TeV, L = 5.1 fb⁻¹; √s = 8 TeV, L = 19.7 fb⁻¹ Weighted Events / 20 GeV 12 Data 10 m_H = 126 GeV 8 121.5 < m_{4/} < 130.5 GeV 6 2 0 -2 -4<u>.</u> 50 100 150 200 p_{τ}^{4l} (GeV)

- Kinematics compatible with expectations
- Differential cross section from $H\gamma\gamma$ decays in progress

Results

• No excess in any of the searches limit: BR < 0.58 (0.44)

- 2HDM: 5 physical Higgs bosons H, h(125), A, H^{\pm}
 - Generic search for H → hh and A → Zh in multilepton and photon final states
- Search for additional Higgs-boson like states in $H_{\gamma\gamma}$
- No excess observed

- Search for heavy resonance decaying into two *H*(125)
 - Dedicated searches in $H(b\bar{b})H(\gamma\gamma)$ and $H(b\bar{b})H(b\bar{b})$
- No excess observed
- Preparation to constrain HHH and WWHH couplings

What did we find?

Conclusions

Conclusions

What did we find?

Conclusions

Conclusions

What about the one we discovered? Is it the one?

- Mass in the expected range
- Spin-parity favors 0⁺
- Signal strength and couplings match SM prediction

It is a one!

"Higgs boson and nothing else" was the worst-case outcome but the story has not ended yet...:

- Rare and exotic decays ($t' \rightarrow tH$?, flavor changing, ...)
- Deviation from SM to be looked for
- Other Higgs bosons (higher/lower mass, charged, res. prod.)
- There remains unturned stones (HHH, WWHH)
- Other corners than the Higgs one

Run I legacy analyses are (mostly) all out Eagerly preparing for Run II!