

Recent QCD Results at ATLAS

Dr. Andrew Hamilton

University of Cape Town on behalf of the ATLAS Collaboration

Outline

A selection of recent ATLAS QCD results:

- total proton-proton cross section
- underlying event characteristics
- inclusive single and 3-jet cross sections
- direct photon production

Large Hadron Collider

Running Periods:

- 2010 special run
- 2011 7 TeV with 4.5 fb⁻¹

8 TeV analysis in progress

ATLAS Detector

Total Cross Section

Nuclear Physics, Section B (2014), pp. 486-548

beam optics $\beta^* = 90 \,\mathrm{m}$ luminosity $80 \,\mu\mathrm{b}$

A

ALFA spectrometer:

1280 scintillator fibres

resolution $30 - 35 \mu m$

measure
$$\theta$$
 to extract $t: -t = (\theta^* \times p)^2$,

Total Cross Section

arXiv:1409.3433

A

S

Observable	Definition
$p_{\mathrm{T}}^{\mathrm{Z}}$	Transverse momentum of the Z-boson
$N_{ m ch}/\delta\eta\delta\phi$	Number of stable charged particles per unit $\eta - \phi$
$\Sigma p_{ m T}/\delta\eta\delta\phi$	Scalar $p_{\rm T}$ sum of stable charged particles per unit $\eta - \phi$
Mean <i>p</i> _T	Average $p_{\rm T}$ of stable charged particles

Also:

trans-max (min) = transverse side with max (min) activity.

(only tracks with $p_T > 0.5 \text{ GeV}$ and $|\eta| < 2.5$ considered)

Kruger 2014 : LHC Discovery Physics

A

A S

Generator	Туре	Version	PDF	Tune
Рутніа б	LO PS	6.425	CTEQ6L1 [29]	Perugia2011C [30]
Pythia 8	LO PS	8.165	CTEQ6L1	AU2 [31]
HERWIG++	LO PS	2.5.1	MRST LO** [32]	UE-EE-3 [33]
Sherpa	LO multi-leg ME + PS	1.4.0 /1.3.1	CT10 [34]	Default
Alpgen + Herwig +Jimmy	LO multi-leg ME + PS (adds MPI)	2.14 6.520 4.31	CTEQ6L1 MRST LO**	AUET2 [35]
Powheg + Pythia 8	NLO ME + PS	- 8.165	CT10 CT10	AU2

Generators Compared

Pile-up Corrections

A

L A S

А

A. Hamilton

A test of next-to-leading order QCD calculations with non-pQCD and EWK corrections

Dominated by jet energy scale uncertainties.

Α

S

generators:

PDF sets:

NLOJET++ (shown here) POWHEG+PYTHIA (see paper) CTI0, MSTW2008, NNPDF2.1,

(see paper for POWHEG+PYTHIA and R=0.4 results)

Kruger 2014 : LHC Discovery Physics

general agreement shown

generators:

PDF sets:

NLOJET++ (shown here) POWHEG+PYTHIA (see paper) HERAPDFI.5, and ABMII

some disagreement shown in mid-pT region

A. Hamilton

Kruger 2014 : LHC Discovery Physics

arxiv:1411.1855v1

Again, jet energy scale is the dominant uncertainty.

very good agreement over several orders of magnitude

A

s

again, ABMII and HERAI.5 tunes are low in mid-pT region

A. Hamilton

Kruger 2014 : LHC Discovery Physics

PYTHIA and HERWIG both describe the shape well

HERWIG normalisation is slightly low

A. Hamilton

Kruger 2014 : LHC Discovery Physics

Conclusions

ATLAS is constraining our understanding of QCD in:

- total proton-proton cross section
- underlying event characteristics
- inclusive single and 3-jet cross sections
- direct photon production

Looking forward to new results early in Run II at 13 TeV.

Backup Slides

ATLAS & CMS Specs

Sub System	ATLAS	CMS	
Design	46 m	The second secon	
Magnet(s)	Solenoid (within EM Calo) 2T 3 Air-core Toroids	Solenoid 3.8T Calorimeters Inside	
Inner Tracking	Pixels, Si-strips, TRT PID w/ TRT and dE/dx $\sigma_{p_T}/p_T\sim 5 imes 10^{-4}p_T\oplus 0.01$	Pixels and Si-strips PID w/ dE/dx $\sigma_{p_T}/p_T \sim 1.5 imes 10^{-4} p_T \oplus 0.005$	
EM Calorimeter	Lead-Larg Sampling w/ longitudinal segmentation $\sigma_E/E \sim 10\%/\sqrt{E} \oplus 0.007$	Lead-Tungstate Crys. Homogeneous w/o longitudinal segmentation $\sigma_E/E\sim 3\%/\sqrt{E}\oplus 0.5\%$	
Hadronic Calorimeter	Fe-Scint. & Cu-Larg (fwd) $\gtrsim 11\lambda_0$ $\sigma_E/E\sim 50\%/\sqrt{E}\oplus 0.03$	Brass-scint. $\gtrsim 7\lambda_0$ Tail Catcher $\sigma_E/E \sim 100\%/\sqrt{E} \oplus 0.05$	
Muon Spectrometer System Acc. ATLAS 2.7 & CMS 2.4	Instrumented Air Core (std. alone) $\sigma_{p_T}/p_T \sim$ 4 % (at 50 GeV) \sim 11 % (at 1 TeV)	Instrumented Iron return yoke $\sigma_{p_T}/p_T \sim 1\% \text{ (at 50 GeV)}$ $\sim 10\% \text{ (at 1 TeV)}$	

Total Cross Section

1-6 Dec 2014

A. Hamilton

ATLAS

A. Hamilton

Α

S

POWHEG+PYTHIA

A

AS

purity estimate with two-dimensional side band subtraction

